
  
 
 Submitted Manuscript:  Confidential             template updated: February 28 2012 
 

  



Whole-genome analysis of papillary kidney cancer finds significant non-
coding alterations 

Authors:  S. Li1, B. M. Shuch2*, M. B. Gerstein3,4* 

Affiliations: 
1Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 
06520, USA. 
2Department of Urology, Yale School of Medicine, New Haven, CT, 06520, USA. 
3Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 
06520, USA. 
4Department of Computer Science, Yale University, New Haven, CT 06520, USA. 
*To whom correspondence should be addressed: brian.shuch@yale.edu, pi@gersteinlab.org 

One Sentence Summary: The first detailed whole genome analysis of papillary kidney cancer 
and identifies several novel non-coding variants. 

Abstract: Papillary renal cell carcinoma (pRCC) constitutes 10-15% of kidney tumors. Recent 
advances in DNA sequencing have significantly deepened our understanding of the molecular 
genetics of this disease. However, much of this work has been limited to coding alterations in 
traditional cancer driver genes. Moreover, despite identifying specific sub-groups of alterations, 
researchers cannot find a clear molecular etiology for a significant proportion of the tumors. To 
address this, we carry out the first whole genome analysis of pRCC. We take a comprehensive 
approach, trying to explain the cases lacking classic drivers. Traditionally, research in pRCC has 
focused on alterations in the MET gene. First, we elaborate on these results, validating a germline 
SNP in MET (rs11762213), predicting prognosis. Next, we analyze mutations in the non-coding 
regions throughout the entire genome. We discover several potentially impactful hotspots, 
including some in MET non-coding regions and inside a long non-coding RNA, NEAT1. The 
NEAT1 mutations, moreover, are associated with increased expression and worse cancer-specific 
survival. Finally, we analyze genome-wide mutational patterns. We notice that these are dictated 
mostly by the prevalence of methylation-associated C to T transitions. Also, we observe 
significantly more mutations in open chromatin regions in tumors with chromatin modifier 
alterations.  

Introduction 
Renal cell carcinoma (RCC) makes up over 90% of kidney cancers and currently is the 

most lethal genitourinary malignancy (1). Papillary RCC (pRCC) accounts for 10%-15% of the 
total RCC cases (2). Unfortunately pRCC has been understudied and there are no current forms 
of effective systemic therapy for this disease. For many years, the only prominent oncogene in 
pRCC (specifically type 1) that physicians were able to identify was MET, a tyrosine kinase 
receptor for hepatic growth factor. An amino acid substitution that leads to constitutive activation 
and/or overexpression are two mechanisms of dysfunction of MET in tumorgenesis. Recently, 
the Cancer Genome Atlas (TCGA) published its first result on pRCC (3), which improves our 
understanding of the genomic basis of this disease. Several more genes and specific sub-clusters 
were identified to be significantly mutated in pRCC. Nevertheless, a significant portion of pRCC 
cases still remains “driver-unknown”. Therefore we think it is the right time to explore the rest 



98% of the genome with whole genome sequencing (WGS). Non-coding regions, previously 
overlooked in cancer, has been showed to be involved in tumorigenesis (4-6). Mutations in non-
coding regions may cause disruptive changes in both cis- and trans-regulatory elements. 
Understanding non-coding mutations helps fill the missing “dark matter” in cancer research. 

Looking at the mutations at a higher level, multiple endogenous and environmental 
mutation processes shape the somatic mutational landscape observed in cancers (7). Analyses of 
the associated genomic alterations give information of cancer development, shed light on 
mutational disparity between cancer subtypes and even indicates potential new treatment 
strategies (8). Additionally, genomic features such as replication time and chromatin 
environment govern mutation rate along the genome, contributing to spatial mutational 
heterogeneity. While identifying mutation signatures is possible using data from whole exome 
sequencing (WXS), whole genome sequencing (WGS) gives richer information on mutation 
landscape and minimizes the potential confounding effect of exome capture process and driver 
selection.  

In this study, we comprehensively analyzed 32 pRCC WGS data along with an extensive 
set of WXS data in multiple levels. We went from microscopic examination of driver genes to 
analyses of whole genome sequencing variants and finally, to investigation of high-order 
mutational features. First, we focused on MET, a proto-oncogene which play a central role in 
pRCC, especially in Type 1. For the first time we validated rs11762213, a germline exonic single 
nucleotide polymorphism inside MET, as a predictive SNP for cancer-specific survival (CSS) in 
pRCC. We also found several potentially impactful non-coding alternations around MET 
promoter and first two exons. Then we went onto cases not as easily explained as those with 
MET alterations. We analyzed nearly 150,000 non-coding mutations and found several 
potentially high-impact mutations in non-coding regions. Further zooming out, we discovered 
pRCC exhibits mutational heterogeneity in both nucleotide context and genome location, 
indicating underlying vibrant mutational processes interplay. Methylation is the leading factor 
influencing mutation landscape. Methylation status drives the intra-sample mutation variation by 
giving rise to more C>T mutations in the CpG context. APOBEC activity, although infrequently 
observed, leaves an unequivocal mutation signature in a pRCC genome but not in ccRCC.  

 

Results  
1. Probing an exonic SNP in MET, rs11762213, in pRCC prognosis. 

We begin with MET coding variants. Although many MET somatic mutations are 
believed to play a central role in pRCC, a germline SNP, rs11762213, has been discovered to 
predict recurrence and survival in a RCC cohort. ccRCC predominated the initial discovery RCC 
cohort (9). This conclusion was later validated in ccRCC cohort but never in pRCC (10). We 
evaluated whether this SNP has a prognostic effect in pRCC. Using an extensive WXS set of 207 
patients (see Methods), we found 12 patients carry one risk allele of rs11762213 (G/A, Table 1). 
No homozygous A/A was observed. The cancer-specific survival is statistically significantly 
worse in patients with the risk allele (p < 0.037, Peto & Peto modification of the Gehan-
Wilcoxon test; p < 0.044, log-rank test, Fig 1).  

 

 



Genotype (rs11762213) G/A (n = 12) G/G (n = 195) 
Sex, No. (%)     
Male (%) 7 (58) 142 (73) 
Female (%) 5 (42) 53 (27) 
Age, median (IQR), y 53 (46-59.5) 60 (53-69) 
Race, No. (%)     
White 9 (75) 130 (67) 
Black or African American 3 (25) 47 (24) 
American Indian or Alaska native 0 2 (1) 
Asian 0 5 (3) 
NA 0 11 (6) 
Tumor type, No. (%)     
Type 1 4 (33) 86 (44) 
Type2 7 (58) 66 (34) 
Unclassified 1 (8) 25 (13) 
Not centrally reviewed 0 18 (9) 
T stage, No. (%)     
T1 7 (58) 132 (68) 
T2 2 (17) 18 (9) 
T3 3 (25) 43 (22) 
T4 0 2 (1) 
N stage, No. (%)     
N0 5 (54) 32 (16) 
N1 0 18 (9) 
N2 1 (8) 2 (1) 
NX 6 (50) 143 (74) 
M stage, No. (%)     
M0 5 (42) 74 (38) 
M1 1 (8) 6 (3) 
MX/NA 6 (50) 115 (59) 
AJCC stage, No. (%)     
I 7 (58) 125 (64) 
II 1 (8) 11 (6) 
III 2 (17) 39 (20) 
IV 2 (17) 10 (5) 
NA 0 10 (5) 
Median follow-up for surviving patients, days (IQR) 266 (118-643) 493 (167-884) 
AJCC: American Joint Committee on Cancer; IQR: interquartile range 
Due to rounding, the percentages may not add up to one 
 

Table 1. Clinical characteristics of subjects in pRCC The 
Cancer Genome Atlas Cohort 

 

2. Mutation hotspots in non-coding region 

Despite the fact MET is the most common driver alteration, about 20% presumably MET-
driven yet MET wild-type pRCC samples were left unexplained (3). Therefore, we scanned the 
MET non-coding regions. We observed one mutation in MET promoter region in a type 1 pRCC 
sample (Fig 2A). This sample has no evidence of a nonsynonymous mutation in MET gene but it 
has copy number gain of MET. Additionally, we observed 6/32 (18.8%) samples carry mutations 
in the first or the second introns of MET (Fig 2A). Notably, RNA splicing variants involving 
exon 1-3 were found in approximately 5% pRCC samples and thought to be a cancer-driving 
event. However, we were not able to find statistically significant association between splicing 
events and intronic mutations.  

We further expanded our scope and ran FunSeq2 (5) to identify potentially high-impact, 
non-coding variants in pRCC. First, we identified a high-impact mutation hotspot on 
chromosome 1. 6/32 (18.8%) samples have mutations within this 6.5kb region (Fig 2B). This 
hotspot locates at the upstream of ERRFI1 (ERBB Receptor Feedback Inhibitor 1) and overlaps 



with the predicted promoter region. ERRFI1 is a negative regulator of EGFR family members, 
including EGFR, HER2 and HER3. Due to a very limited sample size here, our test power was 
inevitably low. We didn’t observe statistically significant changes among mutated samples in 
mRNA expression level, protein level and phosphorylation level of EGFR, HER2 and HER3 
(S1-S3).  

Another potentially impactful mutation hotspot is in NEAT1. We saw mutations inside 
this nuclear long non-coding RNA in 5/32(15.6%) samples (FIG 2C). Several studies indicated 
NEAT1 is associated in many other cancers (11, 12). It promotes cell proliferation in hypoxia 
(13) and alters the epigenetic landscape, increasing transcription of target genes (14).  

All the mutations we found fell into a speculated promoter region of NEAT1. We noticed 
NEAT1 mutations were associated with higher NEAT1 expression (Fig 2D, p < 0.044, two-sided 
rank sum test). We also found NEAT1 mutations were associated with worse prognosis (Fig 2E, 
p < 0.022, log-rank test). 

We used DELLY2 (REF) to perform structural variants (SVs) calling from WGS reads 
information (Supplements). The SV discovery approach has high sensitivity and resolution than 
array-based method, which was employed in the TCGA analysis. In the end we found about 500 
SV events, includes deletions, duplications, inversions and translocations. We confirmed three 
cases carrying deletions affecting CKDN2A. One sample, TCGA-B9-4116, which had extensive 
amplification of MET, showed multiple SVs of various classes hitting MET regions. However, 
we didn't find SVs affecting MET except this one example. 

 
3.  Mutation spectra of pRCC 

To further get a high-order overview of the mutation landscape, we summarized the 
mutation spectra of 32 whole genome sequenced pRCC samples (Fig 3A). C>T in CpGs showed 
the highest mutation rates, which were roughly ten to twenty-fold higher than mutation rates in 
other nucleotide context.  

We used principle components analysis (PCA) to reveal factors that explain the most 
inter-sample variation. The loadings on the first principle component (which explains 12.5% of 
the variation) demonstrated C>T in CpGs contributes the most to inter-sample variation (Fig 
3B). C>T in CpGs is highly associated with methylation. It reflects the spontaneous deamination 
of cytosines in CpGs, which is much more frequent in 5-methyl-cytosines. So we further 
explored the association between C>T in CpGs and tumor methylation status. We confirmed this 
by showing samples from methylation cluster 1 (hypermethylated group, Supplement 4-5) had 
higher PC1 scores as well as higher C>T mutation counts and rates in CpGs (Fig 3C). This trend 
was further confirmed using WXS as well (S6). Especially the most hypermethylated group, 
CpG island methylation phenotype (CIMP), showed the greatest C>T in CpGs. Therefore, 
methylation status was the most prominent factor that shapes the mutation spectra across 
patients. 

Using a LASSO-based approach (see Methods) to identify mutation signatures in both 
WGS and WXS samples, we found one Type II pRCC case out of 155 somatic WXS sequenced 
samples exhibited APOBEC-associated signature 2 and 13. APOBEC mutation pattern 
enrichment analysis (see Method) further confirmed the presence of APOBEC activity in pRCC 
(Fig 3D). It was statistically enriched of APOBEC mutations (adjusted p-value < 0.0003). 



This Type II pRCC case with APOBEC activities was centrally reviewed by six 
pathologists in the original study. Thus this tumor is likely a special case of Type 2 with genomic 
alterations share some similarities with urothelial cancer (UC), which often carries APOBEC 
mutation signatures. Indeed it had non-silent mutations in ARID1A and MLL2 and a synonymous 
mutation in RXRA, all are identified as significantly mutated genes in UC. Potential pRCC driver 
events, for example low expression of CDKN2A or non-synonymous alternations in significantly 
mutated genes of pRCC, were absent in this sample.  

Prominent APOBEC activities were also incidentally detected in three upper track UC 
samples sequenced and processed in the same pipeline with pRCC samples. This result is 
consistent with TCGA bladder urothelial cancer study (15). Noticeably, along with the one Type 
II pRCC case, all four samples showed significantly higher APOBEC3A and APOBEC3B mRNA 
expression level (p < 0.0022 and p < 0.0039 respectively, one-side rank sum test, S7).   

Consistent with previous studies (16), we could not detect statistically significant 
APOBEC activities in an extensive WXS dataset consisting of 418 clear cell RCC (ccRCC) 
samples, even after resampling to avoid p-value adjustment eroding the power. Accordingly, 
very low level of APOBEC signatures (<15%) was found in less than 1%(4/418) samples. With a 
much larger sample size, this result was unlikely to be confounded by detecting power. 
 

4. Defects in chromatin remodeling affects mutation landscape 
Chromatin remodeling genes are frequently mutated in pRCC and many other cancers 

including ccRCC. We postulate defects in chromatin remodeling cause dysregulation of 
chromatin environment. This further alters the mutation landscape, specifically increases 
mutation rate in previously open chromatin. To test this hypothesis, we tallied the number of 
mutations inside DNase I hypersensitive sites (DHS) in HEK293, a cell line is derived from 
human embryonic kidney cells, the closest match we could find in ENCODE DHS database. 
12/32 samples with non-silent mutations in eleven chromatin remodeling, cancer associated 
genes show higher genome-wide mutation counts (p < 0.032, one-side rank-sum test), partially 
driven by an even higher mutation counts in DHS region (p < 0.003, one-side rank-sum test). 
The median number of mutations in DHS region considerably increases by about 50% (75.5 
versus 112). The effect is still significant after normalizing against the total mutation counts (p < 
0.015, one-side rank-sum test, Fig 3E). 

Replication time is known to correlate greatly with mutation rate. Early replicated regions 
have lower mutation rate but the difference dissipates when DNA mismatch repair becomes 
defective (17). We found a trend of shifting to earlier replication in the chromatin remodeling 
genes mutated group (S8). However, a non-parametric permutation Kolmogorov–Smirnov test 
(see Methods) failed to detect a statistical significance (p > 0.05).  Given there is no significant 
association with replication time, the mutation rate rise we saw in open-chromatin region is 
likely to be a direct result of chromatin environment change rather than an indirect effect via 
replication time shift. 
 

Discussion  
We comprehensively analyzed both WGS and an extensive set of WXS of pRCC, finely 

scrutinizing local high-impact events as well as giving a macro overlook of the mutation 



landscape. Our work further completed the genomic alteration landscape of pRCC (Fig 4). 
Beyond traditionally driver events, we suggested several novel noncoding alterations that could 
potentially drive tumorgenesis 

First, we validated an exonic SNP in MET, rs11762213, as a prognostic germline 
variance in pRCC for the first time. The original discovery was made in a mixed RCC samples, 
predominated by ccRCC, and later confirmed in a large ccRCC cohort. It was unclear whether 
rs11762213 only predicts the outcome in ccRCC. In this study, we concluded that the alternative 
allele of rs11762213 also forecasts unfavorable outcome in pRCC patients. The mechanism of 
this exonic germline SNP remains unsettled. Remarkably, pRCC has two subtypes. We noticed 
cancer-specific deaths in our cohort concentrate in type 2 patients. Thus we hypothesized 
rs11762213 potentially has different prognostic power in two subtypes. A larger pRCC dataset is 
required to test our hypothesis. Nevertheless, this finding is potentially very meaningful in 
clinical management of pRCC patients. rs11762213 genotyping could become a reliable, low-
cost risk stratification tool for patients.  

Interestingly, MAF of rs11762213 among African American patients is 3.0%, higher than 
MAFs observed in general African populations in both 1000 Genome phase 3 dataset (0.2%) and 
the ExAC dataset (1.27%). This implies a possible effect of rs11762213 on pRCC incidence 
among African Americans that is worth further investigation. Perhaps this variant could play a 
role in the significant racial disparities are known to exist in the overall incidence, histologic 
distribution, and survival of African Americans with kidney cancer. 

Besides, in MET non-coding regions, we also discovered mutations associated with MET 
promoter and first two introns. Although the implication is unknown, our analysis suggests there 
is a mutation hotspot in MET that calls for further research. 

Expand our scope from coding to non-coding, we found several potentially significant 
non-coding mutations relevant to tumorigenesis. A mutation hotspot was found upstream of 
ERRFI1, an important regulator of the EGFR pathway, which may serve as a potential tumor 
suppressor. EGFR inhibitors have been used in papillary kidney cancer with an 11% response 
rate observed (REF). These mutations potentially disrupt regulatory elements of ERRFI1 and 
thus play a role in tumorigenesis. However, likely limited by a small sample size, we were not 
able to detect statistically significant functional changes in ERRFI1 and related pathways. 
Another non-coding hotpot is in NEAT1, a long non-coding RNA that has been speculated to 
involved in cancer. Patients carrying mutations in NEAT1 have higher NEAT1 expression and 
worse prognosis. NEAT1 has been shown to be hypermutated in other cancers and some studies 
also linked high NEAT1 association with unfavorable prognosis in several other tumors (18, 19).  

Last, focusing on the high-level landscape of mutations in pRCC, we identified mutation 
rate dispersion of C>T in the CpG motif contributes to the largest proportion of inter-sample 
variations. We further pinned down the cause of dispersion by showing the hypermethylated 
cluster, identified in the previous TCGA study (3), has higher C>T rate in CpGs. This 
hypermethylated cluster is associated with later stage, type 2 pRCC, SETD2 mutation and poorer 
prognosis. Although increased C>T in CpG is likely the results of hypermethylation, we cannot 
rule out the possibility the change of mutation landscape plays a role in cancer development. For 
example, C>T in methylated CpG causes loss of methylation, which could have effects on trans-
elements recruitment. 



Significant APOBEC activities and consequential mutation signatures were observed in 
one Type II pRCC case. APOBEC activities were known to be prevalent in UCs (15, 16). We 
also successfully detected prominent APOBEC signatures in all three UC samples processed in 
the same pipeline as pRCCs. Intriguingly, despite being considered to have the same cellular 
origin with pRCC, we were not able to detect significant APOBEC activities in ccRCC. This is 
in agreement with previous studies (16). Interestingly, APOBEC mutation signature was also 
found in a small percentage of chromophobe renal cell carcinoma (20), which is believed to have 
a different cellular origin. APOBEC activities have been linked with genetic predisposition and 
viral infection (21). Although we could not rule out sample processing contamination, given a 
statistically robust signal in our conservative algorithm, it is plausible that a small fraction of 
otherwise driver mutation absent Type II pRCCs might be etiologically and genomically similar 
to UC. Since standard treatment for UC involves cytotoxic chemotherapy and radiation, this 
finding could have a meaningful clinical impact.  

Chromatin remodeling pathway is highly mutated in pRCC (3). Several chromatin 
remodelers, for example SETD2, BAP1 and PBRM1, have been identified as cancer drivers in 
pRCC. We demonstrated pRCC with defects in chromatin remodeling genes show higher 
mutation rate in general, driving by an even higher mutation rate in open chromatin regions. By 
adapting a defective chromatin remodeling pathway, tumor alters its mutation rate and landscape, 
which could further provide advantage in cancer evolution. However, excessive mutation in 
functional important open chromatin regions would also lead to disastrous mutational meltdown.  

Materials and Methods 
Data acquisition 

We downloaded pRCC and ccRCC WXS SNV calls and pRCC WGS variation calls from 
TCGA Data Portal (https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp) and TCGA Jamboree. 
pRCC samples that failed the histopathological review were excluded. pRCC RNAseq, RPPA 
and methylation data were downloaded from TCGA Data Portal as well. Repli-seq and DHS data 
were obtained from ENCODE (https://www.encodeproject.org/).  

 

Testing rs11762213 on prognosis 
We downloaded pRCC clinical outcomes from TCGA Data Portal (https://tcga-

data.nci.nih.gov/tcga/tcgaDownload.jsp). Excluding criteria are “Follow-up days” not available 
and identified as non-pRCC by histopathological review (3). In total, we included 207 patients in 
our analyses. The majority of samples, 158 out of 207, were supported by high-quality, curated 
SNV callings from two centers. 100% genotype concordance rate was observed in samples 
harbor the minor allele (A, 10 samples) in germline as well as samples with homozygous 
reference allele (GG, 148 samples). Also, these curated rs11762213 genotypes were in 
agreement with automated callsets. With proved high confidence in accuracy of genotyping 
rs11762213 in germline, we recruited additional 49 samples from single-center, automated calls 
to form an extensive patients set. 

Cancer-specific survival was defined using similar method as described in a ccRCC study 
(10). Deaths were considered as cancer-specific if the “Personal Neoplasm Cancer Status” is 
“With Tumor”. If “Tumor Status” is not available, then the deceased patients were classified as 



cancer-specific death if they had metastasis (M1) or lymp node involvement (>= N1) or died 
within two years of diagnosis. An R package, “survival”, was used for the survival analysis.  

 
SV calling precedure 

We use DELLY2 (REF) with default parameters for somatic SV calling. To avoid sample 
contamination or germline SVs, we filtered our callsets against the entire TCGA pRCC WGS 
dataset, regardless sample match or pathological reviews. Last, we discharge all callings that 
were marked “LowQual” and retain the ones marked as “PASS”.  

 
Mutation spectra study  

WGS Mutations were extracted from with flaking 5’ and 3’ nucleotide context. Then the 
raw mutation counts were normalized based on trinucleotide frequency in the whole genome.  

To identify signatures in the mutation spectra, we used a robust, objective LASSO-based 
method. First, 30 known signatures were downloaded from COSMIC 
(http://cancer.sanger.ac.uk/cosmic/signatures). Then we solve a positive, zero-intercept linear 
regression problem with L1 regularizer to obtain signatures and corresponding weights for each 
genome. The penalty parameter lambda was determined empirically using 10-fold cross-
validation individually for every sample. Last, we discharged signatures that composite less than 
5% of the total detectable signatures. 
 

Methylation association analysis 
In total, we collected HumanMethylation450 BeadChip array data for 139 samples that 

are either methylation cluster 1 or 2. We used an R package “IMA” to facilitate analysis (22). 
After discharging sites with missing values or on sex chromosomes, we obtained beta-values on 
366,158 CpG sites in total. Then we test beta-values of each site by Wilcoxon rank sum test 
between two methylation clusters. After adjusting p-value using Benjamini-Hochberg procedure, 
we called 9,324(2.55%) hypermethylation sites. These sites must have an adjusted p-value of less 
than 0.05 and mean beta-values in methylation cluster 1 are 0.2 or higher than the ones in 
methylation cluster 2. 

 

APOBEC enrichment analysis 
We used the method described by Roberts et al. (16). For every C>{T,G} and G>{A,C} 

mutation we obtained 20bp sequence both upstream and downstream. Then enrichment fold was 
defined as: 

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 𝐹𝑜𝑙𝑑 =  
𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛!"#/!"# × 𝐶𝑜𝑛𝑡𝑒𝑥𝑡!/!
𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛!/!×𝐶𝑜𝑛𝑡𝑒𝑥𝑡!"#/!"#

 

Here TCW/WGA stands for T[C>{T,G}]W and W[G>{A,C}A. W stands for A or T. p-
value for enrichment were calculated using one-side Fisher-exact test. To adjust for multiple 
hypothesis testing, p-values were corrected using Benjamini-Hochberg procedure. 



 
Replication time association 

In order to avoid cell type redundancy, we only kept Gm12878 as the representative of all 
lymphoblastoid cell lines. Wave smoothed replication time signal is averaged in a +/- 10kb 
region from every mutation. To avoid potential selection effects, we removed mutations in 
exome and flanking 2bp. Regions overlap with reference genome gaps and DAC blacklist 
(https://genome.ucsc.edu/) were removed. Last, we picked the median number from 11 cell types 
at each mutation position for further analysis. 

To test the significance of replication time of non-coding mutations between two groups, 
we adapted a conservative non-parametric Kolmogorov–Smirnov test (K-S test) using empirical 
p-value. We assigned all the mutation with its percentile among all mutations replication time 
shifted +/- 100kb from the origin (represents the background replication time). Then we calculate 
the K-S test statistics of mutation counts of 100 bins in two groups and compare. To obtain the 
empirical p-value, we randomly permutated the chromatin remodeling genes mutation labels for 
1,000 times to estimate the test statistics distribution.  
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Supplement figure 1.  Mutations on ERRFI1 promoter region has no effect on ERRFI1 RNA 
expression. 

Supplement figure 2.  Mutations on ERRFI1 promoter region has no effect on ERR family 
protein levels. 

Supplement figure 3.  Mutations on ERRFI1 promoter region has no effect on ERR family 
Phosphorylation. 

Supplement figure 4.  Volcano plot of rank sum test of all CpG probe sites between methylation 
cluster 1 and 2. 

Supplement figure 5.  Volcano plot of rank sum test of all CpG probe sites between methylation 
cluster 1 and 2 after grouped by functional regions. 

Supplement figure 6. Comparison of C>T in CpGs mutation counts and fractions in pRCC 
WXS set among three different methylation clusters. 

Supplement figure 7.  The expression levels of APOBEC3A and APOBEC3B are significantly 
higher in samples carrying APOBEC signatures 

Supplement figure 8.  Replication time distribution shifts among samples having chromatin 
remodeling genes mutations. 
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