MrTADFinder

KKY, July 2016

Rad21

TFs near TAD boundaries at various resolutions (signal)

Rad21

MAX

MYC

1

0

1.625

0

2.25

0

2.875

0

3.5

0

 $\times 10^{5}$

×10⁵

5

5

5

 $\times 10^{5}$

 $\times 10^{5}$

×10⁵

H3K20me1

H3K4me3

H3K79me2

H3K9me3

Using chromatin features to predict boundaries at various resolutions

Chromatin features affect the formation of TADs in various resolution. How?

- Combining histone marks do well. It's hard to interpret the importance scores reported by random forest.
- Same issue for TFs. There are a few well known components of cohesin. Anything else? the importance of each TF, and their combinatorial effects.

Significant contacts

ENCODE 3 data

Robustness

