
RESPONSE LETTER 
 

Reviewer #1 
-- Ref 1.0 – annotation source, false negatives -- 

 
Reviewer 
Comment 

It seems all SNVs curated from various resources are non-
synonymous as shown in Figure S1A, but this is not clearly 
mentioned in the Methods part of the main text. Was the 
basic annotation (non-synonymous or synonymous) of all 
SNVs from different sources done by the VAT? As we all 
know, not all variants from 1KG and ExAC are “benign”, did 
you apply any filter to minimize the potential false 
negatives (e.g., in silico prediction tools)? 

Author 
Response 

We would first like to thank the reviewer for taking to time to carefully 
read through our study, and we also thank the reviewer for valuable 
suggestions on how we may improve this work. 
 
In the revised version of the manuscript, we now specify that we 
exclusively look at non-synonymous SNVs. The reviewer has correctly 
pointed out that the annotations of coding SNVs were obtained using 
VAT. Furthermore, we agree with the reviewer that not all variants from 
1KG and ExAC are necessarily benign. In an effort to deal with this, we 
have removed any known disease-associated variants (HGMD and 
TCGA), that were initially present in the 1KG and ExAC datasets. 

Excerpt From 
Revised Manuscript 

“We utilized a comprehensive catalogue of non-synonymous SNVs from various resources…In 
order to avoid redundancy and false positive call sets, we removed HGMD variants present in 
the 1000 genome and ExAC SNV datasets. In addition, we also removed known TCGA variants 
present in the original ExAC SNV datasets." 

 
 

-- Ref 1.1 –core/surface residue description-- 
Reviewer 
Comment 

Please briefly define and compare the “core” and “surface” 
residuals in the main text as they are critical to 
understand the differential impact evaluated in this 
study. 

Author 
Response 

We thank the reviewer for this suggestion, and we have now 
accordingly provided this information in the main text instead of the 
supplement. 

Excerpt From 
Revised Manuscript 

“Moreover, we sub-classify each of these three categories into core and surface residues based 
on their RSASA value. We calculated the RSASA value for each residue using NACCESS (1). 
Residues were defined as core when the RSASA value was lower than or equal to 25 % and 
surface residues had RSASA value greater than 25%.“ 

 
 

-- Ref 1.2 – SNV frequency summary -- 
Reviewer 
Comment 

Please summarize the number of SNVs used in each of your 
comparison analysis as Table 1 (e.g., benign/disease-
associated, common/rare, conserved/variable, 



driver/passenger). 
Author 
Response 

These statistics are indeed valuable to know, and they are now 
provided in Table 1, which may be found within the main text. 

Excerpt From 
Revised Manuscript 

 
 
 

-- Ref 1.4 –variants with unknown significance -- 
Reviewer 
Comment 

The results are interesting. However, I was looking 
forward to seeing how the workflow was applied to variants 
of unknown significance to help classify/predict their 
impact, e.g., using a certain value of ΔF as a threshold. 
This would be extremely valuable and useful for other 
investigators. 

Author 
Response 

We agree that greater value may be derived from ΔF if a specific 
threshold may be used when making predictions on newly discovered 
SNVs. In order to rigorously define a ΔF that may optimally be used to 
distinguish between deleterious and benign SNVs, we have taken the 
empirical approach of jointly analyzing the distributions of ΔF scores for 
HGMD (disease-associated) and SNVs from ExAC (presumably 
benign). The details and results of this analysis are now included within 
the Supplementary Materials (Supplementary text S3) 

Excerpt From 
Revised Manuscript 

The deleteriousness of an SNV is a continuous variable, and indeed, this is reflected in the 
continuous nature of ΔF values. However, there is still considerable value in applying a binary 
classification scheme to newly discovered SNVs, which may be predicted to be benign or 
deleterious.  
As discussed in the results of the main text, disease-associated SNVs from HGMD generally 
induce more negative ΔF values relative to benign SNVs. Given a newly discovered SNV, is 
there a specific ΔF threshold that may optimally be used to classify SNVs as benign or 
deleterious ? We address this issue empirically by optimizing a function f(x) defined by two 
distributions (Supplementary figure S5) 
 

f(x)  =  h(x) + e(x) 
 
Let ΔFHGMD denote the distribution of ΔF scores induced by HGMD SNVs. h(x) is defined to be 
the difference between the fraction of ΔFHGMD scores less than x (fract[ΔFHGMD < x]) and the 
fraction of ΔFHGMD scores greater than x (fract[ΔFHGMD > x]): 
 

h(x)  =  fract[ΔFHGMD < x])  -  fract[ΔFHGMD > x]) 
 
With ΔFExAC similarly defined for the distribution of ΔF values associated with ExAC SNVs: 
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Table 1. Summary statistics on the number of SNVs used in comparative analyses. Shown are variant 
counts for non-disease (top), HGMD (bottom-left), and pan-cancer SNVs (bottom-right).



e(x)  =  fract[ΔFExAC > x])  -  fract[ΔFExAC < x]) 
 
Note that, in building the distribution of ΔFExAC values, a random sample of ExAC SNVs was 
chosen in order to match the number of SNVs in the ΔFHGMD distribution. The x that maximizes 
the function f(x) is taken as the ΔF threshold for predicting whether a newly discovered SNV is 
deleterious or benign. Using this approach, we find that this ideal threshold takes a value of ΔF 
= -1.221. 

 
-- Ref 1.5 – Clarification regarding p-value -- 

Reviewer 
Comment 

In the last paragraph of Results: Differential effects of 
benign and disease-associated SNVs on ∆F profiles, you 
stated that “In addition, disease-associated SNVs (from 
HGMD) result in similar frustration changes between core 
and surface residues (p-value < 2e-16 from two-sample 
Wilcoxon test) (Figure 2C).” The frustration changes are 
similar between core and surface residues, but the p-value 
looks so significant (2e-16). Please confirm. 

Author 
Response 

We agree with reviewer that ∆F values are similar for the above-
mentioned comparisons. Unfortunately, the p-value statement was 
misplaced in the original text, which was intended for the next 
statement (describing the comparison between HGMD core and 
1KG/EXAC core residues). This has now been corrected. 

Excerpt From 
Revised Manuscript 

“However, SNVs from HGMD that impact minimally frustrated core residues induce stronger 
perturbations than benign SNVs influencing minimally frustrated core residues (p-value < 2e-16 
from two-sample Wilcoxon test)” 

 
 

-- Ref 1.6 – Clarification regarding p-value -- 
Reviewer 
Comment 

In the last paragraph of Results: Differential effects of 
SNVs on oncogenes and tumor-suppressor genes, you stated 
that “We observed that SNVs affecting TSGs induce stronger 
perturbations in minimally frustrated core residues 
relative to surface residues (p-value = 8.15e-2 from two-
sample Wilcoxon test) (Figure 6A).” It seems the 
difference was not significant (p = 0.08), so were you 
able to make this conclusion? 

Author 
Response 

Reviewer correctly points out that two-sided Wilcoxon test p-value is 
higher than 0.05 However, both two-sided ks test (p-value = 0.004765) 
and one-sided Wilcoxon test (p-value = 0.04259) indicate statistically 
significant difference between TSG and Oncogene frustration change 
distribution.  

Excerpt From 
Revised Manuscript 

“We observed that SNVs affecting TSGs induce stronger perturbations in minimally frustrated 
core residues relative to surface residues (p-value = 4.259e-2 from two-sample one-sided 
Wilcoxon test) (Figure 6A).” 

 
 

-- Ref 1.7 – Fixing typographical & grammatical errors -- 
Reviewer 
Comment 

There are minor misspellings or formatting errors: (a) in 
Methods: SNV Datasets, “Human Genome Mutational Database” 
should be “Human Gene Mutation Database”; (b) in Methods: 



Workflow to calculate frustration paragraph 2, please use 
the full name of “PDB” when it was first present; (c) in 
Discussion paragraph 1 first sentence and paragraph 4 
first sentence, “…have/has lead to…” should be “…have/has 
led to…”; (d) in Discussion paragraph 3 third sentence, 
“…have grater impact…” should be “…have greater impact…”; 
(e) in Discussion last paragraph the next to the last 
sentence, “…the affects of…” should be “…the effects of…”. 

Author 
Response 

We thank the reviewer for pointing out these formatting errors. They 
have now been corrected. 

Excerpt From 
Revised Manuscript 

“Disease-associated dataset included SNVs from the Human Gene Mutational Database 
(HGMD) (5) and pan-cancer dataset (45) comprising of publicly available somatic SNVs from 
The Cancer Genome Atlas (TCGA)“ 
 
“We then integrated VAT annotation with the biomart (53) derived human gene and transcript 
IDs to map the SNV on to specific protein databank (PDB) structures“ 
 
“In the last decade, tremendous improvements in sequencing and structural biology techniques 
have led to growth in genomic variation and three-dimensional structural data for various 
proteins.“ 
 
“This observation is intuitively consistent as one would expect rare SNVs to have greater impact 
on protein stability.“ 
 
“The proposed framework is a logical extension to some of the earlier studies, which primarily 
employed global metrics such as folding free energy changes to quantify the effects of genomic 
variants.“ 

 
 
 

Reviewer #2 
-- Ref 2.0 – Accessibility of the method -- 

Reviewer 
Comment 

How can your method be accessed / used by other scientists 
who want to analyse their data? I don't find a link to a 
website / download archive or similar. 

Author 
Response 

We would first like to thank the reviewer for taking to time to carefully 
read through our study, as well as providing valuable suggestions on 
how we may improve this work. 
 
With respect to source code, we have now provided this content as a 
public resource on github:  https://github.com/SKY2014/frstn 
 

 
-- Ref 2.1 – Filtering datasets for comparisons-- 

Reviewer 
Comment 

Concerning the datasets used for benign and disease-
causing SNVs. Which variants from HGMD were included? As 
far as I know, there are different categories of variants 
in HGMD: DM=Disease causing (pathological) mutation, DM? = 
Likely disease causing (likely pathological) mutation, 
DP=Disease associated polymorphism, DFP=Disease associated 
polymorphism with additional supporting functional 



evidence, FTV=Frameshift or truncating variant with no 
disease association reported yet, FP=Polymorphism 
affecting the structure, function or expression of a gene 
but with no disease association reported yet. In order to 
create a testset of "disease mutations", all categories 
except for DM should be avoided in order to make sure that 
the test data has the highest possible quality. Variants 
which were found in association studies are not suitable 
to go into a test set of disease mutations, since there is 
only an association between the variant and the disease 
and not a proven functional link. 
The same applies for the data taken from 1000G and ExAC: 
Although these are generally denoted "common", there are 
significant differences in the genotype frequencies and 
MAFs of the variants. Especially in the ExAC data, 
variants which are associated with a specific clinical 
phenotype might be included. Moreover, there are also 
variants from TCGA (which went into your disease-variant 
set) included in ExAC.Did you chose a certain threshold 
for genotype frequency or MAF, above which you considered 
a 1000G / ExAC variant as common enough to be 
harmless/benign? If yes, this should go to the 
paper/supplement, if no, you should restrict the dataset 
to a somewhat smaller subset of variants, according to a 
sensible threshold. Moreover, did you cross-check if there 
are HGMD variants, which are also present in the 
1000G/ExAC data? This also happened in the past. 

Author 
Response 

We thank the reviewer for these valuable suggestions. We have 
updated our datasets such that: 
     1) we only keep HGMD variants with the status label “DM”; 
     2) we have removed HGMD and TCGA variants present in 
ExAC; and 
     3) we have removed HGMD variants in the 1000 Genomes 
dataset. 
 
When this filtering is performed, a very small fraction of SNVs 
were removed from our analysis, and we note that this filtering 
did not heavily affect our main results. However, we have 
updated our figures and p-values to reflect this pre-processing. 
 
We applied a MAF threshold of 0.5% to distinguish between rare 
and common variants. This information is now provided in our 
updated Methods section. 

Excerpt From 
Revised Manuscript 

"In order to avoid redundancy and false positive call sets, we removed HGMD variants present 
in the 1000 genome and ExAC SNV datasets. In addition, we also removed known TCGA 
variants present in the original ExAC SNV datasets." 
 
"Furthermore, we investigated the differential influence of common and rare mutations, where 
SNVs with minor allele frequency (MAF) less than or equal to 0.5% were considered to be rare 
mutations. SNVs were otherwise classified as common." 

 



-- Ref 2.2 – Usefulness of the method -- 
Reviewer 
Comment 

To underline the usefulness of your method, which is, as 
said in your manuscript, to meet a "growing and urgent 
need to evaluate the potential effects of low-allele-
frequency variants in unbiased ways using high-throughput 
methodologies", I miss some extra calculations / 
benchmarking. There are methods existing in order to 
evaluate potential effects of low-allele-frequency 
variants in unbiased ways (SIFT, PolyPhen2, 
MutationTaster, and many others). I would like to see how 
exactly your method adds up to this. Is the additional 
information gained from structural analysis really an 
advantage over existing methods? If you could show this, 
this would surely be an argument for people to use and 
cite your method. If they don't know if your method is 
really helpful, they will maybe not even try it, since 
analysis of high-throughput data is (already) time-
intensive. One could for example create a small set of 
variants and analyse these with one or two of the "common" 
tools to predict the deleteriousness of SNVs (e.g. 
PolyPhen2 and MutationTaster2, since these are generally 
considered the most accurate ones) and then check if there 
are disease variants predicted as "harmless" by these 
tools (i.e. false negative) which are then correctly seen 
as locally maximal frustrated by your method. Or any other 
way how it can be shown that the method is indeed useful 
for the analysis of high-throughput data (e.g. compare 
with other existing "structural prediction" tools, if 
those exist). 

Author 
Response 

We are thankful to the reviewer for proposing this interesting 
analysis. Following the reviewer’s suggestion, we ran SIFT and 
Polyphen2 on a smaller set of HGMD variants. These smaller set 
of variants were selected on the criterion that they map to PDB 
structure, which has at least one HGMD and at least one ExAC 
non-synonymous SNVs. Subsequently, we identified instances 
where HGMD variants were predicted to be benign by polyphen2 
or SIFT (False negative cases) but delta frustration metric 
indicates significant increase in frustration level upon mutation. 
Frustration metric was able to rescue ~38% and ~46% of 
polyphen2 & SIFT annotated false negative variants, as 
described in the result and supplementary information. We also 
highlight few examples by plotting linear diagram for such cases 
in the supplementary information. 

Excerpt From 
Revised Manuscript 

Excerpt from result 
 
“We have further highlighted the potential complementarity of the local frustration approach 
with respect to previous global metrics in a very simple calculation (as described in detail in the 
supplementary material). In brief, we were able to rescue ~38% (polyphen2) and ~46% (SIFT) 
of the false negative predictions of HGMD variants using their high delta frustration values, 
which underscores the utility of this local metric to quantify SNV impact” 
 
Excerpt from SI text 
 



“We selected a smaller set variant mapped onto PDB structure, which has at least one HGMD 

and at least one ExAC non-synonymous SNVs. Subsequently, we identified instances where 

HGMD variants were predicted to be benign by polyphen2 or SIFT (False negative cases) but 

delta frustration metric indicates significant increase in frustration level upon mutation. We 

observed that 10% of the variants in this smaller set of variants were annotated as benign by 

polyphen2. Similarly, SIFT incorrectly predicted 13.7% of these HGMD variants to be not 

damaging. Furthermore, we analyzed the delta frustration values for variants in this dataset. 

Applying the delta frustration threshold described earlier, we observed that 38% of the miss-

annotated variants had significantly large frustration change indicating their potential 

deleteriousness. Furthermore, we also identified that ~46% of SIFT annotated false negative 

variants had large delta frustration values associated with them. We also highlight an example 

by plotting linear diagram for such case in the supplementary Figure S6.” 

 
 

-- Ref 2.3 – Method run time scale -- 
Reviewer 
Comment 

How long would it take to analyse let's say 10,000 SNVs? 
As this is more or less the dimension which goes along 
with HT-sequencing. 

Author 
Response 

The reviewer has raised a good question of practical interest. We 
ran our pipeline on 10,000 SNVs, and it took ~2.5 hours to map 
these variants to PDB structures. In total, we mapped 20% of 
these SNVs onto three-dimensional structures. Further, 
generating the mutated protein model and frustration calculations 
for the structurally mapped variants took ~26 hours.  

Excerpt From 
Revised Manuscript 

 

 
 
 

-- Ref 2.4 –Typographical error -- 
Reviewer 
Comment 

Concerning Fig. 1: Residues are not numbered. In the text, 
you talk about ILE in pos. 31 which is exchanged to TYR. 
In the figure legend, you say that TRP is changed to TYR. 
In the picture, there is TRP highlighted as well as TYR, 
but the native and mutated structure (at least the part 
shown) differ in more than just this one residue. This 
confuses me and should be clarified. 

Author 
Response 

We thank the reviewer for pointing out this inconsistency. We 
have fixed the text in our methods section to remove this 
ambiguity. 

Excerpt From 
Revised Manuscript 

"In Figure 1, we demonstrate an example case in which replacing tryptophan at a particular 
locus within ubiquitin (PDB ID 1UBQ) with a tyrosine." 



 
-- Ref 2.5 – Violin plot description in figure legends -- 

 
Reviewer 
Comment 

Concerning the Fig. 2-6 (violin plots): The figure legends 
do not say what the white dots and the vertical lines 
stand for. Mean? Median? Standard deviation? Range? This 
should be explained. Which difference between delta F is 
regarded significant (concerning differences in delta F 
"core" between bening SNVs and disease-causing SNVs)? 

Author 
Response 

We agree that some clarifications were needed here. In the revised manuscript, 
we explain the meanings of white dots and vertical lines within the updated 
figure legends. Comparison of ΔF distributions for the ExAC core SNVs and 
HGMD core SNVs point to statistically significant differences (p-value < 2e-
16 using a two-sided Wilcoxon test). Furthermore, this observation was also 
true for comparisons involving 1000 Genomes core SNVs and HGMD core 
SNVs. 

Excerpt From 
Revised Manuscript 

“The white dots, the black boxes and vertical lines represents the medians, interquartile ranges, 
and 95% confidence intervals of ΔF distributions, respectively..” 

 
 

-- Ref 2.6 – cutoff for common/rare differentiation -- 
Reviewer 
Comment 

Fig. 3: Which MAF separates "common" from "rare" SNVs? 

Author 
Response 

We applied a MAF threshold of 0.005 to distinguish between rare (MAF 
<=0.005) and common variants. This previously missing information 
has now been incorporated into the text. 

Excerpt From 
Revised Manuscript 

"Furthermore, we investigated the differential influence of common and rare mutations, where 
SNVs with minor allele frequency (MAF) less than or equal to 0.5% were considered to be rare 
mutations. SNVs were otherwise classified as common. " 

 

-- Ref 2.7 – Spacing error -- 
Reviewer 
Comment 

Very minor point: Sometimes, spaces are missing (e.g. p.3 
l.21/l.37). Re-check for this. 
 

Author 
Response 

We thank the reviewer for pointing this out. We have fixed this formatting 
error in the updated version of the manuscript. 

Excerpt From 
Revised Manuscript 

 

 
 

-- Ref 3.1 – Regarding limitation of method -- 
Reviewer 
Comment 

The main rationale for the paper put forward by the 
authors is rapidly growing number of rare variants coming 
from individual genomes sequencing projects and the need 
for new methods to infer potential functional associations 
of such variants. However, the results presented in this 



work clearly underscore main limitation of all structure-
based methods: scarcity of high-resolution 3D protein 
structures and low PDB mapping coverage makes them less 
useful compared to more common sequence-based methods. In 
fact, the fraction of successfully PDB-mapped variants 
from ExAC database reported by the authors is below 2% 
(Supporting Information). This makes method's potential 
contribution to large scale interpretation of rare and 
unknown significance variants rather questionable. More 
general estimates usually agree upon less than 10% of all 
known human proteins covered by PDB, still too few. 
Unfortunately, there is no evidence that this coverage 
would increase significantly in the near future. Also, PDB 
is highly biased towards representing a subset of all 
known protein folds/domains and this bias keeps 
increasing, not diminishing. 
 
I would recommend either removing or significantly toning 
down all claims about potential applicability of the 
method towards large-scale human variant interpretation, 
specifically from the Abstract and Introduction. 
 

Author 
Response 

We thank the reviewer for pointing out these issues. We agree that there are 
inherent limitations in structure-based methods as a result of relatively low 
coverage across the human proteome. However, there has been a persistent 
increase in the structural coverage due to improvements in three-dimensional 
structure determination. We have highlighted this gradual increase in protein 
structural space in a recent review (pubmedID:26658741). In addition, we 
anticipate further increases in the structural coverage due to cryo-Electron 
microscopy. The advent of cryo-EM has made it possible to resolve the three-
dimensional structures of relatively large protein/protein-complexes, which 
were unfathomable a decade ago. Finally, the growing systems-level view of 
protein biology (e.g., protein-protein interaction networks) may help to 
broaden the relevance of the limited number of cases in which SNVs lie within 
known structures (discussed in excerpt below). However, the limited coverage 
of SNVs in structures persists as a major challenge, so we have also provided a 
discussion of this challenge in the updated manuscript. 

Excerpt From 
Revised Manuscript 

Excerpt from Introduction: 
…Though the majority of disease-causing variants lie in non-coding regions of the genome, 
many of them lie in protein-coding genes. Furthermore, only a limited fraction of non-
synonymous SNVs may be mapped to known protein structures. However, immense progress 
has been made in resolving the three-dimensional structure of many proteins over the last 
several decades (13)…. 
 
Excerpt from Discussion: 
"Historically, the relative scarcity of genomic variation and structural data have presented 
challenges in variant interpretation, in that only a small pool of SNVs may be mapped to 
resolved structures… Howvere, limited mapping coverage persists as a major challenge, a 
number of recent trends may partially help to mitigate this issue. Significant improvements in 
crystallographic protocols have enabled near-exponential growth in deposited X-ray structures 
in the PDB (10). Furthermore, cryo-EM is opening entirely new avenues for revealing the 
architectures of many proteins which were previously elusive to crystallography, which is 
expected to expand the structurally-resolved proteome (59). Finally, systems-level descriptions 
of cellular phenomena provide a more complete understanding of context in which proteins 
operate. Specifically, there is a growing understanding of protein-protein interaction networks 
and the role of resolved structures therein (60). As such, inferring how a given SNV affects a 
particular structure is by no means limited to predictions regarding that protein alone – the 



protein’s tight associations with other molecules may greatly broaden the scope of how that 
SNV influences more global cellular phenomena. For instance, the functional consequences of 
an SNV within a central hub protein of a network may effectively be propagated. " 

 

-- Ref 3.2 – variant statistics and semi-balanced variants -- 
Reviewer 
Comment 

Another known issue is strong annotation disparity between 
known Mendelian disease mutations (e.g. HGMD disease 
variants) and other variants: most of HGMD mutations are 
reported in a small subset of proteins, while majority of 
the proteins only have fewer and mostly benign or unknown 
significance variants reported for them. This creates bias 
when performing comparisons between the two functional 
classes of variants. In case of PDB-mapped variants, such 
annotation bias might have been alleviated to some extent 
by the PDB intrinsic bias (mentioned above, skews PDB & 
HGMD data towards the same proteins) but it requires 
further investigation. Authors should present statistics 
for the number of unique proteins and the distribution of 
variants in the unique proteins for each of their 
datasets. They should also attempt to perform their 
analysis on a (semi-)balanced set(s) of variants, using 
sets of proteins where both disease and neutral mutations 
are present. See Grimm et al. (2015) Human Mut. 36:513-523 
for an example of such balanced sets and trends analysis. 
 

Author 
Response 

We thank the reviewer for these observations, and we agree that some 
analyses and discussion should be devoted to exploring these points. 
As such, new analyses and text have been integrated into the 
Discussion and Supplementary section of the revised manuscript. We 
have also performed our analysis on a semi-balanced set of variants 
(as proposed by the reviewer), and we report the results of this analysis 
in the supplementary information. Overall the trends were very much 
consistent with our prior analyses. However, the new dataset lacks 
statistical significance, potentially as a result of the fact that it is 
considerably smaller dataset. The details of these analyses are 
provided in the excerpt below. 

Excerpt From 
Revised Manuscript 

Excerpt from Supplement: 
“Considerable annotation disparities exist between HGMD variants and variants taken from 

1000 Genomes and ExAC, raising the possibility of bias between the evaluated structure 

datasets. The sets of proteins evaluated in the context of HGMD variants may thus be 

considerably different from those of 1000 Genomes/ExAC SNVs, thereby making direct 

comparisons difficult. Finally, some protein structures may be over-represented in any given 

dataset. To control for these effects, we first identify a non-redundant set of unique proteins 

within each dataset. Specifically, the non-redundant set is constructed by ensuring that no 

protein within the set shares more than 90% sequence identity with any other protein in the set. 

We find that there are 618, 907, and 303 distinct proteins within the set of high-resolution 

structures impacted by 1000 Genomes, ExAC, and HGMD SNVs, respectively. Distributions 

delineating the number of SNVs within these unique (i.e., non-redundant) protein sets are given 

in Supp. Fig. S2-S4.” 



 

 
-- Ref 3.3 – SNV frequency summary -- 

Reviewer 
Comment 

Please, provide complete breakdown for the raw numbers of 
SNVs in each subcategory analyzed for the data presented 
in the Figures: Core/Surface, Core/Surface/Common/Rare, 
etc. 
 

Author 
Response 

We agree that these numbers are important to know, and indeed, reviewer #1 
had the same suggestion. These statistics are now provided in Table 1, which 
may be found within the main text. 

Excerpt From 
Revised Manuscript 

 
 
 

-- Ref 3.4 – Typographical error -- 
Reviewer 
Comment 

Supporting information, page 2: “SNVs are classified in three groups based Coin 
the native state (MinFNS)”, possibly a typing error: Coin>on? Also, item a) is 
missing; enumeration starts from b). 
 

Author 
Response 

We thank reviewer for pointing out this typographical error. We have fixed 
this error, and note that this paragraph has been moved to the Methods section. 

Excerpt From 
Revised Manuscript 

"SNVs are classified in three groups based on the native state a) minimally frustrated in the 
native state"  
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Table 1. Summary statistics on the number of SNVs used in comparative analyses. Shown are variant 
counts for non-disease (top), HGMD (bottom-left), and pan-cancer SNVs (bottom-right).


