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S1 Datasets of non-synonymous SNVs & their structural coverage 
In order to evaluate the impact of various types of non-synonymous variants on localized 

frustration of protein residues in different biological context, we collected and analyzed 

data from a variety of sources. These sources were chosen in order to obtain both benign 

and disease-associated SNVs, with the disease-associated SNVs having been further sub-

classified to investigate their associated mode of action in greater detail. An overview of 

this data collection scheme is provided in S1A. S1B gives summary statistics on all non-

synonymous SNVs in these datasets, and S1C provides the corresponding data on the 

subset of these SNVs, which were mapped to high-resolution protein structures from the 

PDB. Further details on the statistics obtained as part of this data collection framework is 

provided below. 

We collected and annotated 6.46 million non-synonymous SNVs using VAT. 

About 5.1 million of these SNVs were benign mutations that were obtained from the 

ExAC Project, and an additional roughly 0.6 million SNVs were taken from phase 3 of 

the 1000 Genomes Project, which constitutes 79% and 9% of our total set of annotated 

SNVs, respectively (S1B). The remaining SNVs were a set of disease-associated 

mutations, and these comprised ~76,000 HGMD SNVs and 0.65 million publicly 

available pan-cancer somatic SNVs. HGMD and the pan-cancer dataset constituted 2% 

and 10% of the total collected non-synonymous SNVs, respectively (Figure S1B).  

However, the contribution of SNVs from different resources changed 

significantly while considering only those annotated SNVs, which mapped to high-

resolution protein structures. Approximately 96,000 SNVs from ExAC were mapped to 

protein structures in the PDB constituting 51% of our totals set of structurally mapped 

SNVs (Figure S1C). Similarly, 1KG SNVs constituted 7% (13588) of the total 

structurally mapped SNV dataset. In contrast, the percentage of the disease-associated 

SNVs that were mapped to protein structures was 18% (33,261 SNVs) and 24% (44,094 

SNVs) for the HGMD and pan-cancer resource, respectively (Figure S1C). The majority 

of SNVs from the pan-cancer dataset that were mapped to protein structures impacted 

cancer-associated genes (CAG), constituting 14% (25,409) of the all SNVs mapped to 

protein structure, whereas SNVs impacting non-cancer associated genes constituted only 



8% (15,044) (Figure S1C). In contrast, 4,041 SNVs affecting driver genes mapped to 

protein structures; these SNVs constitute 2% of the total structurally mapped non-

synonymous SNVs (Figure S1C). 

 

S2 Variant statistics on semi-balanced structure datasets 

Considerable annotation disparities exist between HGMD variants and variants taken 

from 1000 Genomes and ExAC, raising the possibility of bias between the evaluated 

structure datasets. The sets of proteins evaluated in the context of HGMD variants may 

thus be considerably different from those of 1000 Genomes/ExAC SNVs, thereby making 

direct comparisons difficult. Finally, some protein structures may be over-represented in 

any given dataset. To control for these effects, we first identify a non-redundant set of 

unique proteins within each dataset. Specifically, the non-redundant set is constructed by 

ensuring that no protein within the set shares more than 90% sequence identity with any 

other protein in the set. We find that there are 618, 907, and 303 distinct proteins within 

the set of high-resolution structures impacted by 1000 Genomes, ExAC, and HGMD 

SNVs, respectively. Distributions delineating the number of SNVs within these unique 

(i.e., non-redundant) protein sets are given in Supp. Fig. S2-S4. 

After identifying these unique protein sets, those proteins which fall within the 

intersection of the different datasets were used to evaluate ∆F distributions. For instance, 

the intersection between unique 1000 Genomes and HGMD proteins constitutes a non-

redundant set of protein structures in which at least one residue intersects with a 1000 

Genomes SNV and at least one residue intersects with an HGMD SNV, thereby 

providing a semi-balanced set of SNVs, and thus the ability to draw more direct 

comparisons with respect to ∆F distributions. Using this approach, we find that the results 

overall trend for semi-balanced variant datasets are consistent with ∆F distributions 

detailed above (Supp. Fig S5). However, they lack statistical significance, potentially due 

to lower amount of SNVs included in the semi-balanced dataset. 

 

S3 Threshold to identify potentially deleterious SNVs 
As discussed in result section of the main text, disease-associated SNVs from HGMD 

generally induce more negative ΔF values relative to benign SNVs. Given a newly 



discovered SNV, is there a specific ΔF threshold that may optimally be used to classify 

SNVs as benign or deleterious? We address this issue empirically by optimizing a 

function f(x) defined by two distributions: 

 
f(x) =  h(x) + e(x) 

 
Let ΔFHGMD denote the distribution of ΔF scores induced by HGMD SNVs. h(x) is 
defined to be the difference between the fraction of ΔFHGMD scores less than x 
(fract[ΔFHGMD < x]) and the fraction of ΔFHGMD scores greater than x (fract[ΔFHGMD > x]): 
 

h(x)  =  fract[ΔFHGMD < x])  -  fract[ΔFHGMD > x]) 
 
With ΔFExAC similarly defined for the distribution of ΔF values associated with ExAC 
SNVs: 
 

e(x)  =  fract[ΔFExAC > x])  -  fract[ΔFExAC < x]) 
 
Note that, in building the distribution of ΔFHGMD values, a random sample of HGMD 

SNVs was chosen in order to match the number of SNVs in the ΔFExAC distribution. The 

x that maximizes the function f(x) is taken as the ΔF threshold for predicting whether a 

newly discovered SNV is deleterious or benign. Using this approach, we find that this 

ideal threshold takes a value of ΔF = -1.221. 

 

S4 Usefulness of localized frustration approach 
We selected a smaller set variant mapped onto PDB structure, which has at least one 

HGMD and at least one ExAC non-synonymous SNVs. Subsequently, we identified 

instances where HGMD variants were predicted to be benign by polyphen2 or SIFT 

(False negative cases) but delta frustration metric indicates significant increase in 

frustration level upon mutation. We observed that 10% of the variants in this smaller set 

of variants were annotated as benign by polyphen2. Similarly, SIFT incorrectly predicted 

13.7% of these HGMD variants to be not damaging. Furthermore, we analyzed the delta 

frustration values for variants in this dataset. Applying the delta frustration threshold 

described earlier, we observed that 38% of the miss-annotated variants had significantly 

large frustration change indicating their potential deleteriousness. Furthermore, 



We also identified that ~46% of SIFT annotated false negative variants had large delta 

frustration values associated with them. We also highlight an example by plotting linear 

diagram for such case in the supplementary Figure S6. 

 

Figure S1 

Figure S1: Overview of SNV categories and their relative proportions within the 

data pool analyzed. A) Flowchart representing the different categories and origins of the 

variants analyzed in this study. A given non-synonymous SNV can be classified as 

benign or disease-associated on the basis of its provenance (i.e., whether it is taken from 

1000 Genomes, ExAC, HGMD or Pan-cancer variant datasets). B) Relative proportions 

of SNVs from various datasets prior to mapping SNVs to high-resolution PDB structures. 

C) Relative proportions of SNVs from various datasets after mapping SNVs to high-

resolution PDB structures.  
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Figure S2 

Figure S2: Frequency chart of the number of 1KG SNVs against the #of unique 
proteins  
 

 

Figure S3 

Figure S3:  Frequency chart of the number of ExAC SNVs against the # of unique 

proteins. 

 

 

 



Figure S4 

Figure S4: Frequency chart of the number of HGMD SNVs against the # of unique 

proteins. 

 

 

 

 

Figure S5 

Figure S4: Comparison of frustration changes for circular SNVs impacting PDB 

structures 

 

 

 



Figure S6 

Figure S6: Empirical distribution to identify deleterious SNVs 

 

Figure S7 

Figure S7: Example of False negatively annotated HGMD variants mapping onto 

protein structure by Polyphen2 & SIFT 
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