# Reconstruction and analysis of enhancer-target networks

Kevin Yip (with Mark Gerstein)



#### Evidence of quantitative relationships

 Promoters and gene bodies: histone mark and TF binding models



Cheng et al., Genome Biology 12(2):R15, (2011); Cheng et al., Genome Research 22(9):1658-1667, (2012)

### Evidence of quantitative relationships

Promoters and gene bodies: DNA methylation models



### **Correlation-based enhancer targets**



Yip et al., Genome Biology 13(9):R48, (2012); Gerstein et al., Nature 489(7414):91-100, (2012); Fu et al., Genome Biology 15(10):480, (2014) 5

## Some limitations

- Low statistical power
  - Need more samples
    - ENCODE+Roadmap: 127, ChromHMM enhancers
    - FANTOM5: 808, eRNA enhancers
  - Restricting to genomic neighborhood
- Not context-specific
  - Need to call targets in each specific context
- Considering each enhancer-gene pair separately
  - Need to consider the joint effect of multiple enhancers on the same gene
  - New method: Joint Expression Modeling of Enhancers (JEME)

#### FANTOM5 enhancers



Active in K562

Inactive in K562

#### ChIA-PET connected one-to-one pairs



### Accuracy of expression models





#### Modeling joint effect of multiple enhancers

- Considering all samples
- Considering all potential regulating enhancers within 1Mbp
- Modeling joint effect of multiple enhancers by LASSO or Elastic Net



Calling sample-specific enhancer targets

- 1. Form global LASSO/Elastic Net model
  - E.g.,  $T = a_1 E_1 + a_2 E_2 + a_3 E_3$
  - Coefficients describe general relationship between enhancer and TSSs
- 2. Examine amount of expression of a TSS explainable by an enhancer in a sample
- 3. Combine with genomic distance by a secondlevel model

### Validation of enhancer targets



#### Activity correlations



#### Consistency with topological domains

- Topologically associating domains (TADs) by Hi-C from Dixon et al., 2012
- Chromatin contact domains (CCDs) by CTCF ChIA-PET from Tang et al., 2015



### LCR of beta-globin locus





Cao et al., (submitted)

#### Enhancer network as sample signature



## Sample-group specificity



## **Co-regulation modes**



#### Differential enhancer methylation in HCC







Cao et al., (submitted)

## Data availability

- <u>http://yiplab.cse.cuhk.edu.hk/enhancernetworks/</u>
  Version 2 involving more features coming
- Fields provided in the file of each sample:
  - 1. Enhancer location
  - 2. Regulated TSS and transcripts
  - 3. Confidence score (0-1)
  - Activity correlations (with enhancer activity quantified by H3K4me1, H3K27me3, H3K27ac, eRNA and combined value)

## Acknowledgments

- ENCODE Consortium
- Chao Cheng, Yao Fu, Ekta Khurana
- Members involved:



Christine AnyansiQin CaoLandon ChanXihao HuShaoke Lou(Intern)(PhD student)(RA alumnus)(PhD alumnus)(Postdoc alumnus)