MotifVar: A resource and strategy for amplifying coding variant signal by using repeat protein domains 
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Abstract
Large-scale exome sequencing has revealed an abundance of single nucleotide variants (SNVs) in the protein-coding regions of the human genome. Here, we identify SNVs that are important to protein-protein interactions (PPI) by focusing on a class of high impact protein domains that specifically mediate PPI – repeat protein domains (RPDs). We use the RPD, tetratricopeptide repeat, as an illustrating example, and provide our results for all RPDs as an online database, MotifVar (motifvar.gersteinlab.org). Specifically, we first develop a strategy to build a multiple sequence alignment profile based on a repeat protein motif. This approach allows a codon-level accumulation of SNVs, which facilitates the amplification of rare variant signals, especially within the coding region. Then, we use the SNVs to compute genetic metrics that estimate selective constraints. The combination of genomic and protein level information enables the identification of potentially functional positions in RPDs that are under high selective constraints. 

Introduction
The combined efforts from large-scale human sequencing projects and clinical sequencing have given rise to an exponentially increasing number of human sequences in recent years [cite ExAC].1,2 With substantial drop in the sequencing cost and improvement in sequencing technologies and data processing capabilities, we now have the ability to generate a huge catalog of variants that exist in the human population in a fairly rapid and high-throughput fashion. One of the ensuing challenges is then to provide functional annotations for these variants efficiently and accurately. 

Much of the variant annotation work in the protein-coding regions have been using ‘guilt-by-association’uses the following approach: first, we identify functionally important regions or amino acid residues, and subsequently, if a non-synonymous mutation occurs in regions that are highly conserved, it is more likely to be functionally disruptive, especially when it changes an electrochemical property of the amino acid drastically.3 The main premise in many tools that identify highly functional regions is by observing inter-species sequence (nucleotide and/or protein) and structural conservation at homologous proteins, which are typically grouped by their protein function [cite GERP, CADD].4–6 Over a long evolutionary time, inter-species comparison can pick out fixed differences between the dominant homologous sequences of the chosen species across their phylogeny. However, all protein-coding regions are, in general, under high selection pressure. As such, in inter-species sequence comparison, almost all positions in high-impact protein domains tend to be extremely conserved. Since conservation can be observed over different evolutionary timescales, at a more recent timescale, in principle, intra-species conservation (across a population) can be harnessed for variant annotation as well. By aggregating variants over a region or site within the population of a single species, intra-species conservation has been observed over specific genomic regions in a few large-scale sequencing studies.7–9 But because protein regions undergo have high selective constraints, high impact variants usually occur sparsely across the coding region at very low frequencies within a population. For example, the human stress-induced-phosphoprotein 1 has 136 missense variants in the Exome Aggregation Consortium (ExAC) database, the largest collection of human exomes to-date (http://exac.broadinstitute.org/gene/ENSG00000168439, accessed 4 July 2016), distributed sporadically across 1,629 protein-coding nucleotides (1 variant in about 12 nucleotides). All of these variants are also rare in the human population, with the largest allele frequency at only 0.001108.[cite ExAC] Hence, it is difficult to increase the number of variants for population analyses without continually increasing the pool of sequenced individuals. To this end, we devise an approach to “amplify” the variant signal in protein-coding regions within a population, and build a database for the residue frequency tables and corresponding SNV information for the motif-MSA profiles as a resource for variant annotation.	Comment by Mark Gerstein: Not sure G-by-A is correct here

We focus on a functional category of high-impact protein domains that explicitly mediates protein-protein interactions (PPI), known as repeat protein domains (RPD).10,11 RPDs have been found to be present in almost one in every three human proteins.12 As a result, many classes of RPDs have also been studied extensively.13–15 Each RPD is made up of modular repeat motifs of the same class. For example, tetratricopeptide repeat (TPR) domains are made up of only TPR motifs and Ankyrin repeat (ANK) domains of ANK repeat motifs. This modularity gives rise to a strategy that was first introduced in the field of protein engineering to create protein design templates so that non-template features can be grafted into these protein scaffolds to design synthetic proteins with desired specificities and affinities.16–18 We adapted the strategy to create a multiple sequence alignment (MSA) profile, which we term a ‘motif-MSA’ profile, for each class of RPD. 

Using the TPR as an example of a class of PPI RPD, we demonstrate that the motif-MSA strategy can accumulate many variants over a codon. This “amplification” of variant signal is achieved by aggregating variants from multiple homologous motifs for each class of RPD within the human genome. Interestingly, we note that such analyses can only be performed currently using a dataset as large as those from ExAC. Our MotifVar database (http://motifvar.gersteinlab.org) contains our results as a resource for annotating variants in 17 PPI RPDs.

Results
MotifVar database 
Figure 1 shows our strategy used to build up the resources in our publicly available MotifVar database (http://motifvar.gersteinlab.org) that relates protein residue to genomic information in 17 RPDs. Our strategy first produces a motif sequence alignment profile for a class of repeat domain. Using the TPR repeat domain as an example, we obtain every TPR repeat motif of a given amino acid length in the human proteome (typically the length with the most number of available motifs); in this case, the length is 34 amino acids (see ‘Methods’ for details, Supp figure 1). We then perform an MSA of all the TPR motifs (we term ‘motif-MSA’) to obtain a residue frequency table, which shows the percentage occurrence of each amino acid at each position in the motif. This table can then be translated into a sequence logo for better visualization. For each repeat motif, we then locate its genomic positions in the human genome. Subsequently, we map genomic variants from the ExAC catalog onto the genomic coordinates of the repeat motifs. Finally, this allows us to obtain aggregate statistics of variants at each residue positions for each class of repeat domain, namely ratio of the number of non-synonymous SNVs to synonymous ratio (NS/S), enrichment of rare variants (R/C) and the distributions and medians of the SIFT scores at each residue position. In our MotifVar database, we provide the residue frequency tables, the SIFT score distributions, median SIFT scores, log(NS/S), log(R/C) and values for each position along the motif to allow versatile thresholding by the users. [[+average Fst]] 

Comparing species- and motif-MSA 
An MSA is more typically performed using homologous sequences from multiple species (we term ‘species-MSA’). Here, we perform species-MSA for the first three TPR motif sequences in the TPR-containing protein TTC21B, using orthologous sequences from 66 species (see ‘Methods’ for details) (Figure 2a). TTC21B contains about 16-19 TPR motifs, with almost all of them having a length of 34 amino acids and is a cilia-specific protein that is necessary for retrograde intra-flagellar transport.19 Expectantly, most positions are comparably high in sequence conservation (Figure 2a). In contrast, the motif-MSA profile exhibits substantially differential sequence conservation among the motif positions (Figure 2b). Because we are aligning motifs of the same class of repeat domain, residue positions that are characteristic of, and thereby important to, the structural fold of the repeat motif will be more conserved than other positions. We were able to easily identify positions 8, 11, 20, 24 and 27 as more conserved within the TPR repeat motif. 

Motif-MSA amplifies variant signals to compute population genetic metrics
The conventional species-MSA profile is restricted to the sequence of a single human protein (since the alignment is based on orthologs), hence even with a large catalog of human exonic variants, only a maximum of three human variants can occur for each residue’s codon position (Figure 2c). However, in the TPR motif-MSA, variants are aggregated from all 34-amino-acid TPR motifs within the human genome. This accumulation of variants amplifies the variant signal, thereby facilitating the computation of various population genetic metrics to investigate the selective constraints in the protein domains. 

In Figure 3, we use the TPR domains as an example to show the results of three aggregate statistics derived from the accumulation of genomic variants on the motif-MSA, namely the distribution of SIFT scores (Figure 3a), rare-to-common-SNVs ratio (R/C) (Figure 3b), and non-synonymous-to-synonymous-SNVs ratio (NS/S) (Figure 3c). We use the SIFT score of a non-synonymous SNV as an estimate for inter-species conservation, with lower SIFT score denoting a greater likelihood of an SNV being deleterious, most likely due to high residue conservation.3 As a proxy for intra-species conservation within the human population, we compute R/C, with an enrichment of rare variants (or depletion of common variants) signifying high conservation.7–9 Since protein-coding regions are generally under high selective constraints, almost all positions of highly functional PPI domains tend to have very low median SIFT scores across the motif. In the TPR motif-MSA, Position 20, the most highly conserved position in the TPR motif-MSA, exemplified this observation, by not only exhibiting the lowest median SIFT score, but also a very sharp distribution with a very long tail (Figure 3a and 3d). Over a shorter evolutionary timescale, we also find high rare variant loads across the motif-MSA profiles of all classes of RPDs, regardless of residue or positional conservation within the repeat motifs (Figure 3b).

We further compute the NS/S for each position in the motif-MSA profile (Figure 3c). The use of NS/S has been traditionally useful in the estimation of selection pressures, especially for inter- and intra-species comparisons of protein-coding regions typically at the gene level, where dN/dS, pN/pS and the McDonald Kreitman’s test have been extensively adapted and used [cite dN/dS, pN/pS, McDonald Kreitman]. In estimating selective constraints, NS/S additionally takes into account the functional significance of the gene or genomic region based on the premise that NS amino acid changes would tend to be more disruptive in the function of a protein, resulting in higher selective constraints against NS mutations in functionally-important regions. Thus, a lower NS/S ratio suggests that the gene or genomic region is undergoing more selective constraints and potentially more functionally important. Here, rather than at the gene level, the accumulation of variants enables NS/S to be calculated at the codon level (Figure 3c). We observe that most of the positions in the TPR motif with very low NS/S coincide very well with positions of high sequence conservation in the motif-MSA profile. In fact, if we arbitrarily take the top five positions with the lowest NS/S, four of them are the positions with the four most conserved position in the TPR motif-MSA, reinforcing the utility of motif-MSA in picking out functionally important residue positions (Figure 3c). 

At this juncture, we also note that this result was observable only with the ExAC data (60,706 exomes)[cite], but not when solely with the 1000 Genomes Project Phase 1 data (1000GP; 1,092 whole genomes)7 nor its combination with the Exome Sequencing Project (ESP; 6,500 exomes)9, which total more than 7,500 protein-coding exome data (Supplementary Figure 2 and Supplementary Table 1). The combined dataset of 1000GP and ESP is about 7 folds and 3 folds the size of the 1000GP data in terms of the number of individuals and autosomal SNVs respectively, and the ExAC dataset is about 8 folds and 5 folds the size of the combined set. Even though the rate of increase in sizes in both cases are comparable, the fact that only the largest dataset with more than 60K exomes and 7M SNVs yields interpretable results underscores the importance of having more genome sequences and rare variants.

Combining protein and genomic information to identify important residues
Finally, using the motif-MSA, we are able to integrate both protein (from MSA) and genomic information (SNVs) to better pinpoint positions that might be more functionally important. By combining positions with the highest five sequence conservation in the TPR motif-MSA and the lowest five median SIFT scores and NS/S ratio, we are able to identify eight positions (out of 34 positions on the TPR motif), with four positions that fulfil at least two of the three selective constraint conditions (Figure 3d). The differences in R/C between positions within the TPR motif-MSA are too subtle to be used.

Mapping genomic information onto protein structures
In order to visualize the eight residue positions in a spatial context, we further integrated genomic information with protein structures. We use the X-ray crystal structure of the TPR domain (TPR1) from the human protein Hsp-organizing protein (HOP) bound to its cognate ligand, a short peptide sequence consisting of seven amino acids, PTIEEVD (PDB ID: 1ELW). We then map the eight positions derived from Figure 3d onto the protein structure (Supplementary Figure 3). HOP is a scaffold protein with three domains of three TPR motifs that bring together two critical molecular chaperones, Hsp70 and Hsp90. TPR1 contains three 34-amino-acid TPR motifs and mediates the interaction with Hsp70, by binding to the latter’s C-terminal peptide sequence of PTIEEVD.20 Except for position 17 in each of the three TPR motifs in TPR1, we found that all the other seven residue positions with high selective constraints (from either low median SIFT scores, low log (NS/S) or high motif sequence conservation) are buried residues in the PPI domain (Supplementary Figure 3a). Buried residues are known to be essential in maintaining the stability of globular proteins.[cite] For short and non-globular PPI domains, these buried residues become critical for maintaining the structural folds of the domains in order to perform their roles in mediating protein-protein interactions.[cite]

Relating residues positions to clinically-relevant and disease-related mutation data
Previous studies have shown that buried residues are highly constrained and have a higher tendency to be disease-causing.[cite] Using two databases, ClinVar21 and the proprietary Human Gene Mutation Database (HGMD)22, we found that the highly constrained positions have some of the most occurrences of clinically-relevant or disease-related mutations along the TPR motif-MSA profile, including the highest two at positions 6 and 7 (Supplementary Figure 3b). In fact, mechanistic studies of a number of these mutations show that the occurrence of certain NS mutations on these positions give rise to diseases precisely as a result of ablation of protein-protein interactions. For example, an NS disease-causing mutation on position 8 of one of the TPR motifs in the protein p67phox (neutrophil cytosolic factor 2), has been found to disrupt its interaction with its cognate protein.23 Another mutation, A197P, on the most conserved position 20 along the TPR motif, occurring in the protein AIPL1 (aryl hydrocarbon receptor interacting protein-like 1) results in a loss of interaction with farnesylated proteins.24 

Discussion
For decades, the focus in research on PPI has typically been the investigation of protein interfaces that directly take part in the protein interaction. Historically, most studies involved the use of 3D protein structures, for instance, to identify protein-protein interfaces,26,27 investigate interfacial properties28,29 or to predict interacting ‘hotspots’30–32 [barry honig PrePPI, 1998 hotspots papers, interface properties]. While extremely useful in protein engineering and drug design, it is also very limited by the number of available protein structures. On the other hand, the amount of human sequencing data has been growing dramatically over the past decade, in particular, the number of protein-coding exome sequences.33 As a result, there is also an increased urgency in the endeavor for variant annotation in protein-coding regions capitalizing on sequence information. Hence, there is great value in complementing protein data with the copious amount of human genomic data. Our introduction of the motif-MSA facilitates genomic analyses with protein information (and vice versa) in several ways.

Firstly, motif-MSA broke removes the limitation imposed by species-MSA, by enabling the ‘amplification’ of variant information for large-scale genomic analyses. Thus far, the utility of protein sequences has been largely focused on the more traditional perspective of sequence conservation across multiple species based on homology.4,5,34 This limits the use of the bulk of the available sequencing data, which is focused on a single species, Homo sapiens. By using information from the same motif class, we can systematically aggregate variants from similar protein regions within the genome of a single species in a reasonable manner. This aggregation is key to achieving the variant statistics required to perform analyses that are meaningful, especially in light of the observation that even a combined set of 1000GP and ESP6500 variant data, derived from almost 7600 exomes, was not sufficient to yield immediately-interpretable results (Supplementary Figure 2 and Supplementary Table 1).

Secondly, the ability to gain statistical power from variant aggregation makes motif-MSA an extremely powerful platform in investigating selective constraints in protein-coding regions using genomic information. We only used three metrics derived from the genomic data to identify highly constrained motif positions and residues. [[why not more??]] It is encouraging to see that many of the top five positions for each metric overlap and show clear evidence of structural importance and disease implications. More importantly, these metrics also uncover complementing sites that show evidence for clinical and disease relevance, which would have been missed otherwise. Potentially, motif-MSA is amenable to the entire repertoire of genomic metrics such as ∆DAF35, and FST36, which provides a quantitative means for thresholding. In turn, this enables computational tractability and the incorporation of the approach into variant annotation pipelines, which is critical in efficiently triaging variants for more resource-consuming experimental validation amidst high volumes of sequencing data.8

Thirdly, motif-MSA is also able to reflect protein structural properties and clarify the roles of the positions or residues in PPI. Conventional species-MSA aligns sequence orthologs that are similar in function and structure. Hence, highly conserved residues or positions are a mix of structural and functional residues with great but unknown significance to the specific proteins. On the other hand, because the protein motifs are classified by their structural folds, sequence features in a motif-MSA are the manifestations of important structural properties that determine the folds of the domains. Highly conserved residues or positions in motif-MSA have the proclivitytend to be structural residues that maintain the integrity and stability of the protein domains. 
This is exemplified by the observation that most of the highly conserved positions in motif-MSA correspond to buried residues within the interior of PPI domains, when we visualize the residues in the context of 3D protein structures (Figure 4a), in line with a previous study.37 

In addition, because motifs in motif-MSA are also derived from a myriad of proteins with diverse binding partners, it has been demonstrated and suggested that positions, which are low in sequence conservation, or ‘hypervariable’, are found in the binding pockets of the corresponding domains and are thus involved directly in protein-binding.37,38 We also noticed hypervariable positions, such as position 2 in TPR motifs, also harbor a good number of disease-related variants. This observation bolsters the proposal from the previous study and further hints at the utility of motif-MSA in annotating and clarifying the roles of variants directly involved in PPI. 

Lastly, the motif-MSA strategy presents an opportunity to extend its application beyond protein motifs to whole domains (domain-MSA). For example, a domain-MSA for RPDs has been shown to be very informative in uncovering domain-specific protein features that are not observed in a motif-MSA.39 However, for a domain-MSA, because each type of RPD is characterized by the sizes of both domain (how many motifs) and motif (how many amino acids), the frequency of a particular RPD for MSA may decrease as the definition of the RPD changes (Supplementary Figure 1). For example, the most common type of TPR domains are those with three TPR motifs, but the number declines as one limits the size of the TPR motifs to 5 TPR motifs, and/or 33 amino acids. A domain-MSA, while limited by numbers, can be extremely useful in uncovering domain-specific features important for PPI.

At this point, it is also important to note that aggregating variants on the motif-MSA per se conflates genomic variant information not only from long and short evolutionary time scales, but also from the evolution of the same class of repeat motifs. Even though we have used SIFT scores as a proxy for inter-species comparison and log(R/C) for intra-species comparison to tease apart contributions from selective constraints over long and short evolutionary timescales respectively, the interpretation of selective constraints in more generic metrics such as log(NS/S) is a confluence of evolutionary timescales and mutation processes. Hence, for such metrics, it is imperative to be aware that they might demonstrate selective constraints in a broader sense, rather than a specific timescale or mutation process.

Much knowledge can be gleaned from the integration of heterogeneous data in a meaningful and computationally-tractable way. The motif-MSA approach provides a powerful and versatile platform to facilitate the melding of protein and genome information. It will add to the existing arsenal of tools in identifying residues that are involved in protein-protein interactions, which has a direct and long-standing significance in the fields of protein engineering and drug design. Perhaps more pertinently, this methodology will serve well, both as a way to leverage the vast amount of sequencing data currently available, and as a complementary perspective in the genomic variant annotation endeavor – an activity that will increase in importance and urgency in the near future, as human genome sequencing becomes more clinical and personal genome interpretation takes center stage. 

Methods 

MotifVar database
Our publicly available MotifVar database (http://motifvar.gersteinlab.org) provides data files for for 17 RPDs, including TPRs. Each class of RPD is a tarball, which contains residue frequency tables (to rebuild the sequence logo), the SIFT score distributions, median SIFT scores, log(NS/S), log(R/C) and values for each position along each RPD motif to allow versatile thresholding by the users. The resource and scripts used in the pipeline are freely downloadable at the database.

Multiple sequence alignment (MSA)
All protein, motif and domain information are extracted from Ensembl database version 73 and SMART database, under the ‘genomic’ mode, for species, Homo sapiens (downloaded Oct 25, 2013).40 The 17 PPI repeat domains are manually selected based on their availability in the SMART database.

We will use the TPR domains as an example to illustrate the process of motif- and species-MSA in our study.

To obtain a motif-MSA sequence profile, (1) we first extract all TPR domains in the human proteome and break them up into its constituent motifs. (2) Here, the motif-MSA is performed based on the most representative size of the motif. Hence, in order to select the motif size, a histogram of all sizes of TPR motifs is constructed (Supplementary Figure 1) and the most common motif size is selected for motif-MSA alignment; in TPR motifs, the most common motif size is 34 amino acids. There are a total of 114 human proteins (from unique genes) with 571 unique 34-amino-acid TPR motif sequences; we only keep one motif when there are multiple with 100% sequence identity. (3) MSA is then performed on of these 571 TPR motifs with 34 amino acids, with no gaps allowed, i.e. we line up all sequences by position end to end. This ‘ungapped’ alignment allows the derivation of a 20-by-n frequency table for 20 residues and n positions on the motif profile, and subsequently, visualization, using a sequence logo constructed by WebLogo 3.2.41

[bookmark: _GoBack][[is the below too specific]] The TPR species-MSA is obtained by aligning the homologous protein TTC21B from 43 species. (1) First, we perform an online BLASTp search [cite; http://blast.ncbi.nlm.nih.gov/] for the human TTC21B protein sequence obtained from UniProt, with ID Q7Z4L5, using the UniProtKB database, BLOSUM62 matrix, allowing gapped alignment, and a minimum alignment score threshold of 10. (2) We obtain the top 250 sequences based on the alignment scores. (3) Subsequently, we impose a series of filters manually to pare down unwanted and redundant sequences. (3a) We remove all non-TTC21B (based on the gene names provided in the results of BLASTp). (3b) We also eliminated redundant entries or isoforms from the same species, strictly retaining only one form of the protein from each species, based on first whether it is stated as ‘characterized’ or ‘reviewed’, then the highest alignment score, followed by the lowest E-value in this order. We find that those isoforms that are ‘characterized’, ‘reviewed’ or have the highest alignment scores are typically long and hence, having a less likelihood of obtaining non-functional protein fragments. At this point, the number of sequences is 45. (4) Using the MEGA software [cite], we extracted the TPR domain from the 45-sequence alignment, based on the human TTC21B information in SMART database. There are 16 TPR motifs in TTC21B found in the SMART database. We remove two orthologs due to the existence of gaps in at least one of the 16 TPRs, resulting in the final number of 43 homologous sequences with ungapped alignment. (5) Finally, we construct the sequence logo of all 16 TPRs using WebLogo 3.2.41 We show the alignment of only the first three TPR motifs of TTC21B in Figure 2.

Sequence logo visualization
All sequence logos are created by WebLogo 3.241, using the following parameters: 
-A protein -U bits --composition "{'L':9.975,'A':7.013,'S':8.326,'V':5.961,'G':6.577,'K':5.723,'T':5.346,'I':4.332','E':7.096,'P':6.316,'R':5.650,'D':4.728,'F':3.658,'Q':4.758,'N':3.586,'Y':2.653,'C':2.307,'H':2.639,'M':2.131,'W':1.216}"  -n 34 -c chemistry --stack-width 25 --errorbar no

For the ‘composition’ parameter (used for the relative entropy calculation), we provided manually the background distribution of the amino acids in the entire SMART database (‘genomic’ mode), in order to be in line with our input data from the SMART database; the values above are in percentages. We separately computed these values from the SMART database. Unless the sequence logos are in monochrome (as in Figure 2), they are colored by amino acid chemistry, where polar residues (G, S, T, Y, C) are colored green, neutral residues (Q, N) purple, basic residues (K, R, H) blue, acidic residues (D, E) red, and hydrophobic residues (A, V, L ,I ,P ,W, F, M) black.

Variant information from exomes
For all the analyses in this study, we use the SNVs and their minor allele frequencies from 60,706 exomes found in the ExAC database (Version 0.3, downloaded Feb 1 2015)[cite], after removing the variants from the sex chromosomes and singletons (those variants that only occur in one chromosome in the entire ExAC dataset). This ends up with 7,202,445 autosomal SNVs. We obtained SIFT scores, and non-synonymous nature of the SNVs on the proteins using the VEP tool (Version 73) from Ensembl release 73.42 

Similarly, we have also used a combined number of 1,328,447 unique, non-singleton, and autosomal SNVs from the 1000 Genomes Project Phase 1 (1,092 whole genomes)7 and Exome Sequencing Project data (6,500 exomes)9, to produce Supplementary Figure 2 and Supplementary Table 1. 

All coordinates are based on the human reference genome assembly version of hg19. 

Relating genomic and protein information
Custom scripts are written to relate genomic to protein information. The key idea is in identifying codon coordinates. We first obtain all genomic coordinates and strand information of protein-coding exons and residue coordinates of SMART protein domains from Ensembl 73 and GENCODE 18 on the reference genome, hg19. The exon information will give us the exact genomic coordinates of the codons for each protein-coding gene, using the locations of the exon-intron junctions. This allows mapping of genomic variants to specific codons, enabling positional accumulation of variant information across a motif-MSA profile. These scripts are part of the pipeline available in the MotifVar database for download. 

Protein structure visualization
The X-ray crystal structures from Protein Data Bank (PDB) are created using Pymol 1.3.43

Clinically-relevant and disease-related variants
Clinically-relevant and disease-related variants in GRCh37 were downloaded from ClinVar21 on July 8, 2015 and the proprietary HGMD Professional Database downloaded on July 27, 2015.22 
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Figure Legends
Figure 1. Our motif-MSA approach. (1) We first query a database and obtain all the proteins with the desired domains or motifs. We use the TPR motifs as an example in this figure. These motifs have to be the same length. For example, we select TPR motifs that are 34 amino acids since they are the most frequently-occurring size. (2) Subsequently, we perform an ‘ungapped’ multiple sequence alignment (MSA) of the TPR motifs by lining them up end to end, to obtain a sequence conservation profile. This motif-based MSA typically exhibits differential sequence conservation among the positions across the length of the motif. (3) The third step involves collecting genomic single nucleotide variants (SNVs) for each amino acid position of the motif-based alignment profile. For TPR domains, we obtain the specific genomic coordinates of each codon of every TPR motif in the human proteome, and then we locate all variants that fall into each codon. (4) For each motif-MSA, we then host the results on our MotifVar database, including residue frequency tables, log(NS/S), log(R/C) and SIFT score distributions.

Figure 2. Motif-MSA can uncover important domain positions missed by species-MSA and it also serves as a “variant information amplifier”. This figure uses TPR as an example. (a) We perform a species-MSA using orthologous TTC21B from 66 species (species-MSA). Here, we show the alignment profiles for the first three TPR motifs (red, blue and green sequence logos), out of the possible 16. We observe that almost all the positions are highly conserved. (b) In contrast to conventional species-MSA, there is a differential sequence conservation profile across the TPR motif-MSA (black sequence logo), which facilitates the identification of more conserved motif positions that are potentially important (positions are highlighted in yellow). (c) In order to integrate the vast amount of sequencing data, we can directly map genomic variants (black diamonds) onto the coordinates of TPR motifs in protein-coding genes. We can use species-MSA to align orthologous sequences across multiple species, as in (a). However, because we are focusing on proteins and sequencing data in humans, the number of variants at each amino acid position or codon in a species-MSA profile will never exceed a maximum of three. On the contrary, a motif-MSA profile is able to aggregate variants across all motifs within the human genome, thereby amplifying variant information sufficiently for further downstream analyses.

Figure 3. Using genomic variant information in the motif-MSA profile to investigate selective constraints in PPI motifs. Using SNVs from the ExAC dataset, we use various SNV properties to investigate the extent of selective constraints at each position in the motif-MSA profile. (a) For each non-synonymous SNV, a score can be computed from the SIFT tool to approximate its deleteriousness phylogenetically, based on sequence conservation over multiple species, where a lower SIFT score means more deleterious. Each blue violin plot represents the distribution of SIFT scores at each position in the TPR motif, with the width of the plot approximating frequency density and the black dot denoting the median SIFT score. The distribution provides an estimation of the selective constraints based on intra-species comparison. (b) For each SNV, the minor allele frequency (MAF) in the human population can determine whether an SNV is rare (MAF ≤ 0.005) or otherwise, common. The log ratio of the number of rare versus common variants (log R/C) represents the enrichment of rare variants, which has been used as a metric for estimating selective constraints based on intra-species comparison. All positions have an enrichment of rare variants, with position 25 having no common variants (log ratio with a zero denominator is undefined). (c) We can also calculate the log ratio of non-synonymous (NS) versus synonymous (S) SNVs. A depletion of NS variants with respect to the background of S SNVs suggests a position might be functionally significant. (d) The five positions with the least median SIFT scores are numbered in blue according to their rank (there are four positions tied at rank 2). The five positions with the lowest log (NS/S) are ranked in red. The top five most conserved positions in the TPR motif are highlighted in yellow. There are seven candidate positions which fulfil at least one of the above criteria of the lowest SIFT median scores, log(NS/S) and motif-MSA sequence conservation, with four positions satisfying at least two.

Supplementary Figure 1. The most frequent size of the TPR motif is 34 amino acids.

Supplementary Figure 2. We compare the utility among three variant sets, namely from 1000 Genomes Project Phase 1 (1000GP; green bars), the combined set of 1000GP and the Exome Sequencing Project (1000GP+ESP6500; blue bars) and the ExAC dataset. We can see that there are subtle differences in log(NS/S) for each position along the TPR motif, when using variant datasets from 1000GP to 1000GP+ESP6500. We were able to make meaningful interpretations only when we use variant data from ExAC (grey bars).

Supplementary Figure 3. Mapping genomic information onto protein structures and disease-related mutation data. (a) We choose the TPR domain, TPR1, found on the Hsp-organizing protein (HOP; PDB ID: 1ELW), as a basis of mapping candidate positions. TPR1 contains three 34-amino-acid TPR motifs (e.g. there are three position 20s). We find that all positions with high selective constraints are found buried within the PPI domains (red residues on protein structure), except for position 17 on each of the TPR motifs. The colors are overlaid in order: positions with lowest median SIFT scores (light blue numbers and residues in structure), with lowest log(NS/S) (red numbers and residues in structure), then finally positions with highest sequence conservation in the motif-MSA profile (orange highlights in motif sequence and residues in structure). The ligand-binding convex profile of the TPR1 domain (the cognate ligand is represented by the green stick sticks) is rotated 180o to reveal the concave profile of the same TPR1 domain. (b) We also use two databases, ClinVar and HGMD, to demonstrate which TPR motif positions accumulates more clinically-relevant and disease-related SNVs.
Supplementary Table 1. The 1000 Genomes Project (1000GP) provides the least number of autosomal SNVs, followed by an approximate 6-fold increase in number of exomes in the combined set of 1000GP and Exome Sequencing Project (ESP6500); this is a corresponding ~3-fold increase in the number of autosomal SNVs. Our study uses the dataset from ExAC, with 60,706 individuals, an almost 8-fold increase from the combined set of 1000GP+ESP6500; this is a corresponding ~5-fold increase in the number of autosomal SNVs.

Supplementary Table 2. The lists of repeat and non-repeat domains that we performed the motif-MSA approach and are included in the MotifVar repository.
