Can we better understand HOT regions based on 3D genome organization?

Koon-Kiu Yan (Gerstein lab) 6/23/2016

Motivation

- HOT regions are heavily clustered with transcription factor binding sites. The high accessibility should be related to the 3D structure of genome
- HOT regions have been identified in worm, fly and human (e.g. Araya et al., Boyle et al. Nature 2014). There are various Hi-C data performed in human, worm and fly.

Hi-C data in worm and fly

LETTER

doi:10.1038/nature14450

Condensin-driven remodelling of X chromosome topology during dosage compensation

Emily Crane¹^{†*}, Qian Bian^{1*}, Rachel Patton McCord^{2*}, Bryan R. Lajoie^{2*}, Bayly S. Wheeler¹, Edward J. Ralston¹, Satoru Uzawa¹, Job Dekker² & Barbara J. Meyer¹

Cell

fly cell lines: s2, Kc167, DmBG3-c2, OSC

Three-Dimensional Folding and Functional Organization Principles of the *Drosophila* Genome

Tom Sexton,^{1,4} Eitan Yaffe,^{2,4} Ephraim Kenigsberg,² Frédéric Bantignies,¹ Benjamin Leblanc,¹ Michael Hoichman,² Hugues Parrinello,³ Amos Tanay,^{2,*} and Giacomo Cavalli^{1,*} ¹Institut de Génétique Humaine, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France

²Department of Computer Science and Applied Mathematics and Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel

³Montpellier GenomiX IBiSA, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France

Molecular Cell Resource

worm embryo

Kc167

Gene Density, Transcription, and Insulators Contribute to the Partition of the *Drosophila* Genome into Physical Domains

Chunhui Hou,^{1,3} Li Li,^{2,3} Zhaohui S. Qin,^{2,*} and Victor G. Corces^{1,*} ¹Department of Biology ²Department of Biostatistics and Bioinformatics Emory University, Atlanta, GA 30322, USA

Research—

Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains

Sergey V. Ulianov,^{1,2,12} Ekaterina E. Khrameeva,^{3,4,12} Alexey A. Gavrilov,¹ Ilya M. Flyamer,^{1,2} Pavel Kos,⁵ Elena A. Mikhaleva,⁶ Aleksey A. Penin,^{4,7,8} Maria D. Logacheva,^{4,8,9} Maxim V. Imakaev,¹⁰ Alexander Chertovich,⁵ Mikhail S. Gelfand,^{4,11} Yuri Y. Shevelyov,⁶ and Sergey V. Razin^{1,2}

¹Institute of Gene Biology, RAS, 119334 Moscow, Russia; ²Department of Molecular Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; ³Skolkovo Institute of Science and Technology, 143026 Skolkovo, Russia; ⁴Institute for Information Transmission Problems (Kharkevich Institute), RAS, 127051 Moscow, Russia; ⁵Physics Department, Lomonosov Moscow State fly embryo

Chromosome conformation capture (3C) and Hi-C

Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome

Erez Lieberman-Aiden,^{1,2,3,4}* Nynke L. van Berkum,⁵* Louise Williams,¹ Maxim Imakaev,² Tobias Ragoczy,^{6,7} Agnes Telling,^{6,7} Ido Amit,¹ Bryan R. Lajoie,⁵ Peter J. Sabo,⁸ Michael O. Dorschner,⁸ Richard Sandstrom,⁸ Bradley Bernstein,^{1,9} M. A. Bender,¹⁰ Mark Groudine,^{6,7} Andreas Gnirke,¹ John Stamatoyannopoulos,⁸ Leonid A. Mirny,^{2,11} Eric S. Lander,^{1,12,13}† Job Dekker⁵† SCIENCE VOL 326 9 OCTOBER 2009

A network-based approach to find Topologically Associating Domains (TADs)

network	contact map
node	chromosome bin
edge	Hi-C contact
# of connections	coverage
module	domain

Modularity maximization

$$Q = \frac{1}{2m} \sum_{i,j} \left(W_{ij} - \frac{k_i k_j}{2m} \right) \delta_{\sigma_i \sigma_j}$$

TADs have apparent hierarchical organization

DNA picture adapted from Weinreb et al. Bioinformatics 2015

TADs in different resolutions

hESC: chr 10

Enrichment of chromatin marks near TAD boundaries

distance from boundary

enrichment

http://www.stanford.edu/~claraya/metrn/data/hot/

HOT regions in different resolutions

HOT regions in different resolutions

HOT regions are enriched in the Compartment A

$C_{ij} = cor(W_{ij}/E_{ij})$

Summary and Possible threads

- Based on hES cells, the location of HOT regions is related to 3D genome organization.
- Possible threads to follow:
 - Identify TADs in worm and fly; we expect similar observations.
 - Make further use of our ChIP-Seq data:
 - architectural proteins for domain formation:
 - CTCF, YY1, Rad21 in human
 - fly: Zw5, dCTCF, Su(Hw)... worm?
 - use the binding of specific TFs to predict domains/ boundaries formation