
 
Bullet points, major findings: 

• 32 WGS + extensive set of WXS; in depth analysis 

o Finely scrutinizing local high-impact events as well as giving a 

macro overlook of the mutation landscape 

• rs117652213 predicts cancer-specific survival, first time validated in pRCC. 

• Examples of high-impact non-coding mutations 

• Mutational heterogeneity 

o Methylation 

o APOBEC (unique in pRCC) 

o Chromatin remodeling genes 
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Abstract 
 
Introduction 
Renal cell carcinoma (RCC) makes up over 90% of kidney cancers and currently 

is the most lethal genitourinary malignancy\cite{25559415}. Papillary RCC 

(pRCC) accounts for 10%-15% of the total RCC cases (REF). Unfortunately 

pRCC has been understudied and there are no current forms of effective 

systemic therapy for this disease. Recently, the Cancer Genome Atlas (TCGA) 

published its first result on pRCC(REF), which improves our understanding of the 

genomic basis of this disease. Several genes were identified to be significantly 

mutated in pRCC. MET, especially, is the leading driver for Type 1 pRCC. 

Missense mutations, amplification and other coding region alterations have been 

reported in these patients. [More intro about MET?] 

Non-coding regions, previously overlooked in cancer, has been showed to 

involve in tumorigenesis [REF:Funseq, TERT promoter]. Mutations in non-coding 

regions may cause disruptive changes in both cis- and trans-regulatory elements. 

Understanding non-coding mutations helps fill the missing “dark matters” in 

cancer research. 

Shantao� 6/15/2016 10:13 PM
Comment [1]: Also	found	in	
Chromophobe	RCC	
Brian	suggests	to	add	this	



Looking at the mutations at a higher level, multiple endogenous and 

environmental mutation processes shape the somatic mutational landscape 

observed in cancers (REF Alexanderov). Analyses of the associated genomic 

alterations gives information of cancer development, sheds light on mutational 

disparity between cancer subtypes and even indicates potential new treatment 

strategies (REF Alexanderov Gasteric CA). Additionally, genomic features such 

as replication time and chromatin environment govern mutation rate along the 

genome, contributing to spatial mutational heterogeneity. While identifying 

mutation signatures is possible using data from whole exome sequencing (WXS), 

whole genome sequencing (WGS) gives richer information on mutation 

landscape and minimizes the potential effect of clone selection.  

In this study, we comprehensively analyzed 32 pRCC WGS data along with 

an extensive set of WXS data in multiple levels. We went from microscopic 

examination of driver genes to analysis of whole genome sequencing variants 

and finally, to investigation of high-order mutational features. First, We focused 

on MET, a proto-oncogene which play a central role in pRCC, especially in Type 

1. We validated rs11762213, a germline exonic single nucleotide polymorphism 

inside MET, as a cancer-specific survival (CSS) predictive SNP for the first time 

in pRCC. We also found several potentially impactful non-coding alternations 

around MET promoter and first two exons. Empowered by whole genome 

sequencing, we further expanded our scope, scrutinized nearly 150,000 non-

coding mutations and found several potentially high-impact mutations in non-

coding regions. Further zooming out, we discovered pRCC exhibits mutational 

heterogeneity in both nucleotide context and genome location, indicating 

underlying vibrant mutational processes interplay. Methylation is the leading 

factors influencing the mutation landscape. Methylation status drives the intra-

sample mutation variation by giving rise to more C>T mutations in the CpG 

context. APOBEC activity, although infrequently observed, leaves unequivocal 

mutation signatures in a pRCC genome but not in ccRCC.  

 

Results 
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1. Probing an exonic SNP in MET, rs11762213, in pRCC prognosis 
We begin with MET coding variants. Although many MET somatic mutations 

are believed to play a central role in pRCC, a germline SNP, rs11762213, has 

been discovered to predict recurrence and survival in an RCC cohort. ccRCC 

predominated the initial discovery RCC cohort[REF]. This conclusion was later 

validated in ccRCC cohort but never in pRCC [REF]. We evaluated whether this 

SNP has a prognostic effect in pRCC. Using an extensive WXS set of 207 

patients (see Methods), we found 12 patients carry one risk allele of rs11762213 

(G/A, Table 1). No homozygous A/A was observed. The cancer-specific survival 

is statistically significantly worse in patients with the risk allele (p < 0.037, Peto & 

Peto modification of the Gehan-Wilcoxon test; p < 0.044, log-rank test, Fig 1). 

The minor allele (A) frequency in our dataset is 2.90%, slightly lower than the 

previous studies. However, among patients with African ancestry, the MAF is 

3.95%. 

 
2. Mutation hotspots in non-coding region  
Despite the fact MET is the most important driver; some presumably MET-

driven yet MET wildtype pRCC samples were left unexplained. Therefore, we 

scanned the MET non-coding regions. We observed one mutation in MET 

promoter region in a type 1 pRCC sample (Fig 2A). This sample has no evidence 

of a nonsynonymous mutation in MET gene but copy number gain of MET. 

Additionally, we have observed 6/32 (18.8%) samples carry mutations in the first 

or the second introns of MET (Fig 2A). RNA splicing variants of exon 1-3 were 

found in several pRCC samples and thought to be a cancer-driving event. 

However, we did not detect any association of the two.  

We further expanded our scope and ran FunSeq2 [REF] to identify potentially 

high-impact, non-coding variants in pRCC. First, we identified a mutation hotspot 

on chromosome 1. 6/32 (18.8%) samples have mutations within this 6.5kb region 

(Fig 2B). This hotspot locates at the upstream of ERRFI1 (ERBB Receptor 

Feedback Inhibitor 1) and overlaps with the predicted promoter region. ERRFI1 is 

a negative regulator of EGFR family members, including EGFR, HER2 and 
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HER3. Noticeably, due to a very limited sample size here, our test power was 

greatly compromised. We didn’t observe statistically significant changes among 

mutated samples in terms of mRNA expression level, protein level and 

phosphorylation level of EGFR, HER2 and HER3 (Supplements X).  

Another potentially impactful mutation hotspot is NEAT1. We saw mutations 

inside this nuclear long non-coding RNA in 5/32(15.6%) samples. Several studies 

indicated NEAT1 is associated in lung and prostate cancer [REF]. It promotes 

cell proliferation in hypoxia [REF] (FIG 2C).  **It can also alter the epigenetic 

landscape and promote transcription of target genes (Dimple Chakravarty 
Nature comm 2014). Also these mutations are ~10-20kb of a downstream 

microRNA, MIR-612. Higher MIR-612 expression has been proved to negatively 

regulates colorectal and hepatocellular cancer growth 

(http://www.ncbi.nlm.nih.gov/gene/693197).  

Samples carry NEAT1 mutations have higher NEAT1 expression (Fig 2D?, p 

< 0.044, two-sided rank sum test) and higher percentage of non-zero MIR-612 

read counts (3/5, 60% versus 3/27, 9%; p < 0.038, two-tailed Fisher exact test). 

However, we still found NEAT1 mutations are associated with worse prognosis in 

patients not carrying rs11762213 minor allele (Fig 2E?, p < 0.022, log-rank test). 

 

**would see if the NEAT1 or MET intronic alterations are in a specific subgroups 

of papillary RCC (cluster, type I vs II etc).  

 
 

3. Mutation spectra of pRCC 
To further get a high-order overview of the mutation landscape, we 

summarized the mutation spectra of 32 whole genome sequenced pRCC 

samples (Fig 3A). C>T in CpGs showed the highest mutation rates, which were 

roughly ten to twenty fold higher than mutation rates in other nucleotide context.  

 

We used principle components analysis (PCA) to reveal factors that explain 

the most inter-sample variation. The loadings on PC1 (explains 12.5% of the 
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variation) demonstrated C>T in CpGs contributes the most to inter-sample 

variation (Fig 3B). C>T in CpGs reflects the spontaneous deamination of 

cytosines in CpGs, especially 5-methylcytosines. We confirmed this by showing 

samples from methylation cluster 1 (hypermethylated group, Supplement X) had 

higher PC1 scores as well as higher C>T mutation counts and rates in CpGs (Fig 

3C). Therefore, methylation status was the most prominent factor that shapes the 

mutation spectra across patients. 

 

[[Working on some methylation analyses here: want to demonstrate these 

mutations indeed happen at hypermethylation sites ]] 

correlation of SIG5? AGE? 

 

Using an in-house LASSO-based tool (see Methods) to identify mutation 

signatures in both WGS and WXS samples, we found one Type II pRCC case 

out of 155 somatic WXS sequenced samples exhibited APOBEC-associated 

signature 2 and 13. APOBEC mutation pattern enrichment analysis (see Method) 

further confirmed the presence of APOBEC activity in pRCC (Fig 3D). It was 

statistically enriched of APOBEC mutations (adjusted p-value < 0.0003). 

Prominent APOBEC activities were also incidentally detected in three upper track 

urothelial cancer samples sequenced and processed in the same pipeline with 

pRCC samples. This result is consistent with TCGA bladder urothelial cancer 

study [REF]. Noticeably, all four samples showed significantly higher APOBEC3A 

and APOBEC3B mRNA expression level (p < 0.0022 and p < 0.0039 

respectively, one-side rank sum test).   

 This Type II pRCC case with APOBEC activities had non-silent mutations 

in ARID1A and MLL2 and a synonymous mutation in RXRA, all are identified as 

significantly mutated genes in UC. Potential pRCC driver events, for example low 

expression of CDKN2A or non-synonymous alternations in significantly mutated 

genes of pRCC, were absent in this sample.  

Consistent with previous studies (REF), we could not detect statistically 

significant APOBEC activities in an extensive WXS dataset consisting of 418 
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clear cell RCC (ccRCC) samples, even after resampling to avoid p-value 

adjustment eroding the power. Accordingly, very low level of APOBEC signatures 

(<15%) was found in only four samples. With a much larger sample size, this 

result was unlikely to be confounded by detecting power. 

 

4. Defects in chromatin remodeling affects mutation landscape 
 Chromatin remodeling genes are frequently mutated in pRCC and many 

other cancers including ccRCC. We postulate defects in chromatin remodeling 

cause dysregulation of chromatin status. This further alters the mutation 

landscape, specifically increases mutation rate in open chromatin. To test this 

hypothesis, we tallied the number of mutations inside DNase I hypersensitive 

sites (DHS) in HEK293 (human embryonic kidney). 12/32 samples with non-silent 

mutations in eleven chromatin remodeling, cancer associated genes show higher 

genome-wide mutation counts (p < 0.032, one-side rank-sum test), partially 

driven by an even higher mutation counts in DHS region (p < 0.003, one-side 

rank-sum test). The median number of mutations in DHS region considerably 

increases by about 50% (75.5 versus 112). The effect is still significant after 

normalizing against the total mutation counts (p < 0.015, one-side rank-sum test, 

Fig 4A). 

 

Replication time is known to correlate greatly with mutation rate. Early 

replicated regions have lower mutation rate but the difference dissipates when 

DNA mismatch repair becomes defective (REF). We discovered the distribution 

of replication time at each non-coding mutation correlated with percentage of 

mutations inside DHS (Spearman’s correction: 0.69). We found a trend of shifting 

to earlier replication in the mutated group. The AUC of replication time 

distribution is significantly different between two groups (p<0.05, one-side rank-

sum test).  

 

Discussion 
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 We comprehensively analyzed both WGS and an extensive set of WXS of 

pRCC, finely scrutinizing local high-impact events as well as giving a macro 

overlook of the mutation landscape. First, we validated an exonic SNP in MET, 

rs11762213, as a prognostic germline variance in pRCC for the first time. The 

original discovery was made in a mixed RCC samples, predominated by ccRCC. 

Recently, the discovery was confirmed in a ccRCC cohort. It is unclear whether 

rs11762213 only predicts the outcome in ccRCC. In this study, we concluded that 

the alternative allele of rs11762213 also forecasts unfavorable outcome in pRCC 

patients. The mechanism of this exonic germline SNP remains unsettled. 

Remarkably, pRCC has two subtypes. We noticed cancer-specific death events 

in our cohort concentrate in type 2 patients, due to type 2 pRCC inferior 

prognosis. Thus we further hypothesized rs11762213 potentially has different 

prognostic power in subtypes, likely to be more powerful in type 2 pRCC.  Unlike 

type 2 pRCC and ccRCC, Type 1 pRCC often carry somatic MET mutations. A 

larger pRCC dataset is required to test our hypothesis.  

 Interestingly, MAF of rs11762213 among African American patients is 

3.95%, higher than MAFs observed in general African populations in both 1000 

Genome phase 3 dataset (0.2%) and the ExAC dataset (1.27%). This implies a 

possible effect of rs11762213 on pRCC incidence among African Americans that 

worth further investigation.  

 Expand our scope from coding to non-coding, we found several potentially 

significant non-coding mutations relevant to tumorigenesis. In our pRCC cohort, 

a mutation hotspot was found upstream of ERRFI1, an important regulator of the 

EGFR pathway, which may serve as a potential tumor suppressor. EGFR 

inhibitors have been used in papillary kidney cancer with an 11% response rate 

observed. These mutations potentially disrupt regulatory elements of ERRFI1 

and thus play a role in tumorigenesis. However, likely limited by small sample 

size, we were not able to detect statistically significant functional changes in 

ERRFI1 and related pathways. We also discovered mutations associated with 

MET promoter and first two introns. Another hotpot is in NEAT1, a long non-

coding RNA that has been speculated to involved in cancer. Patients carrying 
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mutations in NEAT1 have higher NEAT1 expression and worse prognosis.[STL: I 

will work on this part] 

 Last, focusing on the high-level land scape of mutations in pRCC, we 

identified mutation rate dispersion of C>T in the CpG motif contributes to the 

largest proportion of inter-sample variations. We further pinned down the cause 

of dispersion by showing the hypermethylated cluster, identified in the previous 

TCGA study (REF), has higher C>T rate in CpGs. This hypermethylated cluster 

is associated with later stage, type 2 pRCC, SETD2 mutation and poorer 

prognosis. Although increased C>T in CpG is likely the results of 

hypermethylation, we cannot rule out the possibility the change of mutation 

landscape plays a role in cancer development. For example, C>T in methylated 

CpG causes loss of methylation, which could have effects on trans-elements 

recruitment. 

 Significant APOBEC activities and consequential mutation signatures 

were observed in one Type II pRCC case. APOBEC activities were known to be 

prevalent in UCs (REF). We also successfully detected prominent APOBEC 

signatures in all three UC samples processed in the same pipeline as pRCCs. 

Interestingly, although being considered to have the same cellular origin with 

pRCC, we were not able to detect APOBEC activities in ccRCC. This is in 

agreement with previous studies (REF). APOBEC activities have been linked 

with genetic predisposition and viral infection (REF). Although we could not rule 

out sample contamination, given a statistically robust signal in our conservative 

algorithm, it is plausible that a small fraction of otherwise driver mutation absent 

Type II pRCCs might be etiologically and genomically similar to UC. Since 

standard treatment for UC involves cytotoxic chemotherapy and radiation, this 

finding could have meaningful clinical impact. ChromophobeRCC 

 Chromatin remodeling pathway is highly mutated in pRCC (REF). Several 

chromatin remodelers, for example SETD2, BAP1 and PBRM1, have been 

identified as cancer drivers in pRCC. We demonstrated pRCC with defects in 

chromatin remodeling genes show higher mutation rate in general, driving by an 

even higher mutation rate in open chromatin regions. By adapting a defective 
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chromatin remodeling pathway, tumor alters its mutation rate and landscape, 

which could further provide advantage in cancer evolution. However, excessive 

mutation in functional important open chromatin regions would also lead to 

disastrous mutational meltdown.  

  

   

 
 
Methods 
Data acquisition 
 We downloaded pRCC and ccRCC WXS SNV calls and pRCC WGS 

variation calls from TCGA Data Portal (https://tcga-

data.nci.nih.gov/tcga/tcgaDownload.jsp). pRCC samples that failed the 

histopathological review were excluded. Patients included in this study were 

summarized in supplemental table X. pRCC RNAseq, RPPA and methylation 

data were downloaded from TCGA Data Portal as well. Repli-seq and DHS 

data were obtained from ENCODE (https://www.encodeproject.org/).  

 

Testing rs11762213 on prognosis 
 We downloaded pRCC clinical outcomes from TCGA Data Portal 

(https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp). Excluding criteria are 

“Follow-up days” not available or equals zero and identified as non-pRCC by 

histopathological review. In total, we included 207 patients in our analyses. The 

majority of samples, 158 out of 207, were supported by high-quality, curated SNV 

callings from two centers. 100% genotype concordance rate was observed in 

samples harbor the minor allele (A, 10 samples) in germline as well as samples 

with homozygous reference allele (GG, 148 samples). Also, these curated 

rs11762213 genotypes were in agreement with automated callsets. With proved 

high confidence in accuracy of genotyping rs11762213 in germline, we recruited 

additional 49 samples from single-center, automated calls to form an extensive 

patients set. 
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 Cancer-specific survival was defined using similar method as described in 

a ccRCC study (REF). Deaths were considered as cancer-specific if the 

“Personal Neoplasm Cancer Status” is “With Tumor”. If “Tumor Status” is not 

available, then the deceased patients were classified as cancer-specific death if 

they had metastasis (M1) or lymp node involvement (>= N1) or died within two 

years. An R package, “survival”, was used for the survival analysis.  

 

 

Mutation spectra study  
 WGS Mutations were extracted from with flaking 5’ and 3’ nucleotide 

context. Then the raw mutation counts were normalized based on trinucleotide 

frequency in the whole genome.  

 To identify signatures in the mutation spectra, we used a robust, objective 

LASSO-based method. First, 30 known signatures were downloaded from 

COSMIC (http://cancer.sanger.ac.uk/cosmic/signatures). Then we solve a 

positive, zero-intercept linear regression problem with L1 regularizer to obtain 

signatures and corresponding weights for each genome. The penalty parameter 

lambda was determined empirically using 10-fold cross-validation individually for 

every sample. Last, we discharged signatures that composite less than 5% of the 

total detectable signatures. 

 

 

 

Methylation association analysis 
In total, we collected HumanMethylation450 BeadChip array data for 139 

samples that are either methylation cluster 1 or 2 (REF). We used an R package 

“IMA” to facilitate analysis [REF]. After discharging sites with missing values or 

on sex chromosomes, we obtained beta-values on 366,158 CpG sites in total. 

Then we test beta-values of each site by Wilcoxon rank sum test between two 

methylation clusters. After adjusting p-value using Benjamini-Hochberg 

procedure, we called 9,324(2.55%) hypermethylation sites. These sites must 



have an adjusted p-value of less than 0.05 and mean beta-values in methylation 

cluster 1 are 0.2 or higher than the ones in methylation cluster 2. 

Methylated CpG mutation rates are calculated by first obtain +/- 100bp 

context of each hypermethylation site. Then we counted the number of N[C>T]G 

and C[G>A]N divided by all NCG/CGN motifs in the context. To get empirical p-

value, we randomly permutated the labels of hypermethylation sites for 1,000 

times to establish the distribution of methylated CpG mutation rate.  

 

 

APOBEC enrichment analysis 
 We used the method described by XXX [REF]. For every C>{T,G} 

and ./oG>{A,C} mutation we obtained 20bp sequence both upstream and 

downstream. Then enrichment fold was defined as: 

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 𝐹𝑜𝑙𝑑 =  
𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛!"#/!"# × 𝐶𝑜𝑛𝑡𝑒𝑥𝑡!/!
𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛!/!×𝐶𝑜𝑛𝑡𝑒𝑥𝑡!"#/!"#

 

Here TCW/WGA stands for T[C>{T,G}]W and W[G>{A,C}A. W stands for A or T. 

p-value for enrichment were calculated using one-side Fisher-exact test. To 

adjust for multiple hypothesis testing, p-values were corrected using Benjamini-

Hochberg procedure. 

 

Replication time association 
 In order to avoid cell type redundancy, we only kept Gm12878 as the 

representative of all lymphoblastoid cell lines. Wave smoothed replication time 

signal is averaged in a +/- 10kb region from every mutation. To avoid potential 

selection effects, we removed mutations in exome and flanking 2bp. Regions 

overlap with reference genome gaps and DAC blacklist 

(https://genome.ucsc.edu/) were removed. Last, we picked the median number 

from 11 cell types at each mutation position for further analysis. 

 To test the significance of replication time of non-coding mutations 

between two groups, we plot the cumulative mass function of the mutation 

replication time in each sample. Area under curve (AUC) is used as a 



measurement of the distribution. Specifically, a smaller AUC indicated a shift of 

mutations to the early replicate regions and vice versa.  

 

We adapted a non-parametric test using empirical p-value. We calculated the 

rank sum of replication time of mutations in every sample and then normalized by 

its mutation count. Then we sum up the ranks in both group and compare. To 

obtain the empirical p-value, we randomly sample 10,000 times the tumor 

samples with equal sizes of these two groups to estimate the rank sum 

distribution.  

 

 

 

  


