
RESEARCH STRATEGY 
SIGNIFICANCE  
Structural variations (SVs), such as deletions, duplications, insertions, inversions and translocations, are 
among the most significant determinants of human genetic diversity to have been discovered. SVs affect far 
more bases than single-nucleotide polymorphisms (SNPs); thus, they can markedly affect phenotype in many 
ways, including modification of open reading frames, production of alternatively spliced mRNAs, alterations of 
transcription factor (TF) binding sites and structural gains or losses within the regulatory regions. Consortium 
efforts such as the 1000 Genomes Project (1000GP) estimate that a typical genome contains 2.1–2.5 
thousand SVs, affecting ~20 million bases, or ~5–6 times that of SNPs. Beyond “simple” SVs, there is a 
growing appreciation for “complex” SVs in human genomes, which vary considerably in their architecture, 
ranging from small-scale insertions/deletions to complex patterns of rearrangements between distinct loci 
and/or even different chromosomes1. 
Through the 1000GP, we found that a large 
fraction of SV events have much higher 
breakpoint complexity than previously 
estimated—suggesting that complex SVs, 
like simple SVs, are also widespread in 
human genomes. 

 
We are now compiling vital whole-genome 
data that will form the basis for 
comprehensive analyses of human genetic 
variation and will address current gaps in 
our understanding of complex diseases. In 
many disease contexts, known common 
single nucleotide variants (SNVs) account 
for a significant amount of phenotype 
variability. However, given that SVs are 
common, larger in size and highly 
structurally diverse, they are also poised to 
profoundly shape the regulation of many 
human phenotypes and disease states. 
Investigating SVs, and particularly complex 
SVs, could therefore hold the key to a deeper, more mechanistic understanding of common diseases. At 
present, most studies do not capture the spectrum of complex SVs present in genomes, and therefore this 
complexity is not adequately accounted for in disease association studies. Furthermore, the functional impact 
of SVs, especially in noncoding regions, has not been investigated systematically. Surmounting these issues 
will depend on novel computational methodologies for i) mining whole genome sequencing datasets for SV 
discovery at high resolution and large scale, ii) functionally interpreting their origins and phenotypic effects, and 
iii) establishing associations between specific SVs and disease. 
 

We seek support to establish The Jackson Laboratory Center for Structural Variation Analysis (JAX CSVA), to 
advance the overarching goals of the GSP through computationally-driven discovery, functional validation and 
characterization of disease-associated SVs (Figure 1). We will integrate novel and powerful tools for high-
resolution SV discovery and, in collaboration with the primary data-producing centers of the GSP, use these to 
comprehensively profile all types of SVs, including complex SVs, from a large subset of the genomes being 
sequenced (Aim 1). To examine the functional impact of the identified SVs, we will integrate RNA-seq data and 
develop novel methodologies for functional annotation of variants and characterization of associated biological 
processes (Aim 2); these studies will also enable us to prioritize subsets of SVs for the association studies 
proposed in Aim 3. Finally, we will scale up SV detection and analysis through genotyping of all SVs detected 
in Aim 1 across the ~200,000 samples of the GSP, which will provide the necessary statistical power for 
meaningful genotype-phenotype associations for disease-based SV association studies (Aim 3). We will be 
able to make inferences about human population structure and adaptation at a scale much greater than 
anything attempted so far. Our deliverables will be the largest library of validated SVs discovered in humans, 
together with an unprecedented platform of pipelines for comprehensive, high-resolution and large-scale SV 
analysis. 
 

INNOVATION  

Figure 1. Overall research plan for the JAX CSVA. 



The originality of the JAX CSVA lies in the integration of cutting-edge computational methodologies—
pioneered by the group—into a comprehensive platform for novel SV discovery, characterization and 
association with common human diseases. It is well known that our ability to generate large-scale genomic 
sequencing data is far outstripping our ability to analyze it at the scale and resolution required to make 
definitive functional associations. This issue is particularly relevant in the context of complex SVs, for which 
important details of their origin and functional effects cannot be appreciated without the proper tools for 
analysis at nucleotide resolution. Furthermore, the present approach combines high-resolution SV analysis 
balanced against the scale required for adequately powered association analyses. Our proposed detection and 
genotyping strategy provides higher power and resolution for investigating association between SVs spanning 
a large size spectrum and various phenotypes, surpassing previous standard approaches employed in current 
SV association studies. Briefly, the key innovations of our approach are: 1) Development of a scalable pipeline 
incorporating the latest, cutting-edge SV detection and integration tools, with a focus on high-resolution 
classification of complex SVs. 2) Tools for annotating SVs with functional data from coding and non-coding (nc) 
parts of the genome, especially through the integration of RNA-seq data. 3) Tools for mechanistic interpretation 
of SVs across different classes, allowing us to make inferences about population structure and human 
adaptation and evolution. 4) Association tests that integrate weighting methods for various biological 
considerations, such as allele frequency and impact score, to a generalized linear model for capturing subtle 
association signals often missed by conventional approaches. 5) Genotyping the library of functionally and 
genetically relevant SVs across the entire cohort of GSP samples for well-powered genotype-phenotype 
associations in a disease context. This systematic review of complex SVs will yield the largest reference 
database of validated SVs to date, together with an unparalleled system for high-dimensional, high-
resolution studies of SV architecture and function in health and disease.  
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Aim 2. Develop tools to analyze the functional impact of structural variants.  
Rationale. SVs account for more nucleotide variation in the human genome than SNPs and therefore are likely 
to be associated with many genetic diseases. However, little is still known about their functional impact at a 
genome-wide level. SVs are disproportionately observed in the non-coding part of the genome; hence, 
comprehensive assessment of the functional impact of SVs will likely require the integration of large-scale data 
resources such as ENCODE, 1000GP and GTEx. This proposal will catalogue the largest number of SVs so 
far and, more importantly, integrate RNA-seq data to functionally prioritize SVs in preparation for disease 
association studies. 
 

Preliminary data. 
 

Tools for assessing functional impact of genomic variation in genes and pseudogenes. We developed Variant 
Annotation Tool (VAT) to annotate the impact of protein sequence mutations. VAT provides transcript-specific 
annotations of mutations according to synonymous, missense, nonsense or splice-site-disrupting changes28. 
We annotated variants from 1,092 humans in Phase 1 of the 1000GP25 and observed that genes tolerant of 
loss-of-function (LoF) mutations are under the weakest selection and cancer-causal genes under the strongest 
selection. In 1000GP Phase 3, we found that a typical genome contains ~150 LoF variants and discovered 
significant depletion of SVs (including deletions, duplications, inversions and multiallelic CNVs) in the coding 
sequences, untranslated regions and introns of genes compared to a random background model, implying 
strong purifying selection. 
 

Tools for evaluating functional impact of variation in non-coding (nc) RNAs and regulatory regions. We 
developed tools to specifically analyze ncRNAs. Our incRNA pipeline combines sequence, structural and 
expression features to classify newly discovered transcriptionally active regions into RNA biotypes such as 
miRNA, snRNA, tRNA and rRNA29. Our ncVar pipeline further analyzes genetic variants across biotypes and 
subregions of ncRNAs, e.g., showing that miRNAs with more predicted targets show higher sensitivity to 
mutation in the human population30. 
  

To better understand nc regulatory regions, we developed tools to analyze ChIP-Seq data to identify genomic 
elements and interpret their regulatory potential. PeakSeq and MUSIC identify regions bound by TFs and 
chemically modified histones31,32. PeakSeq has been widely used in consortium projects such as ENCODE31,33. 
MUSIC is a newly developed tool that uses multiscale decomposition to help identify enriched regions in cases 
where strict peaks are not apparent and robustly calls both broad and punctate peaks32. Peak calls and ChIP-



Seq signal data can also be used to model gene expression and annotate target genes. We have developed 
methods that use both supervised and unsupervised machine-learning techniques to identify these regulatory 
regions (such as enhancers) and predict gene expression from ChIP-Seq data34-37. In order to investigate the 
evolutionary importance of these regions, we have analyzed patterns of single nucleotide variation within 
functional nc regions, along with their coding targets30 37,38. We used metrics, such as diversity and fraction of 
rare variants, to characterize selection pressure on various classes and subclasses of functional annotations30. 
We have also defined variants that are disruptive to a TF-binding motif in a regulatory region33. 
 

Tools for helping annotate functional impact based on network and allelic expression analyses. We found that 
functionally significant and highly conserved genes tend to be more central in various biological networks39 and 
are positioned at the top of regulatory networks38. Further studies showed relationships between selection and 
protein network topology (e.g., quantifying selection in hubs relative to proteins on the network periphery39,40). 
Incorporating multiple network and evolutionary properties, we developed NetSNP39 to quantify the 
indispensability of genes. This method shows strong potential for interpreting the impact of variants involved in 
Mendelian diseases and in complex disorders probed by GWAS. We constructed regulatory networks for data 
from the ENCODE and modENCODE projects, identifying functional modules and analyzing network 
hierarchy38. To quantify the degree of hierarchy for a given hierarchical network, we defined a metric called 
hierarchical score maximization (HSM41).  
	

FunSeq: Tools for integrated functional prioritization. We recently developed a prioritization pipeline called 
FunSeq25,43 that identifies annotations under strong selective pressure as determined using genomes from 
many individuals from diverse populations. FunSeq links each nc single-nucleotide mutation to target genes 
and prioritizes based on scaled network connectivity. FunSeq identifies deleterious variants in many nc 
functional elements, including TF binding sites, enhancer elements and regions of open chromatin 
corresponding to DNase I hypersensitive sites, and detects their disruptiveness in TF-binding sites (both LoF 
and gain-of-function events). We further enhanced FunSeq (FunSeq2) and identified ~100 nc candidate drivers 
in ~90 WGS medulloblastoma, breast and prostate cancer samples25. 
 

Tools for identifying enrichment of variations in coding and non-coding regions. We have worked on statistical 
methods for analysis of nc regulatory regions. LARVA (Large-scale Analysis of Recurrent Variants in 
noncoding Annotations) identifies significant mutation enrichments in nc elements by comparing observed 
mutation counts with expected counts under a whole genome background mutation model. LARVA also 
includes corrections for biases in mutation rate owing to DNA replication timing. For coding region analysis, we 
developed MuSiC44 to analyze genetic changes using standardized sequence-based inputs, along with multiple 
types of clinical data, to establish correlations among variants, affected genes and pathways, and to ultimately 
separate commonly abundant passenger events from truly significant events. 
 

Mutational mechanisms of structural variants. The sequence content of SVs, especially around breakpoints, 
carries important information about origin and functional impact. Using datasets from 1000GP, we have studied 
the distinct features of SVs originating from different 
mechanisms25,26. For example, non-allelic homologous 
recombination (NAHR), is associated with active enhancers and an 
open chromatin environment. Our analysis also showed that micro-
insertions, flanking non-homologous breakpoints, originate from 
late-replicating genome loci with characteristic distances from 
breakpoints. We further performed SV mechanism annotations for 
the 1000GP Phase 3 deletions using BreakSeq27, categorizing 
29,774 deletions by their creation mechanisms. Among these, NHR 
proved to be the most prevalent mechanism (~73% of all 
categorized deletions)17. These results inform us on the molecular 
mechanisms underlying SV formation and also indicate differences 
in functional impacts of different SV types. 
 

Tools for uniform processing of RNA-seq data. We have 
considerable expertise in analyzing RNA-Seq data, including 
experience in developing and setting up pipelines for the processing 
of RNA-seq data; specially for long RNA-seq data for ENCODE, 
long and short RNA-seq data for the Brainspan project as well as a 
custom pipeline developed for the analysis of small exRNA-seq data 
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Figure 6. Overview of the functional prioritization 
and annotation pipeline. 



for the Extracellular RNA Communication Consortium (ERCC). We have already developed an efficient in-
house data processing workflow for RNA-seq data that includes data organization, format conversion, and 
quality assessment. RSeqTools\cite{} is a modular tool developed for the processing of RNA-seq data and 
generating either transcript, gene or exon level quantifications. Our lab has also developed IQSeq \cite{} which 
calculates the relative and absolute abundance of contributing transcript isoforms to a gene from RNA-seq 
data using a fast algorithm based on the Fisher information matrix. Another tool we developed called 
FusionSeq\cite{} was to detect fusion transcript in RNA-seq data, which can be important biomarker for 
diseases such as various types of cancer and mental diseases.  

We have also developed tools specifically for linking gene expression variation to genotype, including our 
Allele-Seq pipeline, which quantifies allele-specific gene expression by mapping reads onto a diploid personal 
genome built from called genetic variants, including SNPs, short indels, and structural variants 
\cite{21811232}.  We recently applied this pipeline on a population scale to RNA-Seq data from the 1000 
Genomes Project, and used this analysis to create AlleleDB, a database of genomic regions with high allelic 
activity\cite{27089393}. 
	

Research plan. To enable identification of SVs with high functional impact, we will extend FunSeq/FunSeq2 
within a new pipeline called SVIM (Structural Variation IMpact)(Figure 6). We will evaluate the impact score for 
each SV identified in Aim 1, taking into account the functional annotation of the affected genomic region and 
the fraction of functional elements (i.e., genes, ncRNAs and nc regulatory elements) overlapped by the SV. 
The impact score will also depend upon SV type (i.e., deletion, duplication, inversion or translocation). 
 

For a given SV belonging to a particular SV type, we will evaluate the fraction of bases overlapping functional 
elements. Based on this fraction, we will categorize SVs into three classes (touch, cut, and engulf). Each 
overlapping class will have a different weight (Fsvtype, class). We will divide genomic elements into three 
categories (coding region, nc region and TF binding site) and assign relative scores to them (Scoding, Snon-coding, 
STFBS), which will vary for different SV types. Relative scores F and S will be defined for class and functional 
elements analogous to the FunSeq2 tool25.  
 

SVs will be assigned an impact score by taking the sum over the product between weights of overlapping 
classes and scores of overlapping functional elements. The score (ISorig) will also be upweighted based on 
activity of the affected region. The upweight factor is comprised of the product of three factors: i.e., allelic 
activity, network connectivity and ubiquitous transcription. Significance level of an Impact score (ISorig) will be 
estimated by running a 1,000 monte-carlo simulations generated by randomly shuffling the location of SVs. 
 

Identifying and predicting RNA transcripts arising from SV regions. Since structural variants often create long 
sequences that are not present in the reference genome, we will adapt our existing AlleleSeq pipeline to 
annotate the transcripts produced at SV regions.  Specifically, we perform a stringent alignment of RNA-Seq 
reads just to an appropriately built sequence of the SV-containing regions, and then apply both our RSEQtools 
package \cite{21134889} and Cufflinks \cite{20436464} to generate predicted transcript models.  We will then 
identify the most probable protein products arising from these sites and classify these as wild-type, mutant, 
fusion, or novel proteins to help with our downstream variant prioritization. 
 
In addition to identifying RNA transcripts expressed from SV-containing regions from blood RNA-Seq, we will 
predict tissue-specific transcript models, using state of the art software for prediction of RNA splicing 
\cite{26496609, 25525159} and polyadenylation \cite{27095026}.  We will use these transcript models as well 
for downstream functional analysis. 

 

Evaluating effect of structural variants on protein-coding genes. We will further develop a protein-coding 
module for SVIM to substantially expand the analysis of loss of function (LoF) variants with mis-mapping, 
functional, evolutionary and network features. We will first identify LoFs due to whole gene deletion, as well as 
putative LoF-casuing mutations as those that induce premature stop codons, frameshifted open reading 
frames, or that we predict to produce truncated proteins due to deletion of RNA splice sites or either predicted 
or verified changes in splicing pattern from RNA-Seq data (see above).  We will quantify the confidence of 
these LoFs using features such as whether they are in highly duplicated regions and the number of paralogs. 
For functional features, we will incorporate protein structures. For evolutionary properties, we will quantify the 
conservation of LoF variants, as well as truncated sequences. For network features, we will quantify the 
distance between genes with LoF variants and known disease-causing genes. Finally, we will develop a 



machine-learning method to quantify whether LoFs will cause benign, recessive or dominant disease-causing 
effects. Given that most rare variants are heterozygous, developing methods to differentiate benign rare 
variants from disease-causing variants in terms of those that can lead to recessive or dominant disease are 
much needed. 
 
In	addition	to	mutations	that	cause	clear	loss	of	function,	we	will	use	existing	tools	to	prioritize	SVs	that	
we	predict	to	cause	small	insertions	or	deletions	to	protein	sequences.		To	do	this,	we	will	employ	tools	
such	as	KGGSeq \cite{22241780}. [[MRS: what are the right tools to mention here]] 
	[[MRS: do we have anything to say about fusion transcripts, or prioritization of small deletions in proteins?]] 

Prioritizing non-coding transcripts from structural variant data. To prioritize the effects of SVs in ncRNAs, we 
will focus on overlaps with regulatory elements and other functional regions. To perform this analysis, we will 
define categories of RNA regions that display human population-level conservation, and combine these 
features to generate RNA element scores. We will mine RNA interactions between proteins (e.g., CLIP-Seq) 

and miRNAs (e.g., TargetScan) to create a compendium of biochemical interactions with RNA45-49. We will 
further investigate RNA secondary structure, looking for structured regions that are highly sensitive to mutation. 
For these regions, we will assess deleteriousness of mutations by differences in predicted free energy or 

structure ensembles50 relative to wild type. We have found annotations of all of the above types—biochemical 
interactions, regulatory motifs, and structured regions—that are enriched for rare variants in the human 
population and will use these sensitive RNA regions to score and prioritize potential deleterious SVs in ncRNA. 
Large SVs will ultimately be scored based on the highest scoring subregion disrupted (or created) by the SV.. 

 
 

Prioritizing non-coding regulatory elements from structural variant data. Unlike protein-coding genes and 
ncRNAs, TF binding motifs are relatively small in size. Thus, we are going to analyze duplications that occur 
close to these motifs and analyze where these duplications lead to the breakage of existing or creation of new 
motifs. In the prioritization scheme, we will also penalize changes in distance between motifs and newly 
created motifs if they occur close to an existing TF motif. We will first update the TF binding nc elements using 
better enhancer definitions provided by the Epigenome Roadmap51-53 and ENCODE. We will further develop a 
new machine-learning framework that utilizes pattern recognition within the signal of various epigenomic 
features and transcription of enhancer RNA (eRNA) to predict active enhancers across different tissues. 
  

Further variant prioritization based on networks, tissue specificity, and allelic activity. After performing 
annotation-based assessment of identified SVs, the following functional features will be used for prioritization. 
i) Network connectivity. We will examine the network topological properties of the genomic elements affected 
by identified SVs. Variants disrupting regulatory elements with high connectivity—network hubs and 
bottlenecks—will be upweighted based on their scaled centrality scores. 
ii) Ubiquitous specificity. We will evaluate the impact of SVs in an epigenetic context to identify tissue-specific 
phenotypic effects that are strongly influenced by SVs. We will prioritize SVs impacting genes, ncRNAs, and 
TF binding sites active in multiple tissues. 
iii) Allelic activity. Allelic variants (rare and common) will be aggregated into a reference set of genomic 
elements displaying allele-specific behavior and each element will be assigned an “allelicity” score based on 
enrichment of allelic variants both within the element and across individuals (with allelic variants in a consistent 
allelic direction). We will develop a prioritization scheme for SVs overlapping these allelic elements. 
 
[[DC]]Integration of SV annotation and RNA-seq data. The functional interpretation of SVs may partially be 
obtained solely by determining the genome annotations in which SVs lie. However, genome annotations alone 
(such as knowledge that an SV falls within a region of open chromatin) often provide limited knowledge in 
terms of linking SVs to phenotypic traits. To predict the phenotypic effects of individual SVs on measurable 
phenotypes, we will link SVs to the specific genes that they affect by performing comprehensive genome-wide 
searches for expression quantitative trait loci (eQTLs). A given gene may be influenced by proximal or distant 
eQTLs. Whereas proximal regulatory regions (such as promoters) are localized to the regions around a gene, 
trans-acting distant regulatory elements (such as enhancers) may be more diffuse, cover wider swaths of the 
genome, and act in greater multiplicity on a given gene. As such, eQTLs that result from a specific SNV within 
a distal regulatory element may be substantially weaker than those that result from an SNV within a promoter. 



Furthermore, it may be expected that smaller genomic perturbations (such as SNVs) generally induce smaller 
effects on transcription (consistent with this hypothesis, it has previously been determined that SNVs have a 
reduced tendency to affect gene expressions relative to indels; \cite 24037378). Compounding these challenges 
associated with linking a given distal SNV to a particular gene, the stringent significance criteria required to 
correct for the many tests needed to identify distant trans-eQTLs render such eQTLs far more difficult to 
identify as a result of reduced statistical power. Together, these phenomena may make large SVs more 
suitable candidates in terms of identifying trans-eQTLs. Our search for SV-induced eQTLs will be 
accomplished by performing genome-wide searches for patterns in which the presence or absence of the SVs 
(identified in Aim 1) strongly correlate with the expression levels (as measured by mRNA abundance using 
RNA-seq data) of a battery of genes throughout the genome. Of particular interest will be those genes 
previously implicated in disease-associated pathways and network modules. [[FN: To calculate the eQTL, we 
need to genotype the SV in 10k-100k individuals with RNA-seq – which is produced only in aim 3. Should we 
consider moving the genotype up (from aim3 to aim2) or moving this session down (from aim2 to aim3)?]] 
 
 

Expected results. We expect that SVIM, a new software solution to estimate the impact scores of the SVs 
produced in Aim 1, will yield a prioritized set of SVs in Aim 2 that we can forward to Aim 3 (genotype and 
association) for further classification of their impact to disease or a specific phenotype. We plan to make the 
prioritization results broadly available; therefore, SVIM will incorporate the impact score into a standard Variant 
Call Format (VCF).  
 

Pitfalls and alternative approaches. We anticipate that the greatest pitfalls are (i) possibly an overwhelming 
number of SV to be discovered in Aim 1 and (ii) the data that will be pre-processed to generate reliable 
annotation of nc component of analysis. In order to overcome (i), we plan to gradually process the results into 
specifics type of SVs. SVIM will also be based on the data context to efficiently prioritize variants from some 
WES datasets, but optimally from WGS datasets. The overall modularization offers a flexible framework for 
users to incorporate the ever-increasing amounts of genomic data to both rebuild the underlying data context 
and prioritize case-specific variants. In order to overcome pitfall (ii) we will make great efforts to make SVIM 
computationally efficient and able to support the large-scale computing proposed for this aim. To build the data 
context, we will integrate large-scale publicly available data resources, such as SVs from the 1000 GP54, 
conservation data from Bejerano et al.55 and Cooper et al.56, functional genomics data from ENCODE33 and 
Roadmap Epigenomics Mapping Consortium57.  
 

CONTRIBUTIONS TO CROSS-PROGRAM GOALS  
The analyses to be undertaken by the JAX CSVA will contribute to the two primary cross-program goals of the 
GSP. These methodologies and analysis tools are integral to the investigator-driven activities of the proposal; 
thus, it will not be necessary to prioritize them as separate initiatives. This strategy ensures that these 
program-related goals will be achieved in line with Center-specific goals.  
 

Delineating comprehensiveness in common disease studies. The JAX iASV approach will allow us to integrate 
samples from across the various centers of the GSP into a single meta-analysis of SVs across thousands of 
genomes. This allows for biological interpretation across the width of the GSP and will enable investigators to 
answer questions about population structure and their impact on phenotype. Thus, the JAX CSVA will 
contribute to cross-program objectives by integrating data from across centers in a disease agnostic manner. 
Furthermore, extensive calibration and optimization of the various tools that are part of the iASV, as well as the 
tight integration with cloud-based computing, will also help define the methodology and metrics for 
comprehensive studies of SVs in future large-scale consortium efforts. 
 

Providing specifications for common controls. JAX CSVA will combine our well-curated, genotyped SVs with 
calls from CCDG and CMG centers to perform a SV saturation analysis80 to assess the completeness of SV 
census across populations and disease types. We will also integrate SVs with SNVs/indels generated by other 
centers as part of this proposal and we anticipate this effort will yield a larger set of association hypotheses 
outside the scope of our proposal, but perhaps well-suited for other proposals in the GSP program. 
Furthermore, we will share our SV2Pheno association pipeline and its embedded tools through cloud or local 
installation, which may help other projects in the GSP program. As described above, we will choose 
appropriate controls for our SV discovery analysis based on population structure and other confounding 
factors. These sets of controls will be shared across the GSP and will help other centers when considering the 
choice of controls for their analysis.  
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