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ABSTRACT 

Background 

Identifying highly mutated regions from population scale sequencing is a key way to 

discover cancer drivers.  Nevertheless, it is challenging to identify burdened regions 

because of severe mutation rate heterogeneity across the genome and across individuals, 

which gives rise to highly over-dispersed mutation counts. Moreover, it is known that 

part of this heterogeneity relates to confounding genomic features, such as replication 

timing and chromatin organization.  

Results 

Here, we address these issues with a Negative binomial regression based Integrative 

Method for mutation Burden analysis (NIMBus). Our approach (1) uses a Gamma-

Poisson mixture model to capture the mutation rate heterogeneity across different 

individuals and (2) regresses the regional mutation counts across the genome against 

many features (381) extracted from REMC and ENCODE to estimate a local background 

mutation rate. Because of these two aspects it accurately models the over-dispersed 

mutation counts as a negative binomial distribution. As a demonstration of NIMBus, we 

applied it to 649 whole-genome cancer sequences. It successfully identified well-known 

coding and noncoding drivers, such as TP53 and the TERT promoter. In addition, it also 

found known cancer related pathways, such as TP53 signaling and apoptosis pathways, to 

be significantly mutated. 

Conclusion 

NIMBus is a powerful tool to identify mutational hotspots. We make NIMBus available 

at nimbus.gersteinlab.org and release our results as an online resource. Finally, we 

explain how our approach to somatic mutations can readily be extended to examine the 

burdening of rare germline mutations in diseased individuals.  
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BACKGROUND 

Population level analysis, which looks for regions mutated more frequently than 

expected, is one of the most powerful ways to identify deleterious mutations for diseases 

[1-3]. Recent developments of whole genome sequencing (WGS) and personal genomics 

have provided unprecedented statistical power to perform such analyses. Therefore, an 

accurate quantification of mutation burden is important to uncover the genetic cause of 

various diseases, which in turn would allow for targeted therapies in clinical studies.  One 

typical application of such analysis is to find highly burdened regions in cancer genomes 

as potential drivers. However, mutation burden tests for somatic variants in cancer 

research remain challenging for several reasons. 

First, it is well known that cancer genomes are highly heterogeneous [4], but previous 

work analyzing WGS usually ignored this effect and assumed a constant mutation rate 

across different regions or cancer genomes. Under such assumption, the positional level 

mutation counts often demonstrate larger than expected variance, known as 

overdispersion. This assumption results in poor data fitting and generates numerous false 

positives [5], so it is necessary to introduce more sophisticated models to handle mutation 

rate heterogeneity. 

Second, numerous genomic features have been reported to largely affect the mutation 

process [6], necessitating careful correction in burden analysis. Unfortunately, none of 

the few current methods that considered such effects systematically explored these 

genomic features in a tissue-specific way, and their models demonstrated very limited 

extensibility to accommodate new features in the future.  For instance, MutSigCV tried to 

correct the effects of several features, such as gene expression and replication timing, by 

only using a small neighborhood of genes with similar covariate values. However, as the 

covariate number increases, it is usually difficult to find a meaningful neighborhood in a 

high dimension space. 

Lastly, many state-of-the-art methods are only optimally designed for analysis of 

coding regions [6], which represent less than 2 percent of the human genome. Nowadays, 

many studies have shown that noncoding mutations can serve as driver events for 

diseases. For example the mutations in the TERT promoter were found to be associated 
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with cancer progression [7]. Hence, unified analysis of coding and noncoding regions is 

needed to give a thorough annotation of discovered hotspots. 

We propose a Negative binomial regression based Integrative Method for mutation 

Burden analysis (NIMBus) that solves the three problems mentioned above. It first 

intuitively treats mutation rates from different individuals as random variables with a 

gamma distribution, and resultantly models the pooled mutation counts from a 

heterogeneous population as a negative binomial distribution to handle overdispersion. 

Furthermore, to capture the effect of covariates, NIMBus integrates extensive features in 

all available tissues from Roadmap Epigenomics Mapping Consortium  (REMC) and the 

Encyclopedia of DNA Elements (ENCODE) project to create a covariate matrix to 

predict the local mutation rate with high precision through regression. In addition, it also 

customizes the most comprehensive noncoding annotations from ENCODE to facilitate 

interpretation of results. This integrative approach employed in NIMBus enables us to 

effectively pinpoint mutation hotspots associated with disease progression and to better 

understand the biological mechanisms therein. To better illustrate how NIMBus works, 

Figure 1 gives its workflow. 

RESULTS 

Heterogeneity from various sources leads to large overdispersion in mutation counts 

data 

Pioneer genome wide somatic burden analysis usually assumes a homogeneous mutation 

rate per nucleotide, which consequently uses binomial tests to calculate P values [4]. 

However, we found that mutation count data usually violates this assumption because 

there is severe mutation rate heterogeneity from various sources. To demonstrate this, we 

collected WGS variants from 649 cancer patients and 7 cancer types (Fig. S1).  

First, we found that the mutation count per genome varies across diseases and 

samples. For instance, the median number of variants can be as low as 70 in Pilocytic 

Astrocytoma (PA) and as high as 21287 in Lung adenocarcinoma (LUAD). Even within 

the same cancer type, mutation counts vary dramatically from sample to sample (lowest 
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at 1743 and highest at 145500 in LUAD, Fig. 2A).  In addition, there are also large 

regional mutation rate differences within the same sample (Fig. S4). Therefore, 

distributions based on constant mutation rate assumption usually fit poorly to the real 

mutation counts data (Fig. 2B, dashed lines with +, Fig. S3 in Text S1). In light of these 

issues, we utilized a two-parameter negative binomial distribution to further capture the 

over-dispersed nature of mutation counts data, which improves fitting to real data 

significantly (dashed lines with star in Fig. 3B). 

Local mutation rate is confounded by many genomic features 

Somatic mutation rate has been reported to be confounded by several genomic features 

[6, 10]. For example, single-stranded DNA during replication usually suffers from 

endogenous DNA damage, such as oxidation and deamination. Therefore, the 

accumulative damage effect in the later replicated regions will result in increased 

mutation rate. We have observed a similar trend in our data. For example, the Pearson 

correlation between normalized mutation counts and replication timing values in BRCA 

is as high as 0.67 in the first 70 1mb bins (Fig. S4A). Another example is that the 

chromatin organization, which arranges the genome into heterochromatin- and 

euchromatin-like domains, has a dominant influence on regional mutation rate variation 

in human somatic cells [10]. Consistently, we also find that mutation counts are 

significantly associated with the DNase-seq signal (Pearson correlation= − 0.61, 

P=1.52×10!! , Fig S4B in Text S1). Therefore, it is important to estimate local 

background mutation rate for accurate mutation burden analysis. 

Negative binomial regression precisely estimates local mutation rates by correcting 

many genomic features 

(A) Features in matched tissues usually provide best prediction accuracy but features 

in unmatched tissue still help 

It has been reported that the most accurate local mutation rate prediction can be achieved 

by using features from matched tissue [11]. Hence, we specifically selected variants in 

two distinct cancer types, BRCA and MB, and predicted their local mutation rates with a 
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few features from matched (or loosely matched) and unmatched tissues (Table S2 in Text 

S1). Relative error, defined as the normalized difference of observed and predicted value 

(equation s3 in Text S1), was used to assess model performance. Consistent with 

previous conclusions, we find that features in matched tissues usually outperform those 

from unmatched tissues. For example, the relative error is only 0.128 by using breast 

tissue related features to predict BRCA mutation rates, which is noticeably smaller than 

an error of 0.195 when using brain related features (Table S3 in Text S1). Similarly, brain 

related features have more predictive power compared to breast related ones for MB 

mutation rates (error of 0.135 VS. 0.183). 

However, biologically meaningful tissue matching remains challenging and usually is 

not an optimal process for researchers without enough domain knowledge. Specifically, if 

samples of distinct hidden subtypes were pooled together for a certain disease, tissue 

matching would be more difficult. Furthermore, even after the best-matched tissue has 

been identified, we frequently need to handle missing features in that tissue. We noticed 

that many genomic features are highly correlated both within and across tissues 

(correlation plot in Fig. S6A), which leads to suboptimal but still decent regression 

performance (scatter plots given in Fig. S6B). This is extremely helpful when processing 

WGS from diseases without matched features. For example, there are no prostate related 

tissue features in REMC, but features in other tissues still help to estimate the local 

mutation rates. 

(B) Pooling features from multiple tissues significantly improves local background 

mutation rate prediction	
  

In light of the correlated nature of covariates, especially those epigenetic features [12], 

we first performed principal component analysis (PCA) on the covariate matrix to 

overcome the multicollinearly problem during regression. The correlation of each PC 

with the mutation counts data varies significantly across different cancer types (boxplots 

in Fig. S7B in Text S1). For example, the first PC demonstrates a Pearson correlation of 

0.653 in LICA, which is much higher than 0.352 in PRAD. Therefore, it is necessary to 

run a separate regression model for each cancer type. 



Since numerous PCs have been shown to be associated with mutation rates, we tried 

to investigate the joint effect of multiple PCs to predict the local mutation rates. 

Particularly, for each cancer type, we first ranked the individual PCs by their correlations 

with mutation rates, and then selected the top 1, 30, and 381 PCs to estimate the local 

mutation rate. Fig. 4A shows that using more PCs can noticeably boost prediction 

accuracy in all cancer types. For example, in BRCA the Pearson correlation is only 0.472 

if 1 PC is used in regression, but rises to 0.655 and 0.709 if 15 and 30 PCs are used 

respectively. The correlation increases to 0.818 after using all 381 PCs. As a result, in all 

of the following analyses, we used all 381 PCs for accurate local mutation rate estimation. 

As shown in Fig. 4B, we achieved good prediction accuracy through regression 

against all PCs of the covariate matrix in all cancer types. The Pearson correlations of the 

observed mutation counts and the predicted 𝜇!! vary from 0.668 in PA to 0.958 in LICA. 

Scatter plots are given in Fig. S8 in Text S1. It is worth mentioning that although there 

are no features matching prostate tissue in REMC, we can still achieve a very high 

correlation of 0.81 with the help of 381 unmatched but correlated features. This indicates 

that our model could still provide acceptable performance even when somatic WGS of a 

disease is given without optimally matched covariates.  

In addition, the number of available variants obviously affects prediction performance, 

though it is not the only factor. As shown in Fig. 4B, limited number of variants, such as 

those in quiet somatic genomes of PA, can usually restrict our prediction precision 

(lowest correlation at 0.668 among 7 cancer types). However, other factors, such as the 

number of effective covariates, quality of mutation calls, and molecular similarity of 

pooled samples of the same disease can also influence the prediction performance 

considerably. For instance, although there are fewer variants in MB than those in BRCA, 

our regression for MB still outperforms that of BRCA (0.865 vs 0.818, Fig. 4B). 

Coding region calibration for NIMBus 

(A) Single gene target region analysis 

Since coding regions have been investigated in more detail than the noncoding regions, 

we first applied NIMBus on coding regions. First, we extracted coding regions from the 



GENCODE annotation v19 and ran NIMBus on both real and simulated datasets (details 

in section S11 in Text S1). We found that in all cancer types analyzed, NIMBus 

effectively controlled P value inflation compared to the method mentioned in [4]. For 

example, in LUAD the P values for real data fall on the diagonal with the uniform P 

values, apart from a few outliers that represent the true significant signals (black dots on 

the right sides in Fig. 5). After P value correction using the Benjamini–Hochberg method, 

only 11 genes are reported as highly mutation in LUAD, while none were discovered on 

the simulated data (orange dots in Fig. 5). On the other hand, the method using a constant 

mutation rate assumption (as in [4]) reported 6023 genes to be significantly mutated, 

indicating severe P value inflation. 

 

We also used Fisher’s method to combine P values from all cancer types. In total, 15 

genes were discovered to be significantly mutated. Twelve of them are well documented 

as related with cancer progression. The top genes are shown in Table 1 and their PubMed 

Table 1. Top genes after p-value combination 

Rank Gene Adjust P PubMed ID 

1 TP53 4.33E-139 17401424 

2 DDX3X 3.65E-18 22820256 

3 KRAS 2.56E-06 19847166 

4 MUC4 4.47E-06 19935676 

5 CDH1 3.07E-05 10973239 

6 ARID1A 2.36 E-04 22037554 

7 SMARCA4 3.78 E-04 18386774 

8 FGFR1 7.43 E-04 23817572 

 



ID is given in the last column for reference. These results showed that NIMBus is able to 

find sensible mutational hotspots as cancer drivers. 

(B) Mutation burden of KEGG pathways 

Using the KEGG pathway dataset, consisting of 288 unique pathways, we performed a 

network mutation burden test on each pathway for each cancer type to discover 

significantly mutated pathways. We found that of the seven cancer types analyzed, four 

cancer types exhibited significantly mutated KEGG pathways ( 𝑝!"# < 0.05 ). In 

particular, we found 5 significant pathways in BRCA, 5 in LICA, 10 in GACA, and 3 in 

LUAD. No significant pathways were found in MB, PA, or PRAD. The significant 

pathways and their associated cancer types are seen in Table 2, as well as the Benjamini-

Hochberg adjusted p-value. The significant pathway list includes pathways associated 

with the p53 signaling pathway, apoptosis, and cell growth – all of which are well known 

KEGG pathways associated with cancer. In addition to these well-studied pathways, we 

were able to discover many novel pathways, including other signaling and disease-

associated pathways. These results demonstrate a novel way to use NIMBus as a way to 

conduct mutation burden tests in biologically meaningful networks in the genome.  

 

Table 2: Significant Pathways and p-values 

* P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001 



NIMBus discovered a list of highly mutated noncoding regions from cancer WGS data 

As a fair comparison to our NIMBus model, the global and local models were used on the 

same data to identify mutational hotspots. First, the global model assumes the per 

nucleotide mutation rate is constant across the genome and different individuals. Hence 

the mutation counts within the test region could be considered as a Binomial distribution. 

Then, the local model uses a Binomial regression against the same set of covariates to 

compensate regional mutational heterogeneity, but ignores the heterogeneity within 

individuals. On the other side, our model captures mutational heterogeneity arising from 

both different individuals and regions from the genome, which allows more flexibility of 

mutation counts modeling. (details see the method section) 

We applied NIMBus on WGS variant calls for all seven cancer types to predict the 

individual somatic burden P values, and compared these results to those from global and 

local Binomial models (details in Text S1).  

Similar to the results in the coding region analysis, both global and local Binomial 

models generated too many burdened regions in all noncoding annotation categories, as 

evidenced by the poor fitting in Fig. 3B. For example, in liver cancer after P value 

correction, NIMBus identified 21 promoters as highly mutated, while local and global 

binomial models identified 79 and 641, respectively. Hence, our negative binomial 

assumption in NIMBus effectively captured the overdispersion and controlled the number 

of false positives. To further demonstrate this, we provided the Q-Q plots of P values in 

promoter regions for all seven cancer types in Fig. 6B as a quality check. In theory, if no 

significantly burdened regions are detected, the P values should follow uniform 

distribution. As shown in Fig. 6B, the majority of our P values follow the uniform 

assumption, with the exception of a few outliers representing the true signals, indicating 

reasonable P value distributions for all cancer types. Similar results were also observed in 

other noncoding annotations (data not shown). We release our burden test results on 

nimbus.gersteinlab.org as an online resource for the whole community. 

To summarize the mutation burdens from all cancer types, we used Fisher’s method 

to calculate the final P values for all three models. Similar to P values from a single 

cancer type, the combined P values are severely inflated in both global and local 
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Binomial models, but are rigorously controlled by NIMBus (table C in Fig. 6). For 

example, NIMBus reported only 39 transcription start sites (TSS) as burdened, compared 

to 164 and 263 for the other two methods. Additionally, out of the 39 TSS elements, 

several of them have been experimentally validated or computationally predicted in other 

work to be associated with cancer. For instance, TP53 is a well-studied tumor suppressor 

gene that is involved in many cancer types, and the combined P value for the TP53 TSS 

is ranked second in our analysis (P=4.26×10!!"). Also, LMO3 interacts with the tumor 

suppressor TP53 and regulates its function, and it is ranked fourth in our analysis 

(P=3.25×10!!"). Similar to previous reports, we also identified the AGAP5 TSS site as a 

mutation hotspot, ranking third (P=7.07×10!!") in our analysis. Another important 

example is the TSS site in TERT, which is ranked fifth in our results (P=1.55×10!!") 

and has been experimentally validated to be associated with multiple types of cancer 

progression [7]. The discovery of such results shows that NIMBus can serve as a 

powerful tool for mutation driver event discovery in genetic diseases. 

CONCLUSION 

Thousands of somatic genomes are now available due to the fast development of whole 

genome sequencing technologies, providing us with increasing statistical power to 

scrutinize the cancer mutation landscape. At the same time, thanks to collaborative efforts 

of big consortia, such as REMC and ENCODE, tens of thousands of functional 

characteristic experimental results on human genomes have been released for immediate 

use to the whole community. Hence, integrative frameworks are of urgent need in order 

to explore the interplay between WGS data and these functional characteristic data. It will 

not only be important to accurately search for mutational hotspots as driver candidates for 

complex diseases but also to better interpret the underlying biological mechanisms of 

diseases for clinicians and biologists. 

In this paper, we proposed a new integrative framework called NIMBus to analyze 

cancer genomes. Due to the heterogeneous nature of various somatic genomes, our 

method treated the individual mutation rate as a gamma distributed random variable to 

mimic the varying mutational baseline for different patients. Resultantly, it modeled the 



mutation counts data using a two parameter negative binomial distribution, which 

improved data fitting dramatically as compared to previous work (Fig. 3B). It then uses a 

negative binomial regression to capture the effect of a widespread list of genomic 

features on mutation processes for accurate somatic burden analysis. 

Unlike previous efforts, which use very limited covariates to estimate local mutation 

rate in very qualitative way, we explored the whole REMC and ENCODE data and 

extracted 381 features that best describe chromatin organization, expression profiling, 

replication status, and context effect in all possible tissues to jointly predict the local 

mutation rate at high precision. In terms of covariate correction, NIMBus demonstrated 

three obvious advantages: 1) It incorporates the most comprehensive list of covariates in 

multiple tissues to achieve accurate background mutation rate estimation; 2) It provides 

an integrative framework that can be extended to any number of covariates and 

successfully avoids the high dimensionality problem of other methods [6], which is 

extremely important due to the rapidly growing amount of available functional 

characteristic data available and the drop in cost of sequencing technologies; 3) It 

automatically utilizes the genomic regions with the highest credibility for training 

purposes, so users do not have to be concerned about performing carefully calibrated 

training data selection and complex covariate matching processes. 

The length of training bins 𝑙 is an important parameter for NIMBus. On one side, a 

shorter bin size will be advantageous in the P value evaluation as it can remove the 

mutational heterogeneity across regions more effectively at a higher resolution. On the 

other side, a smaller 𝑙  sometimes will result in worse mutation rate prediction 

performance for two reasons. First, sensible mutation rate quantification is necessary in 

each single bin for the regression purpose. However, somatic mutations are usually 

sparsely scattered across the genome due to limited number of disease genomes available 

at the moment. In the extreme case, when 𝑙 is so small that most bins have zero mutations, 

it is difficult for the regression model to capture the relationship between mutations and 

covariates. Second, some of the covariates are only reported to be functional on a large 

scale [10], so reducing 𝑙 will not necessarily boost prediction precision. Optimal bin size 



selection is still a challenging problem that needs further case-by-case investigation. In 

our analysis, we used a 1 Mb bin size for all cancer types. 

Noncoding regions represent more than 98% of the whole human genome, and are 

investigated less mainly due to limited knowledge of their biological functions. NIMBus 

is also designed to explore the most comprehensive collection of noncoding annotations. 

Therefore, it collects the up-to-date, full catalog of noncoding annotations of all possible 

tissues from ENCODE and our previous efforts from the 1000 Genomes Project. 

Furthermore, it further customizes these annotations specifically for somatic burden 

analysis. All these integrated internal annotations of NIMBus can be either tested for 

somatic burden or used to annotate the user specific input regions. 

We applied NIMBus to 649 cancer genomes of seven different types collected from 

public data and collaborators. The burden test P values for each cancer type were 

deduced and Fisher’s method was used to calculate the combined P values. We first 

evaluated the performance of NIMBus on coding regions, which have been investigated 

with much detail by researchers. Many well-documented cancer associated genes were 

discovered by NIMBus (Table 1 and Table S3). We also repeated the same analysis on a 

simulated dataset and found no significant genes. These results demonstrate that NIMBus 

is able to find overly mutated genes effectively while rigorously controlling false 

positives.  

In addition to single gene burden analysis tests, we were able to detect significantly 

mutated KEGG pathways, including the TP53 signaling pathway and apoptosis pathway, 

both of which are implicated in cancer progression. The adaptability of NIMBus to 

analysis of gene networks may prove useful in determining significantly mutated regions 

of the genome that are not physically adjacent. 

Furthermore, numerous noncoding elements were also reported as significantly 

mutated (Table C in Fig. 6). Included were some well-known regions, such as the TP53, 

LMO, and TERT TSS, proving the effectiveness of NIMBus in indentifying disease-

associated regions. 

To some degree somatic variants could be considered as the limit of extremely rare 

germline variants because they are almost private variants to particular cells. On the 



contrary, common variants have somewhat different characteristics from rare germline 

ones as they often have low functional impact and are linked to other variants. As the 

variant gets rarer, the linkage decreases and the functional impact usually increases up to 

what we observe for somatic variants. Thus, we would expect the methods here to work 

well for rare germline variants (e.g. de novo ones and those confined to small populations)  

In summary, NIMBus is the first method that integrates comprehensive genomic 

features to analyze the mutation burdens of disease genomes. Such external data does not 

only help to better estimate the background mutation rate for successful false positive and 

negative control, but also provides the most extensive noncoding annotations for users to 

interpret their results. It serves as a powerful computation tool to accurately predict driver 

events in human genetic diseases and potentially identify biological targets for drug 

discovery. 

METHODS 

WGS variants data used  

We collected 649 whole genome variant calls from public resources and collaborators. 

This data contains a broad spectrum of 7 different cancer types (details in Text S1 section 

1).  

Local background mutation rate estimation 

(A) Human genome gridding and covariate matrix calculation  

First we divide the whole genome into bins with fixed length 𝑙. In this stage, 𝑙 is usually 

large, such as 1 Mb. Any bins overlapping either of the two blacklist regions are 

removed. Then, 381 features are extracted from both REMC and ENCODE, and the 

average signal in the bins is calculated (details in Text S1 Section S2). We let 𝑥!,! denote 

the average signal strength for the 𝑖!!  bin and 𝑗!!  covariate, where 𝑖 = 1,⋯ ,𝑛  and 

𝑗 = 1,⋯ ,𝑚. 
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(B) Use negative binomial distribution to handle mutation count overdispersion 

Suppose there are 𝑑 = 1,⋯ ,𝐷 different diseases (or disease types) in the collected WGS 

data, and 𝑠 = 1,⋯ , 𝑠! unique samples, for example different patients, for each disease 

(or disease type such as liver cancer or lung cancer) 𝑑. Let 𝑦!
!,! and  𝜆!

!,! denote the 

observed mutation count and rate for the 𝑖!! bin defined above for sample 𝑠 in disease 𝑑. 

In previous efforts, scientists assume that mutation rate 𝜆!
!,! is constant across different 

regions of the human genome, samples, and diseases, so they have that 𝜆!
!,! ≜ 𝜆  for 

∀  𝑖,𝑑, 𝑠. Hence 𝑦!
!,! follows a Poisson distribution with the probability mass function 

(PMF) given in equation (1). 

p Yi
d,s = yi

d,s{ }=
e−λi

d ,s

λi
d,s( )

yi
d ,s

yi
d,s!

! e
−λλ yi

d ,s

yi
d,s!

                                    (1) 

However, somatic genomes are highly heterogeneous because mutation rates vary 

considerably among various diseases, samples, and regions of the same genome, severely 

violating the assumption in equation (1). As a result, fitting of 𝑦!
!,! is usually very poor 

because overdispersion is often observed [5]. Simply assuming a constant mutation rate 

will generate numerous false positives. Instead, in our model we assume that different 

𝜆!
!,! are random variables that follow a Gamma distribution with probability density 

function (PDF) 

P λi
d,s = x{ } = 1

Γ ci
d( ) υi

d( )ci
dci
x ci

d−1( )e
− x
υi
d

                                    (2),  

where 𝑐!! > 0  and 𝜐!! > 0 . In equation (2), 𝑐!!  and 𝜐!!  are the shape and scale 

parameters respectively. Assume that 𝜆!! = 𝜆!
!,!!!

!!!  is the overall mutation rate from all 

samples in bin 𝑖 of disease 𝑑. Its distribution can be readily obtained through convolution 

as  

P λi
d = x{ } = 1

Γ sdci
d( ) υi

d( )sdci
d x

sdci
d−1( ) exp − x

υi
d

⎛
⎝⎜

⎞
⎠⎟

                       (3). 



If we let 𝑦!! = 𝑦!
!,!!!

!!!  represent the total mutation counts in region 𝑖 from all 

disease samples, 𝑑, then the conditional distribution of 𝑦!! given 𝜆!! can be written as 

P yi
d λi

d( ) = λi
d( )yi

d

exp −λi
d( )

yi
d( )!                                          (4). 

By integrating (3) into (4), the marginal distribution of 𝑦!!  can be denoted as a 

negative binomial distribution ([8], page 50 in [9]).  

P yi
d ci

d,υi
d( ) = 1

1+υi
d

⎛
⎝⎜

⎞
⎠⎟

sdci
d

Γ sdci
d + yi

d( )
Γ sdci

d( ) yid( )!
υi
d

1+υi
d

⎛
⎝⎜

⎞
⎠⎟

yi
d

                      (5a). 

Equation (5a) is the PDF of a negative binomial distribution with 𝐸 𝑦!! = 𝑠!𝑐!!𝜐!! 

and 𝑉𝑎𝑟 𝑦!! = 𝑠!𝑐!!𝜐!! 1+ 𝜐!! . To better interpret (5a), we define 𝜐!! = 𝜇!!𝜎!!  and 

𝑠!𝑐!! = 1/𝜎!!. Then equation (5a) can be rewritten as (5b). 

p
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            (5b) 

The mean and variance of 𝑦!! from (5b) can be described as 𝜇!! and 𝜇!!    1+ 𝜇!!𝜎!!  

respectively. Our model in equation (5b) is convenient due to its explicit interpretability. 

First, it assumes that the individual mutation rates are heterogeneous by modeling 𝜆!
!,! as 

i.i.d. Gamma distributed random variables. Unlike the constant mutation rate assumption 

where 𝑉𝑎𝑟 𝑦!! = 𝐸 𝑦!! , our model captures the extra variance of 𝑦!! due to population 

heterogeneity. Our model in (5b) also clearly separates the two main parameters 𝜇!! and 

𝜎!! with physically interpretable meanings: the mean and overdispersion, respectively. 

Here a larger 𝜎!! indicates a more severe degree of overdispersion, which is usually due 

to larger differences in mutation rates. 

(C) Accurate local background mutation rate estimation by regression  

After modeling 𝑦!!  with a negative binomial distribution, we then estimate the local 

mutation rate by correcting the covariate matrix 𝑿 described above. Again 𝑥!,! denotes 



the average signal strength in the 𝑖!!  bin and 𝑗!!  covariate, where 𝑖 = 1,⋯ ,𝑛  and 

𝑗 = 1,⋯ ,𝑚. Because the genomic features in the covariate matrix are highly correlated 

and may introduce multicollinearity if directly used in regression, we first apply principal 

component analysis (PCA) to matrix 𝑿. We define 𝑿′ to be the covariate matrix after 

PCA and 𝑥!,!!  as each element in 𝑿′.  

A generalized regression scheme is used here. Suppose 𝑔!  and 𝑔!  are two link 

functions. We then use linear combinations of covariate matrix 𝑿!  to predict the 

transformed mean parameter, 𝜇!!, and overdispersion parameter, 𝜎!!, as 

g1 µi
d( ) = log µi

d( ) = β0d +β1d ʹxi,1 +!+β j
d ʹxi, j +!+β j

d ʹxi,m

g2 σ i
d( ) = log σ i

d( ) =α0
d +α1

d ʹxi,1 +!+α j
d ʹxi, j +!+αm

d ʹxi,m
                    (6). 

Here we use a log link function for both 𝑔! and 𝑔!, so the regression model in (6) is a 

negative binomial regression. Note that 𝑿 contains 381 genomic features in all available 

tissues. In the following analysis, we use all features to run the regression in (6) to 

achieve better performance. The GAMLSS package in R is used to estimate the 

parameters in (6) as 𝛼!! ,⋯ ,𝛼!! ,𝛽!! ,⋯ ,𝛽!! . Generally, there are biological reasons to 

explain how 𝜇!! changes with covariates. For example, single-stranded DNA in the later 

replicated regions usually suffers from accumulative damage resulting in larger 𝜇!!. It is 

more difficult to interpret such a relationship with 𝜎!!. Hence, we simplify equation (6) 

by assuming 𝜎!! is constant in our real data analysis. 

Somatic burden tests using local background mutation rate 

(A) Background mutation rate calculation for target regions 

Suppose there are 𝐾 regions to be tested. We use the local mutation rate to evaluate the 

mutation burden. For the 𝑘!! target region (𝑘 = 1,⋯ ,𝐾), one way of calculating the 

covariates is to extend it into length 𝑙 (illustrative figure given in Fig. S2). Then we 

calculate the average signal for feature 𝑗 as 𝑥!,! , 𝑗 = 1,⋯𝑚 for this extended bin, and 

after PCA projection let 𝑥!,!!  represent the value for the 𝑗!! PC.  The local mutation 

parameters 𝜇!! and 𝜎!! in the extended bin for the 𝑘!! target region can be calculated as 



 

µ̂k
d = exp β̂0

d + β̂1
d ′xk ,1 +!+ β̂ j

d ′xk , j +!+ β̂m
d ′xk ,m( )

σ̂ k
d = exp α̂ 0

d + α̂1
d ′xk ,1 +!+ α̂ j

d ′xk , j +!+ α̂m
d ′xk ,m( )

                        (7). 

In real data analysis, the length of the 𝑘!! test region 𝑙! is much shorter than the 

length of the training bins (up to 1Mb). Hence 𝜇!! needs to be adjusted by a factor of 𝑙!/𝑙. 

Then 𝜎!! and the adjusted 𝜇!! can be used to calculate the disease specific P value, 𝑝!!. 

This above scheme is usually computationally expensive because there are usually 

millions of target regions to be tested. Therefore, we also propose an approximation 

method alterntatively to replace the optimal 𝜇!! and 𝜎!! in our analysis (details see section 

S4 in Text S1). 

(B) Combining P values for multiple disease types 

Sometimes it is necessary to analyze several related diseases (or disease types) to provide 

a combined P value. One typical example is in pan-cancer analysis.  In the above section, 

we calculated the P value for disease/disease type 𝑑 as 𝑝!! for test region 𝑘. Fisher’s 

method can be used to combine these P values. Specifically, the test statistic is 

 
Tk = −2 ln pk

d( )d=1

D∑ ∼ χ 2 2D( )                                      (8).    

Here 𝑇! follows a centered chi-square distribution with 2𝐷 degrees of freedom, where 

𝐷 is the total number of diseases/disease types. The final P value, 𝑝!, can be calculated 

from 𝑇!. To better illustrate how NIMBus works, Figure 1 gives its workflow. 

As a fair comparision to our NIMBus model, the global and local Poisson models 

were used on the same data to identify mutational hotspots. The global Poisson model 

assumes the observed mutation counts follows a Poisson distribution and the Poisson rate 

is constant across the genome. Similarly, the local Poisson model also ignores the 

mutation rate heterogeneity within patients and the small bins, but it uses a Poisson 

regression against the same set of covariates to compensate large scale mutational 

heterogeneity. 



Global and local Po global binomial models 

In [8], after pooling samples from a certain disease, a constant mutation rate was assumed 

at each single nucleotide over the genome.  Hence, the number of mutations 𝑦!! within a 

region with length 𝑙! follows a Binomial distribution as  

P Yi
d = yi

d{ } = ni
pi
d

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
pi
d( )yi

d

1− pi
d( )ni−yi

d

                                 (9), 

where 𝑝!! is the mutation rate at a single nucleotide. In a global Binomial model, 𝑝!! ≡ 𝑝 

is assumed, and 𝑝 is calculated in a genome-wide way. To remove the covariate effect, 

we may also assume a local Binomial model by using different 𝑝!! for different regions. 

Specifically, 𝑝!! can be approximated by the length normalized 𝜇!! in NIMBus. 

 

Mutation burden test for networks in the genome 

In addition to testing single target regions, it is useful to extend our analysis to testing of 

networks of target regions of the genome. Given a network of regions consisting of 𝐾 

(𝑘 = 1,⋯ ,𝐾) individual regions, each with  𝑦! mutations, we can determine the p-value 

(𝑝!) associated with each individual region based on 𝜇! and 𝛾!, and then combine these 

p-values to produce a single p-value (𝑝!"#$) associated with the network. To do this, we 

use Fisher’s method for combining p-values. 

𝑝! = Pr   𝑌! ≥ 𝑦! 𝜇! , 𝛾!  

𝑇 = −2 ln 𝑝!!
!!! ,        𝑇~𝜒!!!                                            (10) 

𝑝!"#$%&' = Pr!!!! 𝑇 ≥ 𝑡  

We took the KEGG pathway as a natural biological application of our network 

analysis. Each coding gene represents a target region in the genome, and the gene set that 

makes up a pathway represents a network of genes. Since a KEGG pathway may consist 

of genes that are located on different chromosomes or regions of the genome, the 
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mutation burden for a pathway will be heterogeneous. Therefore, for each pathway, we 

first determine the p-value of each coding gene in the pathway list using the local 

mutation burden calculations from NIMBus, and then combine them using Fisher’s 

method for a pathway associated p-value. This example can be seen in Figure 2. 
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Figures 

Figure 1. Flowchart of NIMBus. 

Figure 2. Schematic plot of network analysis: a gene set is first selected in a network of genes. The 

associated values of µμ!, γ! are extracted from NIMBus for each of the k genes, potentially located on 

different chromosomes. A single p-value, p!, is obtained for each gene. Fisher’s method is used to combine 

all of the p-values into a final p-value for the network, p!"#$%&'. 

Figure 3. (A) Disease and sample mutation rate heterogeneity; (B) improved fitting by negative binomial 

distribution of mutation counts in 1mb bins in breast cancer (BRCA) and Medulloblastoma (MB). 

Figure 4. (A) Regression performance by correcting different number of PCs; (B) Regression performance 

vs. total number of variants used in all cancer types 

Figure 5. Q-Q plots of P values of real and simulated WGS data. 

 


