

# Expanding the Encyclopedia: Connecting Regulatory Elements with Target Genes

Jill E. Moore Advisor: Zhiping Weng University of Massachusetts Medical School Program in Bioinformatics and Integrative Biology

AWG Call – May 2016



#### https://www.encodeproject.org/data/annotations/

# Promoter-like Regions



We predict Promoter-like regions by ranking DNase peaks by the average rank of H3K4me3 and DNase signals

http://zlab-annotations.umassmed.edu/promoters/methods

# Enhancer-like Regions



# Predicting Target Genes of Enhancers

- 1. Create benchmark dataset for method comparison
- 2. Evaluate correlation based methods
- 3. Integrate additional data to improve performance
- 4. Input from ENCODE groups & comparison of other methods

### Part I: Creating a Benchmark Dataset

# Promoter Capture Hi-C



Pros:

 Thousands more high resolution links than previous Hi-C datasets

#### Cons:

 Links may not represent functional contacts

~50,000 Enhancer-Gene links overlap enhancerlike regions

### Integrating Additional Datasets- GM12878

ChIA-PET from the Snyder lab targeting RAD21 in GM12878

 eQTLs in lymphoblastoid cells curated by the Kellis Lab in HaploReg (also included LD SNPs r<sup>2</sup> > 0.8)

• Hi-C (high resolution) loops in GM12878 from Aiden lab<sup>1</sup>

# Overlap of Datasets with Promoter Capture Links



\*require one link end to contain only enhancer-like regions and other link end to contain TSSs for only one gene

### Distance Between Enhancers and Genes



### Determining the Negatives

For all enhancer-like regions with at least one positive link, select all genes that meet the following requirements:

#1 – Genes must be within 500Kb

#2 – Genes cannot be linked in any individual dataset (i.e. exclude enhancer-gene pairs with evidence from only one datatype)

# Dividing Links into Training, Validation, & Testing Sets



# Part II: Evaluation of Correlation Methods



### Correlation – Tested Parameters

- Raw signal vs Z-score normalized signal
- DNase signal vs H3K27ac signal
- ENCODE datasets vs. Roadmap datasets
- Pearson vs Spearman correlation
- Rank by correlation coefficient vs permutation p-value<sup>1</sup>

### **ROC - Correlation Methods**



FPR

### PR - Correlation Methods



Recall

Precision

16

### In Some Cases Correlation Accurately Predicts Links



#### In Some Cases Correlation Accurately Predicts Links



Average H3K27ac Signal Across Enhancer-like Region

### In Many Cases Correlation Does Not Accurately Predict Links



#### In Many Cases Correlation Does Not Accurately Predict Links



#### Average H3K27ac Signal Across Enhancer-like Region

# Incorporating Distance Information

Distance is an important feature in predicating enhancergene links, but using a hard cutoff (e.g. 100Kb) results in missing 1/3 of links

We instead tested:

- Ranking by distance
- Average rank of distance and best performing correlation method (average rank of DNase and H3K27ac)

#### Incorporating Distance Improves Performance



TPR

#### Incorporating Distance Improves Performance



Precision

### Part II: Conclusions

- For correlation analysis:
  - DNase slightly outperforms H3K27ac
  - It is better to use Z-score normalized signal over raw signal
  - Pearson correlation coefficient out performs Spearman
  - Ranking by correlation coefficient outperforms ranking by p-value (and is much faster!)
- Incorporating distance information dramatically increases performance

### Part III: Developing Random Forest Model

# Developing Two Random Forest Models



Can be applied across all cell and tissue types

# Minimal Model Features

- Minimum distance between enhancer and gene TSS
- Average conservation across enhancer and promoter
- Average DNase Signal across enhancer and promoter
- Average H3K27ac Signal across enhancer and promoter
- Correlation of K-mers (tested 3-6mer)
- Using signals across multiple cell and tissue types:
  - Correlation of DNase signal
  - Mean and standard deviation of DNase signal
  - Correlation of H3K27ac Signal
  - Mean and standard deviation of H3K27ac signal

#### ROC – Random Forest Minimal Model



#### PR – Random Forest Minimal Model



Precision

### Feature Importance - Minimal Model



# **Comprehensive Model Features**

- Minimal model features
- <u>Gene expression</u> & RAMPAGE Peaks
- Signal from other Histone Marks (H3K4me1/2/3, H3K27me3, H3K36me3)
- TF peaks signal (Pol2, p300, CTCF)

#### ROC – Random Forest with Gene Expression



TPR

#### PR – Random Forest with Gene Expression



Precision

### Feature Importance – RF with Gene Expression



Feature Importance

## Future Directions

- Apply minimal model to all cell & tissue types in Encyclopedia
- Continue to develop comprehensive model by incorporating more data
- Input from other ENCODE groups compare other methods

### Part IV: Discussion

### Acknowledgements





Zhiping Weng, Pl Michael Purcaro Arjan van der Velde Tyler Borrman Henry Pratt Sowmya Iyer Jie Wang

### Supplementary Slides

### ChIA-PET Datasets Distance Distribution



### Aiden Lab Hi-C Distance Distribution



### Lymphoblastoid eQTLs Distance Distribution



### Normalizing Raw Signal Using Z Scores

|        | Cell Type 1 | Cell Type2 | <br>Cell Type N |
|--------|-------------|------------|-----------------|
| Peak 1 | 100.5       | 3.2        | <br>0           |
| Peak 2 | 12.3        | 80.4       | <br>64.9        |
| Peak 3 | 2.1         | 0          | <br>21.9        |
|        |             |            | <br>            |
| Peak M | 45.3        | 3.1        | 5.4             |

$$z = \frac{x - colMean}{colSD}$$

|        | Cell Type 1 | Cell Type2 | ••• | Cell Type N |
|--------|-------------|------------|-----|-------------|
| Peak 1 | 2.0         | -0.6       |     | -2.0        |
| Peak 2 | -2.3        | 7.0        |     | 0.6         |
| Peak 3 | -2.8        | -1.0       |     | -1.1        |
|        | •••         |            |     |             |
| Peak M | -0.7        | -0.7       |     | -1.7        |

### Correlation Results

| AUROC             | ENCODE Pearson | Roadmap<br>Pearson | ENCODE<br>Spearman | Roadmap<br>Spearman |
|-------------------|----------------|--------------------|--------------------|---------------------|
| DNase-Norm        | 0.7320         | 0.7148             | 0.7192             | 0.7095              |
| DNase-Raw         | 0.6700         | 0.6877             | 0.6534             | 0.6847              |
| H3K27ac-Norm      | 0.7015         | 0.7187             | 0.6940             | 0.7008              |
| H3K27ac-Raw       | 0.6176         | 0.6971             | 0.6145             | 0.6739              |
| Average Rank-Norm | 0.7556         | 0.7459             | 0.7441             | 0.7310              |
| Average Rank-Raw  | 0.6750         | 0.7188             | 0.6602             | 0.7014              |

| AURPR             | ENCODE Pearson | Roadmap<br>Pearson | ENCODE<br>Spearman | Roadmap<br>Spearman |
|-------------------|----------------|--------------------|--------------------|---------------------|
| DNase-Norm        | 0.1158         | 0.1047             | 0.1051             | 0.1043              |
| DNase-Raw         | 0.0890         | 0.1002             | 0.0926             | 0.0947              |
| H3K27ac-Norm      | 0.1059         | 0.1164             | 0.1009             | 0.1021              |
| H3K27ac-Raw       | 0.0763         | 0.1018             | 0.0696             | 0.0938              |
| Average Rank-Norm | 0.1252         | 0.1219             | 0.1168             | 0.1137              |
| Average Rank-Raw  | 0.0937         | 0.1111             | 0.0909             | 0.1020 43           |