
 
Bullet points, major findings: 

• 32 WGS + extensive set of WXS; in depth analysis 

• Mutational heterogeneity 

o Methylation 

o APOBEC (unique in pRCC) 

o Chromatin remodeling genes 

• Examples of high-impact non-coding mutations 

• rs117652213 predicts cancer-specific survival, first time validated in pRCC. 

 
Title 
Abstract 
 
Introduction 
Renal cell carcinoma (RCC) makes up over 90% of kidney cancers and currently 

is the most lethal genitourinary malignancy \cite{25559415}. Papillary RCC 

(pRCC) accounts for 10%-15% of the total RCC cases (REF). Unfortunately 

pRCC has been understudied and there are no current forms of effective 

systemic therapy for this disease. Recently, the Cancer Genome Atlas (TCGA) 

published its first result on pRCC(REF), which improves our understanding of the 

disease in a genomic aspect.  

Multiple endogenous and environmental mutation processes shape the 

somatic mutation spectra observed in cancers (REF Alexanderov). Mutation 

processes decomposition gives information of cancer development, sheds light 

on mutational disparity between cancer subtypes and even indicates potential 

new treatment strategies (REF Alexanderov Gasteric CA). Additionally, genomic 

features such as replication time and chromatin environment govern mutation 

rate along the genome, contributing to spatial mutational heterogeneity. While 

identifying mutation signatures is possible using data from whole exome 

sequencing (WXS), whole genome sequencing (WGS), by probing the entire 
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genome, gives richer information on mutation landscape and minimizes the 

potential effect of clone selection.  

Non-coding region, previously often overlooked, has been showed to play an 

active role in cancer development [REF:Funseq, TERT promoter]. Mutations in 

non-coding region are able to cause disruptive change in both cis- and trans-

regulatory elements. Understanding non-coding mutations helps fill the missing 

“dark matters” in cancer research. 

In this study, we comprehensively analyzed 32 pRCC WGS data along with 

an extensive set of WXS data. We discovered pRCC exhibits mutational 

heterogeneity in both nucleotide context and genome location, indicating 

underlying vibrant mutational processes interplay. Methylation and APOBEC 

activity are two leading factors influencing the mutation landscape. Methylation 

status drives the intra-sample mutation variation by giving rise to more C>T 

mutations in the CpG context. APOBEC activity, although sparely occurred, 

leaves unequivocal mutation signatures in some pRCC genomes but not in 

ccRCC. Empowered by whole genome sequencing, we scrutinized about 

150,000 non-coding mutations and found several potentially high-impact 

mutations in non-coding regions. Last, we validated rs11762213, a germline 

exonic single nucleotide polymorphism inside proto-oncogene MET, as a cancer-

specific survival (CSS) predictive SNP for the first time in pRCC. 

 

Results 
 

1. Mutation spectra of pRCC 
We summarized the mutation spectra of 32 whole genome sequenced 

pRCC samples (Fig 1A). C>T in CpGs shows the highest mutation rates, 

which are roughly ten to twenty folds higher than mutation rates in other 

nucleotide context.  

 

We used principle components analysis (PCA) to reveal factors that 

explain the most inter-sample variation. The loadings on PC1 (explains 



12.5% of the variation) demonstrate C>T in CpGs contributes the most to 

inter-sample variation (Fig 1B). C>T in CpGs reflects the spontaneous 

deamination of cytosines in CpGs, especially 5-methylcytosine. We 

confirmed this by showing samples from methylation cluster 1 

(hypermethylated group) have higher PC1 scores as well as higher C>T 

mutation counts and rates in CpGs (Fig 1C). Therefore, methylation status 

is the most prominent factor that shapes the mutation spectra across 

patients. 

 

[[Working on some methylation analyses here]] 

 

Using an in-house LASSO-based tool (see Methods) to identify mutation 

signatures in both WGS and WXS samples, we found 4/161 (2.5%) 

samples in the WXS data exhibited APOBEC-associated signature 2 and 

13. APOBEC mutation pattern enrichment analysis (see Method) further 

confirms the presence of APOBEC activity in pRCC (Fig 4D). The 

corresponding four samples are statistically enriched of APOBEC 

mutations (all p-value < 0.0003). Noticeably, these four samples show 

significantly higher APOBEC3A and APOBEC3B mRNA expression level 

(p < 0.0022 and p < 0.0039 respectively, one-side rank sum test). Both 

APOBEC3A and APOBEC3B expression levels also correlates well with 

the APOBEC mutation fraction among the four samples (Spearman 

correlation, 0.8 in both).  

 

Consistent with previous studies (REF), we could not detect APOBEC 

activities in an extensive WXS dataset consisting of 418 clear-cell RCC 

(ccRCC) samples. Only very low level of APOBEC signatures (<15%) was 

found in four samples. Because of a much larger sample size, this is 

unlikely to be confounded by detecting power. 
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2. Defects in chromatin remodeler affects mutation landscape 
Chromatin remodeling genes are frequently mutated in pRCC and many 

other cancers. We postulate defects in chromatin remodeling cause 

dysregulation of chromatin status. This further alters the mutation 

landscape, specifically increases mutation rate in open chromatin. To test 

this hypothesis, we tallied the number of mutations inside DNase I 

hypersensitive sites (DHS) in HEK293 (human embryonic kidney). 12/32 

samples with non-silent mutations in eleven chromatin remodeling, cancer 

associated genes show higher genome-wide mutation counts (p < 0.032, 

one-side rank-sum test), partially driven by an even higher mutation 

counts in DHS region (p < 0.003, one-side rank-sum test). The median 

number of mutations in DHS region considerably increases by about 50% 

(75.5 versus 112). The effect is still significant after normalizing against 

the total mutation counts (p < 0.015, one-side rank-sum test).  

 

Replication time is known to correlate greatly with mutation rate. Early 

replicated regions have lower mutation rate but the difference dissolves 

when DNA mismatch repair becomes defective (REF). We discovered the 

distribution of replication time at each non-coding mutation correlated with 

percentage of mutations inside DHS (Spearman’s correction: 0.69). We 

found a trend of shifting to earlier replication in the mutated group. The 

AUC of replication time distribution is significantly different between two 

groups (p<0.05, one-side rank-sum test). However, this shift is not 

statistically significant (empirical p-value < 0.17).  

 

3. Mutations in non-coding region 
Mutations in non-coding region have been demonstrated to play a critical 

role in cancer. We ran FunSeq2 to identify potentially high-impact non-

coding variants in pRCC. First, we identified a mutation hotspot on 

chromosome 1. 6/32 (18.8%) samples have mutations within this 6.5kb 

region (Fig 3A). This hotspot locates at the upstream of ERRFI1 (ERBB 
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Receptor Feedback Inhibitor 1) and overlaps with the predicted promoter 

region. ERRFI1 is the negative regulator of EGFR family members 

including EGFR, HER2 and HER3. However, we didn’t observe 

statistically significant changes among mutated samples in terms of 

mRNA expression level, protein level and phosphorylation level of EGFR, 

HER2 and HER3 (Supplements X). Noticeably, due to a very limited 

sample size here, our test power was greatly compromised.  

 

We also observed one mutation in MET promoter region in a type 1 pRCC 

sample (Fig 3B). This sample has no nonsynonymous mutation in MET 

gene but copy number gain of MET. Additionally, we have observed 6/32 

(18.8%) samples carry mutations in the first or the second introns of MET 

(Fig 3C).  

 

Another potentially impactful mutation hotspot is NEAT1. We saw 

mutations inside this nuclear long non-coding RNA in 5/32(15.6%) 

samples. Several studies indicated NEAT1 is associated in lung and 

prostate cancer [REF]. It promotes cell proliferation in hypoxia [REF].  

 

 

4. Probing rs11762213 in pRCC prognosis 
A germline SNP, rs11762213, has been discovered to predict recurrence 

and survival in a RCC cohort, predominated by ccRCCs [REF]. This 

conclusion was later validated in ccRCC but never in pRCC [REF]. We 

would like to know whether this SNP has a prognostic effect in pRCC. 

Using an extensive WXS set of 207 patients, we found 12 patients carry 

one risk allele of rs11762213 (G/A). No homozygous A/A was observed. 

The cancer-specific survival is significantly worse in patients with the risk 

allele (p < 0.037, Peto & Peto modification of the Gehan-Wilcoxon test, 

FIG 4).  
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The minor allele (A) frequency in our dataset is 2.90%, slightly lower than 

the previous studies. However, among patients with African ancestry, the 

MAF is 3.95%. It is higher than MAFs previously observed in general 

African populations in both 1000 Genome phase 3 dataset (0.2%) and the 

ExAC dataset (1.27%). This implies a possible effect of rs11762213 on 

pRCC incidence among African Americans that worth further investigation.  

 

 

Discussion 
We comprehensively analyzed both WGS and an extensive set of WXS of 

pRCC, scrutinizing local high-impact events as well as giving a macro 

overlook of the mutation landscape. We identified mutation rate dispersion 

of C>T in the CpG motif contributes to the largest proportion of inter-

sample variations. We further pinned down the cause of dispersion by 

showing the hypermethylated cluster, identified in the previous TCGA 

study (REF), has higher C>T rate in CpGs. This hypermethylated cluster is 

associated with later stage, type 2 pRCC, SETD2 mutation and poorer 

prognosis. Although increased C>T in CpG is the results of 

hypermethylation, we cannot rule out the possibility the change of 

mutation landscape plays a role in cancer development.  

 

Despite coming with a low prevalence, significant APOBEC activities and 

consequential mutation signatures are observed in four pRCC cases. 

Interestingly, although being considered to have the same cellular origin 

with pRCC, we were not able to detect APOBEC activities in ccRCC. This 

is in agreement with previous studies (REF). APOBEC activities have 

been linked with genetic predisposition and viral infection (REF). Thus the 

divergence of ccRCC and pRCC might be dictated by APOBEC in some 

patients. With unusual strong APOBEC-related signatures that could make 

up to more than 70% in total detectable signatures in some pRCC cases, 

APOBEC activities could greatly shape pRCC spectra.  
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Chromatin remodeling pathway is highly mutated in pRCC (REF). Several 

chromatin remodelers, for example SETD2, BAP1 and PBRM1, have been 

identified as cancer drivers in pRCC. We demonstrated pRCC with defects 

in chromatin remodeling genes show higher mutation rate in general, 

driving by an even higher mutation rate in open chromatin regions. By 

adapting a defective chromatin remodeling pathway, tumor alters its 

mutation rate and landscape, which could further provide advantage in 

cancer evolution. However, excessive mutation in functional important 

open chromatin regions would also lead to disastrous mutational 

meltdown.  

 

We found several potentially significant non-coding mutations. In our 

pRCC cohort, a mutation hotspot was found upstream of ERRFI1. Served 

as a potential tumor suppressor, these mutations potentially disrupt 

regulatory elements of ERRFI1 and thus play a role in tumorigenesis. 

However, likely limited by small sample size, we were not able to detect 

statistically significant functional changes in ERRFI1 and related 

pathways. We also discovered mutations associated with MET promoter 

and first two introns. Another hotpot is in NEAT1, a long non-coding RNA 

that has been speculated to involved in cancer. 

 

Last, we validated rs11762213 as a prognostic germline variance in pRCC 

for the first time. The original discovery was made in a mixed RCC 

samples, predominated by ccRCC. Recently, the discovery was confirmed 

in a ccRCC cohort. It is unclear whether rs11762213 only predicts the 

outcome in ccRCC. In this study, we concluded that the alternative allele 

of rs11762213 also forecasts unfavorable outcome in pRCC patients. The 

mechanism of this exonic germline SNP remains unsettled. Remarkably, 

pRCC has two subtypes. We noticed cancer-specific death events in our 

cohort concentrate in type 2 patients, due to type 2 pRCC inferior 

prognosis. Thus we further hypothesized rs11762213 potentially has 



different prognostic power in subtypes, likely to be more powerful in type 2 

pRCC.  Unlike type 2 pRCC and ccRCC, Type 1 pRCC often carry 

somatic MET mutations. A larger pRCC dataset is required to test our 

hypothesis. 

 

Methods 
 Data acquisition 

 We downloaded pRCC and ccRCC WXS SNV calls and pRCC 

WGS variation calls from TCGA Data Portal (https://tcga-

data.nci.nih.gov/tcga/tcgaDownload.jsp). pRCC samples that failed the 

histopathological review were excluded. Patients included in this study 

were summarized in supplemental table X. pRCC RNAseq, RPPA and 

methylation data were downloaded from TCGA Data Portal as well. 

 Repli-seq and DHS data were obtained from ENCODE 

(https://www.encodeproject.org/).  

 

Mutation spectra study  
 WGS Mutations were extracted from with flaking 5’ and 3’ 

nucleotide context. Then the raw mutation counts were normalized based 

on trinucleotide frequency in the whole genome.  

 To identify signatures in the mutation spectra, we used a robust, 

objective LASSO-based method. First, 30 known signatures were 

downloaded from COSMIC (http://cancer.sanger.ac.uk/cosmic/signatures). 

Then we solve a positive, zero-intercept linear regression problem with L1 

regularizer to obtain signatures and corresponding weights for each 

genome. The penalty parameter lambda was determined empirically using 

10-fold cross-validation individually for every sample. Last, we discharged 

signatures that composite less than 5% of the total detectable signatures. 
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APOBEC enrichment analysis 
 We used the method described by XXX [REF]. For every C>{T,G} 

and G>{A,C} mutation we obtained 20bp sequence both upstream and 

downstream. Then enrichment fold was defined as: 

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡  𝐹𝑜𝑙𝑑 =   
𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛!"#/!"#  ×  𝐶𝑜𝑛𝑡𝑒𝑥𝑡!/!
𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛!/!×𝐶𝑜𝑛𝑡𝑒𝑥𝑡!"#/!"#

 

Here TCW/WGA stands for T[C>{T,G}]W and W[G>{A,C}A. W stands for 

A or T. p-value for enrichment were calculated using one-side Fisher-

exact test. To adjust for multiple hypothesis testing, p-values were 

corrected using Benjamini-Hochberg procedure. 

 

Replication time association 
 In order to avoid cell type redundancy, we only kept Gm12878 as 

the representative of all lymphoblastoid cell lines. Wave smoothed 

replication time signal is averaged in a +/- 10kb region from every 

mutation. To avoid potential selection effects, we removed mutations in 

exome and flanking 2bp. Regions overlap with reference genome gaps 

and DAC blacklist (https://genome.ucsc.edu/) were removed. Last, we 

picked the median number from 11 cell types at each mutation position for 

further analysis. 

 To test the significance of replication time of non-coding mutations 

between two groups, we plot the cumulative mass function of the mutation 

replication time in each sample. Area under curve (AUC) is used as a 

measurement of the distribution. Specifically, a smaller AUC indicated a 

shift of mutations to the early replicate regions and vice versa.  

 

we adapted a non-parametric test using empirical p-value. We calculated 

the rank sum of replication time of mutations in every sample and then 

normalized by its mutation count. Then we sum up the ranks in both group 

and compare. To obtain the empirical p-value, we randomly sample 



10,000 times the tumor samples with equal sizes of these two groups to 

estimate the rank sum distribution.  

 

 Testing rs11762213 on prognosis 
 We downloaded pRCC clinical outcomes from TCGA Data Portal 

(https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp). Excluding criteria 

are “Follow-up days” not available and identified as non-pRCC by 

histopathological review. In total, we included 207 patients in our analyses. 

The majority of samples, 158 out of 207, were supported by high-quality, 

curated SNV callings from two centers. 100% genotype concordance rate 

was observed in samples harbor the minor allele (A, 10 samples) in 

germline as well as samples with homozygous reference allele (GG, 148 

samples). Also, these curated rs11762213 genotypes were in agreement 

with automated callsets. With proved high confidence in accuracy of 

genotyping rs11762213 in germline, we recruited additional 59 samples 

from single-center, automated calls.  

 Cancer-specific survival was defined using similar method as 

described in a ccRCC study (REF). Deaths were considered as cancer-

specific if the “Personal Neoplasm Cancer Status” is “With Tumor”. If 

“Tumor Status” is not available, then the deceased patients were classified 

as cancer-specific death if they had metastasis (M1) or lymp node 

involvement (>= N1) or died within two years. An R package, “survival”, 

was used for the survival analysis.  

 

 

  


