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ABSTRACT 

 

Background 

Identifying highly mutated regions is a key way that scientists can use sequencing on a 

population scale to discover key genomic regions associated with complex diseases such 

as cancer. Nevertheless, it is challenging to identify such regions because severe mutation 

rate heterogeneity across different genome regions gives rise to highly over-dispersed 

mutation counts. Moreover, it is known that part of this heterogeneity relates to 

confounding genomic features, such as replication timing and chromatin organization.  

Results 

Here, we address these issues with a Negative binomial regression based Integrative 

Method for mutation Burden analysis (NIMBus). This approach uses a Gamma-Poisson 

mixture model to capture the mutation rate heterogeneity across different individuals, and 

consequently models the over-dispersed mutation counts as a negative binomial 

distribution. Furthermore, the model regresses the mutation counts against 381 genomic 

features extracted from REMC and ENCODE to accurately estimate the local background 

mutation rate. This framework can be readily extended to accommodate additional 

genomic features in the future. NIMBus was used to analyze 649 whole-genome cancer 

sequences. It successfully controlled P value inflation and identified well-known coding 

and noncoding drivers, such as TP53 and the TERT promoter. In addition, NIMBus was 

used for mutation burden tests of KEGG pathways. It successfully found known cancer 



related pathways, such as TP53 signaling pathway and apoptosis pathway, to be 

significantly mutated.  

Conclusion 

Integrative frameworks are becoming rapidly necessary to understand the relationship 

between whole genome sequencing data and the functional characteristics of such data. 

Identifying mutational hotspots as driver candidates in complex diseases will better allow 

biologists and clinicians to understand the underlying biological mechanisms of these 

diseaeses. We make NIMBus available and release our results as an online resource 

(nimbus.gersteinlab.org). 
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1 BACKGROUND 

Population level analysis, which looks for regions mutated more frequently than 

expected, is still one of the most powerful ways to identify deleterious mutations for 

diseases [1-3]. Recent developments of whole genome sequencing (WGS) and personal 

genomics have provided unprecedented statistical power to perform such analyses. 



Therefore, an accurate quantification of mutation burden is important to uncover the 

genetic cause of various diseases, which in turn would allow for targeted therapies in 

clinical studies. However, mutation burden tests for somatic variants remain challenging 

for several reasons. 

First, some of the pioneer work analyzing WGS assumed a constant mutation rate 

across different regions or cancer genomes and ignored that somatic genomes are highly 

heterogeneous [4]. Under such assumption, the positional level mutation counts often 

demonstrate larger than expected variance, known as overdispersion. This assumption 

results in poor data fitting and generates numerous false positives [5], so it is necessary to 

introduce more sophisticated models to handle mutation rate heterogeneity. 

Second, numerous genomic features have been reported to largely affect the mutation 

process [6], necessitating careful correction in burden analysis. Unfortunately, none of 

the few current methods that considered such effects systematically explored these 

genomic features in a tissue-specific way, and their models demonstrated very limited 

extensibility to accommodate new features in the future.  For instance, MutSigCV tried to 

correct the effects of several features, such as gene expression and replication timing, by 

only using a small neighborhood of genes with similar covariate values. However, as the 

covariate number increases, it is usually difficult to find a meaningful neighborhood in a 

high dimension space. 

Lastly, many state-of-the-art methods are only optimally designed for analysis of 

coding regions [6], which represent less than 2 percent of the human genome. Nowadays, 

a myriad of studies have shown that noncoding mutations can serve as driver events for 

diseases. For example the mutations in the TERT promoter were found to be associated 



with cancer progression [7]. Hence, unified analysis of coding and noncoding regions is 

needed to give a thorough annotation of discovered hotspots. 

We propose a Negative binomial regression based Integrative Method for mutation 

Burden analysis (NIMBus) that solves the three problems mentioned above. It first 

intuitively treats mutation rates from different individuals as random variables with a 

gamma distribution, and resultantly models the pooled mutation counts from a 

heterogeneous population as a negative binomial distribution to handle overdispersion. 

Furthermore, to capture the effect of covariates, NIMBus integrates extensive features in 

all available tissues from Roadmap Epigenomics Mapping Consortium  (REMC) and the 

Encyclopedia of DNA Elements (ENCODE) project to create a covariate matrix to 

predict the local mutation rate with high precision through regression. In addition, it also 

customizes the most comprehensive noncoding annotations from ENCODE to facilitate 

interpretation of results. This integrative approach employed in NIMBus enables us to 

effectively pinpoint mutation hotspots associated with disease progression and to better 

understand the biological mechanisms therein.  

2 METHODS 

2.1 WGS variants data used  

We collected 649 whole genome variant calls from public resources and collaborators. 

This data contains a broad spectrum of 7 different cancer types (details in Text S1 section 

1).  



2.2 Local background mutation rate estimation 

(A) Human genome gridding and covariate matrix calculation  

First we divide the whole genome into bins with fixed length 𝑙. In this stage, 𝑙 is usually 

large, such as 1 Mb. Any bins overlapping either of the two blacklist regions are 

removed. Then, 381 features are extracted from both REMC and ENCODE, and the 

average signal in the bins is calculated (details in Text S1 Section S2). We let 𝑥!,! denote 

the average signal strength for the 𝑖!!  bin and 𝑗!!  covariate, where 𝑖 = 1,⋯ ,𝑛  and 

𝑗 = 1,⋯ ,𝑚. 

(B) Use negative binomial distribution to handle mutation count overdispersion 

Suppose there are 𝑑 = 1,⋯ ,𝐷 different diseases (or disease types) in the collected WGS 

data, and 𝑠 = 1,⋯ , 𝑠! unique samples for each disease (or disease type) 𝑑. Let 𝑦!
!,! and  

𝜆!
!,! denote the mutation count and rate for the 𝑖!! bin defined in section 2.2 (A) for 

sample 𝑠 in disease 𝑑. In previous efforts, scientists assume that mutation rate 𝜆!
!,! is 

constant across different regions of the human genome, samples, and diseases, so they 

have that 𝜆!
!,! ≜ 𝜆   for ∀  𝑖,𝑑, 𝑠 . Hence 𝑦!

!,!  follows a Poisson distribution with the 

probability mass function (PMF) given in equation (1). 
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However, somatic genomes are highly heterogeneous because mutation rates vary 

considerably among various diseases, samples, and regions of the same genome, severely 

violating the assumption in equation (1). As a result, fitting of 𝑦!
!,! is usually very poor 

because overdispersion is often observed [5]. Simply assuming a constant mutation rate 



will generate numerous false positives. Instead, in our model we assume that different 

𝜆!
!,! are i.i.d random variables that follow a Gamma distribution with probability density 

function (PDF) 
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                                    (2),  

where 𝑐!! > 0 and 𝜐!! > 0. In equation (2), 𝑐!! and 𝜐!! are the shape and scale parameters 

respectively. Assume that 𝜆!! = 𝜆!
!,!!!

!!!  is the overall mutation rate from all samples in 

bin 𝑖 of disease 𝑑. Its distribution can be readily obtained through convolution as  
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                       (3). 

If we let 𝑦!! = 𝑦!
!,!!!

!!!  represent the total mutation counts in region 𝑖 from all 

disease samples, 𝑑, then the conditional distribution of 𝑦!! given 𝜆!! can be written as 

P yi
d λi

d( ) = λi
d( )yi

d

exp −λi
d( )

yi
d( )!                                          (4). 

By integrating (3) into (4), the marginal distribution of 𝑦!!  can be denoted as a 

negative binomial distribution ([8], page 50 in [9]).  
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Equation (5a) is the PDF of a negative binomial distribution with 𝐸 𝑦!! = 𝑠!𝑐!!𝜐!! 

and 𝑉𝑎𝑟 𝑦!! = 𝑠!𝑐!!𝜐!! 1+ 𝜐!! . To better interpret (5a), we define 𝜐!! = 𝜇!!𝜎!!  and 

𝑠!𝑐!! = 1/𝜎!!. Then equation (5a) can be rewritten as (5b). 
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            (5b) 

The mean and variance of 𝑦!! from (5b) can be described as 𝜇!! and 𝜇!!    1+ 𝜇!!𝜎!!  

respectively. Our model in equation (5b) is convenient due to its explicit interpretability. 

First, it assumes that the individual mutation rates are heterogeneous by modeling 𝜆!
!,! as 

i.i.d. Gamma distributed random variables. Unlike the constant mutation rate assumption 

where 𝐸 𝑦!! = 𝑉𝑎𝑟 𝑦!! , our model captures the extra variance of 𝑦!! due to population 

heterogeneity. Our model in (5b) also clearly separates the two main parameters 𝜇!! and 

𝜎!! with physically interpretable meanings: the mean and overdispersion, respectively. 

Here a larger 𝜎!! indicates a more severe degree of overdispersion, which is usually due 

to larger differences in mutation rates. 

(C) Accurate local background mutation rate estimation by regression  

After modeling 𝑦!! with a negative binomial distribution in 2.2 (B), we then estimate the 

local mutation rate by correcting the covariate matrix 𝑿 described in 2.2 (A). Again 𝑥!,! 

denotes the average signal strength in the 𝑖!! bin and 𝑗!! covariate, where 𝑖 = 1,⋯ ,𝑛 and 

𝑗 = 1,⋯ ,𝑚. Because the genomic features in the covariate matrix are highly correlated 

and may introduce multicollinearity if directly used in regression, we first apply principal 

component analysis (PCA) to matrix 𝑿. We define 𝑿′ to be the covariate matrix after 

PCA and 𝑥!,!!  as each element in 𝑿′.  



A generalized regression scheme is used here. Suppose 𝑔!  and 𝑔!  are two link 

functions. We then use linear combinations of covariate matrix 𝑿!  to predict the 

transformed mean parameter, 𝜇!!, and overdispersion parameter, 𝜎!!, as 

g1 µi
d( ) = log µi

d( ) = β0d +β1d ʹxi,1 +!+β j
d ʹxi, j +!+β j

d ʹxi,m

g2 σ i
d( ) = log σ i

d( ) =α0
d +α1

d ʹxi,1 +!+α j
d ʹxi, j +!+αm

d ʹxi,m
                    (6). 

Here we use a log link function for both 𝑔! and 𝑔!, so the regression model in (6) is a 

negative binomial regression. Note that 𝑿 contains 381 genomic features in all available 

tissues. In the following analysis, we use all features to run the regression in (6) to 

achieve better performance. The GAMLSS package in R is used to estimate the 

parameters in (6) as 𝛼!! ,⋯ ,𝛼!! ,𝛽!! ,⋯ ,𝛽!! . Generally, there are biological reasons to 

explain how 𝜇!! changes with covariates. For example, single-stranded DNA in the later 

replicated regions usually suffers from accumulative damage resulting in larger 𝜇!!. It is 

more difficult to interpret such a relationship with 𝜎!!. Hence, we simplify equation (6) 

by assuming 𝜎!! is constant in our real data analysis. 

2.3 Somatic burden tests using local background mutation rate 

(A) Background mutation rate calculation for target regions 

Suppose there are 𝐾 regions to be tested. We use the local mutation rate to evaluate the 

mutation burden. For the 𝑘!! target region (𝑘 = 1,⋯ ,𝐾), optimally we should extend it 

into length 𝑙 (illustrative figure given in Fig. S2). Then we calculate the average signal 

for feature 𝑗 as 𝑥!,! , 𝑗 = 1,⋯𝑚 for this extended bin, and after PCA projection let 𝑥!,!!  

represent the value for the 𝑗!!  PC.  The local mutation parameters 𝜇!!  and 𝜎!!  in the 

extended bin for the 𝑘!! target region can be calculated as 
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                        (7). 

In reality, the length of the 𝑘!! test region 𝑙! is much shorter than the length of the 

training bins (up to 1Mb). Hence 𝜇!! needs to be adjusted by a factor of 𝑙!/𝑙. Then 𝜎!! 

and the adjusted 𝜇!! can be used to calculate the disease specific P value, 𝑝!!. This optimal 

scheme is usually computationally expensive because there are usually millions of target 

regions to be tested. Therefore, we also propose an approximation method to replace the 

optimal 𝜇!! and 𝜎!! in our analysis (details see section S4 in Text S1). 

(B) Combining P values for multiple disease types 

Sometimes it is necessary to analyze several related diseases (or disease types) to provide 

a combined P value. One typical example is in pan-cancer analysis.  In section 2.3 (A), 

we calculated the P value for disease/disease type 𝑑 as 𝑝!! for test region 𝑘. Fisher’s 

method can be used to combine these P values. Specifically, the test statistic is 

 
Tk = −2 ln pk

d( )d=1

D∑ ∼ χ 2 2D( )                                 (8).    

Here 𝑇! follows a centered chi-square distribution with 2𝐷 degrees of freedom, where 

𝐷 is the total number of diseases/disease types. The final P value, 𝑝!, can be calculated 

from 𝑇!. 

To better illustrate how NIMBus works, Figure 1 gives its workflow. 

Figure 1. Flowchart of NIMBus. 



2.4 Noncoding annotations customized for NIMBus 

We customized the full list of noncoding annotations from both ENCODE annotations 

and our previous efforts in the 1000 Genomes Project to make it suitable for burden 

analysis. More details are given in Text S1. 

2.5 Mutation burden test for networks in the genome 

In addition to testing single target regions, it is useful to extend our analysis to testing of 

networks of target regions of the genome. Given a network of regions consisting of 𝐾 

(𝑘 = 1,⋯ ,𝐾) individual regions, each with  𝑦! mutations, we can determine the p-value 

(𝑝!) associated with each individual region based on 𝜇! and 𝛾!, and then combine these 

p-values to produce a single p-value (𝑝!"#$) associated with the network. To do this, we 

use Fisher’s method for combining p-values. 

𝑝! = Pr   𝑌! ≥ 𝑦! 𝜇! , 𝛾!  

𝑇 = −2 ln 𝑝!!
!!! ,        𝑇~𝜒!!!                                            (9) 

𝑝!"#$%&' = Pr!!!! 𝑇 ≥ 𝑡  

We took the KEGG pathway as a natural biological application of our network analysis. 

Each coding gene represents a target region in the genome, and the gene set that makes 

up a pathway represents a network of genes. Since a KEGG pathway may consist of 

genes that are located on different chromosomes or regions of the genome, the mutation 

burden for a pathway will be heterogeneous. Therefore, for each pathway, we first 

determine the p-value of each coding gene in the pathway list using the local mutation 

burden calculations from NIMBus, and then combine them using Fisher’s method for a 

pathway associated p-value. This example can be seen in Figure 2. 

 



Figure 2. Schematic plot of network analysis: a gene set is first selected in a network of genes. The 

associated values of 𝜇! , 𝛾! are extracted from NIMBus for each of the 𝑘 genes, potentially located on 

different chromosomes. A single p-value, 𝑝!, is obtained for each gene. Fisher’s method is used to combine 

all of the p-values into a final p-value for the network, 𝑝!"#$%&'. 

 

3 RESULTS 

3.1 Heterogeneity from various sources leads to large overdispersion in mutation 

counts data 

 

 Pioneer genome wide somatic burden analysis usually assumes a homogeneous 

mutation rate per nucleotide, which consequently uses binomial tests to calculate P values 

[4]. However, we found that mutation count data usually violates this assumption because 

there is severe mutation rate heterogeneity from various sources. To demonstrate this, we 

collected WGS variants from 649 cancer patients and 7 cancer types (Fig. S1).  

 First, we found that the mutation count per genome varies across diseases and 

samples. For instance, the median number of variants can be as low as 70 in Pilocytic 

Astrocytoma (PA) and as high as 21287 in Lung adenocarcinoma (LUAD). Even within 

the same cancer type, mutation counts vary dramatically from sample to sample (lowest 

at 1743 and highest at 145500 in LUAD, Fig. 2A).  In addition, there are also large 

regional mutation rate differences within the same sample (Fig. S4). Therefore, 

distributions based on constant mutation rate assumption usually fit poorly to the real 

mutation counts data (Fig. 2B, dashed lines with +, Fig. S3 in Text S1). In light of these 

issues, we utilized a two-parameter negative binomial distribution to further capture the 



over-dispersed nature of mutation counts data, which improves fitting to real data 

significantly (dashed lines with star in Fig. 3B). 

 

Figure 3. (A) Disease and sample mutation rate heterogeneity; (B) improved fitting by negative binomial 

distribution of mutation counts in 1mb bins in breast cancer (BRCA) and Medulloblastoma (MB). 

 

3.2 Local mutation rate is confounded by many genomic features 

 

 Somatic mutation rate has been reported to be confounded by several genomic 

features [6, 10]. For example, single-stranded DNA during replication usually suffers 

from endogenous DNA damage, such as oxidation and deamination. Therefore, the 

accumulative damage effect in the later replicated regions will result in increased 

mutation rate. We have observed a similar trend in our data. For example, the Pearson 

correlation between normalized mutation counts and replication timing values in BRCA 

is as high as 0.67 in the first 70 1mb bins (Fig. S4A). Another example is that the 

chromatin organization, which arranges the genome into heterochromatin- and 

euchromatin-like domains, has a dominant influence on regional mutation rate variation 

in human somatic cells [10]. Consistently, we also find that mutation counts are 

significantly associated with the DNase-seq signal (Pearson correlation= − 0.61, 

P=1.52×10!! , Fig S4B in Text S1). Therefore, it is important to estimate local 

background mutation rate for accurate mutation burden analysis. 

 



3.3 Negative binomial regression precisely estimates local mutation rates by 

correcting many genomic features 

(A) Features in matched tissues usually provide best prediction accuracy but features 

in unmatched tissue still help 

 

 It has been reported that the most accurate local mutation rate prediction can be 

achieved by using features from matched tissue [11]. Hence, we specifically selected 

variants in two distinct cancer types, BRCA and MB, and predicted their local mutation 

rates with a few features from matched (or loosely matched) and unmatched tissues 

(Table S2 in Text S1). Relative error, defined as the normalized difference of observed 

and predicted value (equation s3 in Text S1), was used to assess model performance. 

Consistent with previous conclusions, we find that features in matched tissues usually 

outperform those from unmatched tissues. For example, the relative error is only 0.128 by 

using breast tissue related features to predict BRCA mutation rates, which is noticeably 

smaller than an error of 0.195 when using brain related features (Table S3 in Text S1). 

Similarly, brain related features have more predictive power compared to breast related 

ones for MB mutation rates (error of 0.135 VS. 0.183). 

 

However, biologically meaningful tissue matching remains challenging and usually is 

not an optimal process for researchers without enough domain knowledge. Specifically, if 

samples of distinct hidden subtypes were pooled together for a certain disease, tissue 

matching would be more difficult. Furthermore, even after the best-matched tissue has 

been identified, we frequently need to handle missing features in that tissue. We noticed 



that many genomic features are highly correlated both within and across tissues 

(correlation plot in Fig. S6A), which leads to suboptimal but still decent regression 

performance (scatter plots given in Fig. S6B). This is extremely helpful when processing 

WGS from diseases without matched features. For example, there are no prostate related 

tissue features in REMC, but features in other tissues still help to estimate the local 

mutation rates. 

(B) Pooling features from multiple tissues significantly improves local background 

mutation rate prediction 

 

 In light of the correlated nature of covariates, especially those epigenetic features 

[12], we first performed principal component analysis (PCA) on the covariate matrix to 

overcome the multicollinearly problem during regression. The correlation of each PC 

with the mutation counts data varies significantly across different cancer types (boxplots 

in Fig. S7B in Text S1). For example, the first PC demonstrates a Pearson correlation of 

0.653 in LICA, which is much higher than 0.352 in PRAD. Therefore, it is necessary to 

run a separate regression model for each cancer type. 

 

Figure 4. (A) Regression performance by correcting different number of PCs; (B) Regression performance 

vs. total number of variants used in all cancer types 

 

Since numerous PCs have been shown to be associated with mutation rates, we tried 

to investigate the joint effect of multiple PCs to predict the local mutation rates. 

Particularly, for each cancer type, we first ranked the individual PCs by their correlations 



with mutation rates, and then selected the top 1, 30, and 381 PCs to estimate the local 

mutation rate. Fig. 4A shows that using more PCs can noticeably boost prediction 

accuracy in all cancer types. For example, in BRCA the Pearson correlation is only 0.472 

if 1 PC is used in regression, but rises to 0.655 and 0.709 if 15 and 30 PCs are used 

respectively. The correlation increases to 0.818 after using all 381 PCs. As a result, in all 

of the following analyses, we used all 381 PCs for accurate local mutation rate 

estimation. 

As shown in Fig. 4B, we achieved good prediction accuracy through regression 

against all PCs of the covariate matrix in all cancer types. The Pearson correlations of the 

observed mutation counts and the predicted 𝜇!! vary from 0.668 in PA to 0.958 in LICA. 

Scatter plots are given in Fig. S8 in Text S1. It is worth mentioning that although there 

are no features matching prostate tissue in REMC, we can still achieve a very high 

correlation of 0.81 with the help of 381 unmatched but correlated features. This indicates 

that our model could still provide acceptable performance even when somatic WGS of a 

disease is given without optimally matched covariates.  

In addition, the number of available variants obviously affects prediction 

performance, though it is not the only factor. As shown in Fig. 4B, limited number of 

variants, such as those in quiet somatic genomes of PA, can usually restrict our prediction 

precision (lowest correlation at 0.668 among 7 cancer types). However, other factors, 

such as the number of effective covariates, quality of mutation calls, and molecular 

similarity of pooled samples of the same disease can also influence the prediction 

performance considerably. For instance, although there are fewer variants in MB than 



those in BRCA, our regression for MB still outperforms that of BRCA (0.865 vs 0.818, 

Fig. 4B). 

3.4 Coding region calibration for NIMBus 

 

(A) Single gene target region analysis 

 

 Since coding regions have been investigated in more detail than the noncoding 

regions, we first applied NIMBus on coding regions. First, we extracted coding regions 

from the GENCODE annotation v19 and ran NIMBus on both real and simulated datasets 

(details in section S11 in Text S1). We found that in all cancer types analyzed, NIMBus 

effectively controlled P value inflation compared to the method mentioned in [4]. For 

example, in LUAD the P values for real data fall on the diagonal with the uniform P 

values, apart from a few outliers that represent the true significant signals (black dots on 

the right sides in Fig. 5). After P value correction using the Benjamini–Hochberg method, 

only 11 genes are reported as highly mutation in LUAD, while none were discovered on 

the simulated data (orange dots in Fig. 5). On the other hand, the method using a constant 

mutation rate assumption (as in [4]) reported 6023 genes to be significantly mutated, 

indicating severe P value inflation. 

 

 

Figure 5. Q-Q plots of P values of real and simulated WGS data. 

 



 

We also used Fisher’s method to combine P values from all cancer types. In total, 15 

genes were discovered to be significantly mutated. Twelve of them are well documented 

as related with cancer progression. The top genes are shown in Table 1 and their PubMed 

ID is given in the last column for reference. These results showed that NIMBus is able to 

find sensible mutational hotspots as cancer drivers. 

 

(B) Mutation burden of KEGG pathways 

 

 Using the KEGG pathway dataset, consisting of 288 unique pathways, we 

performed a network mutation burden test on each pathway for each cancer type to 

discover significantly mutated pathways. We found that of the seven cancer types 

analyzed, four cancer types exhibited significantly mutated KEGG pathways (𝑝!"# <

0.05). In particular, we found 5 significant pathways in BRCA, 5 in LICA, 10 in GACA, 

and 3 in LUAD. No significant pathways were found in MB, PA, or PRAD. The 

significant pathways and their associated cancer types are seen in Table 2, as well as the 

Benjamini-Hochberg adjusted p-value. The significant pathway list includes pathways 

associated with the p53 signaling pathway, apoptosis, and cell growth – all of which are 

Table 1. Top genes after p-value combination 
Rank Gene Adjust P PubMed ID 

1 TP53 4.33E-139 17401424 
2 DDX3X 3.65E-18 22820256 
3 KRAS 2.56E-06 19847166 
4 MUC4 4.47E-06 19935676 
5 CDH1 3.07E-05 10973239 
6 ARID1A 2.36 E-04 22037554 
7 SMARCA4 3.78 E-04 18386774 
8 FGFR1 7.43 E-04 23817572 

 



well known KEGG pathways associated with cancer. In addition to these well-studied 

pathways, we were able to discover many novel pathways, including other signaling and 

disease-associated pathways. These results demonstrate a novel way to use NIMBus as a 

way to conduct mutation burden tests in biologically meaningful networks in the genome.  

 

 

3.5 NIMBus discovered a list of highly mutated noncoding regions from cancer 

WGS data 

 

 We applied NIMBus on WGS variant calls for all seven cancer types to predict 

the individual somatic burden P values, and compared these results to those from global 

and local Binomial models (details in Text S1).  

 Similar to the results in the coding region analysis, both global and local Binomial 

models generated too many burdened regions in all noncoding annotation categories, as 

evidenced by the poor fitting in Fig. 3B. For example, in liver cancer after P value 

correction, NIMBus identified 21 promoters as highly mutated, while local and global 

Table 2: Significant Pathways and p-values 

* P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001 



binomial models identified 79 and 641, respectively. Hence, our negative binomial 

assumption in NIMBus effectively captured the overdispersion and controlled the number 

of false positives. To further demonstrate this, we provided the Q-Q plots of P values in 

promoter regions for all seven cancer types in Fig. 6B as a quality check. In theory, if no 

significantly burdened regions are detected, the P values should follow uniform 

distribution. As shown in Fig. 6B, the majority of our P values follow the uniform 

assumption, with the exception of a few outliers representing the true signals, indicating 

reasonable P value distributions for all cancer types. Similar results were also observed in 

other noncoding annotations (data not shown). We release our burden test results on 

nimbus.gersteinlab.org as an online resource for the whole community. 

 

 

Figure 6 (A) number of overly mutated promoter regions in all cancer types; (B) Q-Q plots of P values for 

promoter regions; (C) total number of burdened regions in all noncoding annotations after merging P values 

from 7 cancer types. B_local: local Binomial Model, B_global: global Binomial Model  

  

 

 To summarize the mutation burdens from all cancer types, we used Fisher’s 

method to calculate the final P values for all three models. Similar to P values from a 

single cancer type, the combined P values are severely inflated in both global and local 

Binomial models, but are rigorously controlled by NIMBus (table C in Fig. 6). For 

example, NIMBus reported only 39 transcription start sites (TSS) as burdened, compared 

to 164 and 263 for the other two methods. Additionally, out of the 39 TSS elements, 

several of them have been experimentally validated or computationally predicted in other 



work to be associated with cancer. For instance, TP53 is a well-studied tumor suppressor 

gene that is involved in many cancer types, and the combined P value for the TP53 TSS 

is ranked second in our analysis (P=4.26×10!!"). Also, LMO3 interacts with the tumor 

suppressor TP53 and regulates its function, and it is ranked fourth in our analysis 

(P=3.25×10!!"). Similar to previous reports, we also identified the AGAP5 TSS site as a 

mutation hotspot, ranking third (P=7.07×10!!") in our analysis. Another important 

example is the TSS site in TERT, which is ranked fifth in our results (P=1.55×10!!") 

and has been experimentally validated to be associated with multiple types of cancer 

progression [7]. The discovery of such results shows that NIMBus can serve as a 

powerful tool for mutation driver event discovery in genetic diseases. 

	  

4 CONCLUSION 

 

 Thousands of somatic genomes are now available due to the fast development of 

whole genome sequencing technologies, providing us with increasing statistical power to 

scrutinize the somatic mutation landscape. At the same time, thanks to collaborative 

efforts of big consortia, such as REMC and ENCODE, tens of thousands of functional 

characteristic experimental results on human genomes have been released for immediate 

use to the whole community. Hence, integrative frameworks are of urgent need in order 

to explore the interplay between WGS data and these functional characteristic data. It will 

not only be important to accurately search for mutational hotspots as driver candidates for 

complex diseases but also to better interpret the underlying biological mechanisms of 

diseases for clinicians and biologists. 



In this paper, we proposed a new integrative framework called NIMBus to analyze 

somatic genomes. Due to the heterogeneous nature of various somatic genomes, our 

method treated the individual mutation rate as a gamma distributed random variable to 

mimic the varying mutational baseline for different patients. Resultantly, it modeled the 

mutation counts data using a two parameter negative binomial distribution, which 

improved data fitting dramatically as compared to previous work (Fig. 3B). It then uses a 

negative binomial regression to capture the effect of a widespread list of genomic 

features on mutation processes for accurate somatic burden analysis. 

Unlike previous efforts, which use very limited covariates to estimate local mutation 

rate in very qualitative way, we explored the whole REMC and ENCODE data and 

extracted 381 features that best describe chromatin organization, expression profiling, 

replication status, and context effect in all possible tissues to jointly predict the local 

mutation rate at high precision. In terms of covariate correction, NIMBus demonstrated 

three obvious advantages: 1) It incorporates the most comprehensive list of covariates in 

multiple tissues to achieve accurate background mutation rate estimation; 2) It provides 

an integrative framework that can be extended to any number of covariates and 

successfully avoids the high dimensionality problem of other methods [6], which is 

extremely important due to the rapidly growing amount of available functional 

characteristic data available and the drop in cost of sequencing technologies; 3) It 

automatically utilizes the genomic regions with the highest credibility for training 

purposes, so users do not have to be concerned about performing carefully calibrated 

training data selection and complex covariate matching processes. 



The length of training bins 𝑙 is an important parameter for NIMBus. On one side, a 

shorter bin size will be advantageous in the P value evaluation as it can remove the 

mutational heterogeneity across regions more effectively at a higher resolution. On the 

other side, a smaller 𝑙  sometimes will result in worse mutation rate prediction 

performance for two reasons. First, sensible mutation rate quantification is necessary in 

each single bin for the regression purpose. However, somatic mutations are usually 

sparsely scattered across the genome due to limited number of disease genomes available 

at the moment. In the extreme case, when 𝑙  is so small that most bins have zero 

mutations, it is difficult for the regression model to capture the relationship between 

mutations and covariates. Second, some of the covariates are only reported to be 

functional on a large scale [10], so reducing 𝑙 will not necessarily boost prediction 

precision. Optimal bin size selection is still a challenging problem that needs further case-

by-case investigation. In our analysis, we used a 1 Mb bin size for all cancer types. 

Noncoding regions represent more than 98% of the whole human genome, and are 

investigated less mainly due to limited knowledge of their biological functions. NIMBus 

is also designed to explore the most comprehensive collection of noncoding annotations. 

Therefore, it collects the up-to-date, full catalog of noncoding annotations of all possible 

tissues from ENCODE and our previous efforts from the 1000 Genomes Project. 

Furthermore, it further customizes these annotations specifically for somatic burden 

analysis. All these integrated internal annotations of NIMBus can be either tested for 

somatic burden or used to annotate the user specific input regions. 

We applied NIMBus to 649 cancer genomes of seven different types collected from 

public data and collaborators. The burden test P values for each cancer type were 



deduced and Fisher’s method was used to calculate the combined P values. We first 

evaluated the performance of NIMBus on coding regions, which have been investigated 

with much detail by researchers. Many well-documented cancer associated genes were 

discovered by NIMBus (Table 1 and Table S3). We also repeated the same analysis on a 

simulated dataset and found no significant genes. These results demonstrate that NIMBus 

is able to find overly mutated genes effectively while rigorously controlling false 

positives.  

In addition to single gene burden analysis tests, we were able to detect significantly 

mutated KEGG pathways, including the TP53 signaling pathway and apoptosis pathway, 

both of which are implicated in cancer progression. The adaptability of NIMBus to 

analysis of gene networks may prove useful in determining significantly mutated regions 

of the genome that are not physically adjacent. 

Furthermore, numerous noncoding elements were also reported as significantly 

mutated (Table C in Fig. 6). Included were some well-known regions, such as the TP53, 

LMO, and TERT TSS, proving the effectiveness of NIMBus in indentifying disease-

associated regions. 

It is worth mentioning that although we demonstrate the effectiveness of NIMBus 

mostly on somatic mutation analysis, NIMBus can be immediately extended to germline 

variant analysis as well. In summary, NIMBus is the first method that integrates 

comprehensive genomic features to analyze the mutation burdens of disease genomes. 

Such external data does not only help to better estimate the background mutation rate for 

successful false positive and negative control, but also provides the most extensive 

noncoding annotations for users to interpret their results. It serves as a powerful 



computation tool to accurately predict driver events in human genetic diseases and 

potentially identify biological targets for drug discovery. 
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