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heterogeneity. One approach is to perform targeted,
ultra-deep-coverage sequencing of SNVs, followed by
clustering of the read counts for each SNV into distinct
subpopulations [37,38]. Ding et al. [37] identified two
distinct clonal evolution patterns for acute myeloid
leukemia (AML) patients: a relapse sample evolved ei-
ther from the founding clone in the primary tumor or
from a minor subclone that survived initial treatment.
Shah et al. [38] demonstrated extreme variability in the
total number of tumor subpopulations (ranging from 1–
2 to more than 15 subpopulations) in tumors from a
large cohort of breast cancer patients. Another approach
to measure intra-tumor heterogeneity is to sequence
samples from multiple regions within the same tumor.
Gerlinger et al. [39] sequenced multiple regions from
several kidney tumors and found that a majority (63-
69%) of the somatic mutations identified were present in
only a subset of the sequenced regions of the tumor.
Navin and colleagues [40,41] found similar heterogeneity
in the CNAs present within different regions of breast
tumors. These results demonstrate that a single sample
from a tumor might not fully represent the complete
landscape of somatic mutations (including driver muta-
tions) present in the tumor.
Finally, Nik-Zainal et al. [42] demonstrated how care-

ful computational analysis can reveal information about
the composition of a tumor sample, including the identi-
fication of clonal mutations that are present in nearly all

cells of the tumor (and thus presumably are early events
in tumorigenesis) and subclonal mutations that are
present in a fraction of tumor cells. Using high-coverage
(188X) whole-genome DNA sequencing of a breast
tumor, they inferred the proportion of tumor cells con-
taining somatic SNVs and CNAs and grouped these pro-
portions into several clusters, demonstrating different
mutational events during the evolutionary progression
from the founder cell of the tumor to the present tumor
cell population. Eventually, single-cell sequencing tech-
nologies [41,43-47] promise to provide a comprehensive
view of intra-tumor heterogeneity, but these approaches
remain limited by artifacts introduced during whole-
genome amplification [47]. In the interim, there is an
immediate need for better methods to detect somatic
mutations that occur in heterogeneous tumor samples.

Computational prioritization of driver mutations
Following the sequencing of a cancer genome, the next
step is to identify driver mutations that are responsible
for the cancer phenotype. Ultimately, the determination
that a mutation is functional requires experimental val-
idation, using in vitro or in vivo models to demonstrate
that a mutation leads to at least one of the characteris-
tics of the cancer phenotype, such as DNA repair defi-
ciency, uncontrolled proliferation and growth, or
immune evasion. As a result of advances in DNA-
sequencing technology, the measurement of somatic
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Figure 2 Overview of strategies for cancer-genome sequencing. A cancer-genome sequencing project begins with whole-genome or
whole-exome sequencing. Various methods are used to detect somatic mutations in the resulting sequence (see Table 1), yielding a long list
of somatic mutations. Several strategies can then be employed to prioritize these mutations for experimental or functional validation. These
strategies include: testing for recurrent mutations, predicting functional impact, and assessing combinations of mutations (see Table 2). None of
these approaches are perfect, and each returns a subset of driver mutations as well as passenger mutations. The mutations returned by these
approaches can then be validated using a variety of experimental techniques.

Raphael et al. Genome Medicine 2014, 6:5 Page 5 of 17
http://genomemedicine.com/content/6/1/5

Identifying driver mutations in cancer genome

Majority of methods discretize somatic mutations as Driver and Passenger.

Intermediate regime between Driver & Passenger mutations 
“mini-Driver” , “latent-Driver” , “deleterious Passenger” 
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deleterious mutations (14, 33). Such small selection coefficients
for individual passengers are typically undetectable in cell cul-
tures, yet critical for long-term cancer dynamics.
We then relaxed our assumption that sp is constant for all

passengers, by simulating cancer progression with passengers
drawn from distributions of deleteriousness (SI Appendix, Fig.
S6). The strength of driver and passenger mutations affects their
fixation probability (Fig. 3 B and C). For passengers, the varia-
tion in fitness within a population is mostly invariant to the type
of distribution of passenger effects (Fig. 3B). Negative selection
against passenger fixation appears to be largely inefficient, except
for highly deleterious passengers (Fig. 3C).
The significant variance in cell fitness within the population,

caused by deleterious passengers (Fig. 3B), also affects the
probability of driver fixation. Because a driver will generally
occur in a cell of average fitness, it is unlikely to fixate unless its
new fitness is greater than the fittest cells. The difference be-
tween the fittest cells and average cells in the population is ap-
proximately μTp and independent of sp (Fig. 3B) (17); therefore,
a driver must confer a benefit greater than μTp to fixate (SI
Appendix, Fig. S1). This argues that weak drivers are unlikely to
fixate in cancer or be observed in genomic sequencing.
In summary, our simulations demonstrate that despite the

moderately deleterious effect of individual passengers, they ac-
cumulate in large numbers during neoplastic progression, re-
ducing the fitness of cancer cells and altering the course of
neoplastic progression. We find several reasons why deleterious
passengers accumulate more than might be expected a priori: (i)
mutator phenotypes [a hallmark of cancer (28)] accelerate ac-
cumulation rates; (ii) small population sizes in the early stages of
cancer progression enhance accumulation rates; (iii) driver-in-
duced bottlenecks and hitchhiking contribute additional pas-
sengers; (iv) passengers prolong progression—offering more
time for accumulation; and (v) passengers arising as part of a dis-
tribution of deleteriousness fixate more often than equivalent
passengers considered in isolation. These first three phenomenon,
though undocumented in cancer theory, have been previously
observed in population genetics (12).

Passenger Mutations Observed in Cancer Can Be Damaging. Our
model makes several testable predictions: (i) accumulated
passengers in cancer populations can be deleterious to cancer
cells; (ii) the deleterious effect of an individual passenger has
little bearing on its likelihood of accumulation; and (iii) fixed

drivers should have larger effects on phenotype than pas-
sengers. Cancer genomics data provide an opportunity to test
these predictions. First, we test whether nonsynonymous pas-
sengers found in cancer are damaging or neutral to protein
function using comparative genomics. Second, we test whether
selection acting against passengers is effective at preventing fix-
ation or largely ineffective, as suggested by our simulations.
We analyzed 116,977 cancer mutations curated by the Cata-

logue of Somatic Mutations in Cancer (COSMIC) and The
Cancer Genome Atlas (TCGA). We classified them as driver and
passenger mutation groups and then characterized their effects
using PolyPhen, a tool widely used in population and medical
genetics to predict the damaging effect of missense mutations
(15). Passengers were identified as missense mutations that show
no recurrence and affect genes not listed in a census of possible
cancer-causing genes (SI Appendix, SI Text). The ΔPSIC metric
of PolyPhen measures the degree of evolutionary conservation of
a mutated residue (42) by calculating the negative log-likelihood
of observing a specific mutation, given the evolutionary history
of the protein. Specifically, a mutation with a ΔPSIC of 1 is
e(= 2.71. . .) times less likely to be observed than the wild-type
allele, as computed from a multiple alignment. Thus, a mutation
with high ΔPSIC is more likely to be damaging to molecular
function (43) because this implies the mutation disrupts a well-
conserved residue. PolyPhen has been extensively tested and
benchmarked (15).
Fig. 4 presents this analysis for passengers, drivers, and three

reference datasets: (i) common human missense SNPs; (ii) simu-
lated de novo mutations (randomly generated using a cancer-
specific three-parameter model; SI Appendix, SI Text); and (iii)
damaging, pathogenic missense mutations causing human Men-
delian diseases (from the Human Gene Mutation Database). As
expected, common SNPs are benign and exhibit small ΔPSIC
values, whereas disease-causing mutations, with known damaging
effect, exhibit large ΔPSIC values (Fig. 4A). Driver mutations
exhibit similarly high values of ΔPSIC, significantly greater than
randomly generated mutations, indicating that drivers tend to
occur at well-conserved loci. From a biochemical perspective, this
result shows that, to activate an oncogene or to disable a tumor
suppressor, the driver mutation must change a critical and well-
conserved residue, e.g., the GTP binding site of Ras or DNA
binding domain of p53. From an evolutionary perspective, the
conservation of residues that promote tumorigenesis when mu-
tated suggests strong natural selection against the early de-
velopment of cancer. The ability of ΔPSIC score to identify drivers
as having highly nonneutral phenotypes (i.e., damaging or altering

E ectively neutral
(µ Tp sp << sd )

Strongly deleterious
(N sp Exp[-µ Tp /sp ]~1)

Mildly deleterious
A B

C

Fig. 3. Moderately deleterious passengers alter cancer progression and
mostly evade selection. (A) Passengers of intermediate fitness effect sp
prolong the time to cancer and accumulate in large, highly variable quan-
tities (red solid, mean; dotted, ±1 SD). Moderately deleterious passengers
affect cancer only if they are strong or frequent enough to be comparable
to the effects of drivers, yet weak enough to avoid selection (SI Appendix,
SI Text). Experimentally observed fitness effects of random point muta-
tions in YFP in yeast ranged from 0.007 to 0.028 (green shading) (14). (B)
Population dynamics did not change noticeably when passengers were drawn
from various distributions of fitness distributions (SI Appendix, SI Text).
(C) Passenger fixation probability declined only moderately with increasing
deleteriousness.
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Fig. 4. Characterization of missense mutations in cancer sequencing data.
(A) Mutations were assayed using the ΔPSIC score of PolyPhen, which esti-
mates the damaging effect of a new mutation, given known homologs;
mutations with high ΔPSIC scores are most likely damaging (43). Passengers
have large ΔPSIC, close to random mutations, suggesting that they are
deleterious. (B) Deleterious passenger phenotypes were observed in all
subsets of passengers studied, arguing that these results cannot be
explained by recessive phenotypes, or lack of expression, or database biases.
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Deleterious passenger mutations in cancer genome

Polyphen score of passenger mutations is 
higher compared to common SNPs but 
closer to random mutations indicating 
presence of deleterious passenger 
mutations, which evades purifying 
selection.  

Passenger mutations in house keeping genes also have high impact score suggesting 
presence of damaging passenger mutations is not only restricted to unimportant genes. 

McFarland	et.	al.	2013



Latent Driver mutations in the coding region of the genome

normal cell growth or in primary tumors, it is the appear-
ance of driver mutations that provides the transformation
trigger. Distinguishing drivers from passengers can estab-
lish the driver-accommodating genes, the mechanism of

the mutation on the molecular level, and the blueprint for
therapy.

Driver and passenger mutations
A driver mutation confers growth advantage; a passenger
mutation does not. Passenger mutations populate cancer
genomes prior to the emergence of driver mutations [12].
Age-related statistics suggested 5–7 driver mutations in
epithelial cancers such as breast, colorectal and prostate
[19]; more recent analyses indicated that the number
could be much higher [20].

Driver mutations can affect recruitment or catalysis. In
recruitment, driver point mutations can be at the inter-
face [21] and destabilize (or overstabilize) an interac-
tion. Driver deletions of protein segments responsible
for interactions can similarly abolish an interaction.
Since an oncogenic protein typically has a number
of partners competing for the same binding surface
[22–24], as for example crystal structures indicate for
Ras interacting with Raf and PI3K via the same surface,
abrogating one interaction results in another taking over.
In cancer, this may imply a signaling pathway switch
between apoptosis and survival [25,26!!,27!,28]. Driver
mutations can substitute residues undergoing post-
translational modifications, also affecting recruitment.
In catalysis, drivers can abrogate a reaction, similarly
keeping a protein in an active state, as in the case of
G12, G13, and Q61 mutations in the Ras protein
(Figure 2).

Drivers can also act allosterically by redistributing the
conformational ensemble [29]. They can destabilize an
inactive state, stabilize an active state or both [6,27!]. The
EGFR mutations T790M that stabilizes the hydrophobic
R spine of the active state and L858R that disrupts the
hydrophobic core of the inactive state and stabilizes
the aC-helix-In without ligand-induced receptor dimer-
ization provide examples (Figure 3). A single mutation at
the asymmetric dimer interface (V948R) that shifts the
population in favor of the monomeric or the symmetric
dimer renders both driver mutations T790M and L858R
latent driver mutations as revealed in crystal structures of
the inactive kinase conformations [30–32]. The legend for
Figure 3 provides the basis for classifying L858R as a
monomeric ‘latent driver’, rather than a driver mutation
which depends on the formation of asymmetric dimer
[33]. Even mutations which are directly at functional
sites, such as Ras’ G12, G13 and Q61 are likely to have
additional allosteric effects.

The concept of ‘latent driver’ mutations
Currently, the classification is binary: a mutation is
designated as either a driver or a passenger. This
classification is important since it provides the genetic
basis for cancer treatment decisions [17!!]. Statistics is a
primary factor in this classification [3,4]. However, low

26 Sequences and topology
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Current Opinion in Structural Biology

Schematic diagram of the definition of driver mutation (DM), passenger
mutation (PM) and latent driver mutation (LM). Cellular signaling is a
complex network. A node in a particular signaling pathway is normally
regulated by an upstream activation (or inhibition) event. It then
transmits (or blocks) the signal to downstream effectors by switching the
population of its conformational ensemble in favor of the active (or
inactive) state. In the absence of an upstream regulatory activation
signal, passenger mutations can be simply defined as illustrated in
(A): the change of the relative populations of the active versus the
inactive states (DGWT " DGPM" DGPMs) causes no noticeable effect in
downstream signaling even if they combine with additional passenger
mutations (orange curve). In contrast, driver and latent driver mutations
cause various degrees of alteration of the relative populations between
the active and inactive states as depicted in (B). In principle, a simple
binary classification can define a driver mutation (red curve) as the
active state becoming the dominant state of the mutant node, a
mandatory condition for transmitting a signal. That is, the driver mutant
becomes a constitutively active species independent of upstream
signaling under physiological conditions. Latent mutation (blue curve) is
a mutant that increases the population of the active conformation; but
the increase is insufficient to transmit the activation signal down the
pathway via the latent mutation alone. The definitions of the three
mutation types can be summarized by their change of relative
conformational populations between the active and inactive states with
respect to that of the wild type: DGWT < DGLM# 0 # DGDM.

Current Opinion in Structural Biology 2015, 32:25–32 www.sciencedirect.com

Hypothesis : Latent Driver mutations are “passenger 
mutations”, which can additively alter the protein 
folding profile.

For the real “passenger” mutation , relative 
populations of the active and inactive states doesn’t 
change even if they combine with additional 
passenger mutations. (∆𝐺wt	 ≈ ∆𝐺pm ≈∆𝐺pm )

For the latent “driver” mutation , alters the relative 
populations of the active and inactive state but change 
is not sufficient on it’s own. (∆𝐺wt <∆𝐺lm << ∆𝐺DM )

Nussinov et.	al.	2015



Functional impact score based identification of latent drivers in 
coding regions 

A	C	L	M	N	D	E	G	K	R	T	V	A	M	L	I	K

For a given gene G

A	C	L	M	N	D	E	G	K	R	T	V	A	M	L	I	K

Sample	1

Sample	2

FIS(C2),  FIS(D6), FIS(R10) , FIS(A13)

FIS(C2 | C2,D2), FIS(C2 | C2,R10) , FIS(D6 | C2,R10)

FIS(C2| C2,D6,R10), FIS(D6 | C2,D6,R10), FIS(R10| C2,D6,R10)  

FIS(C2| C2,A13), FIS(A13|C2,A13)

FIS(C2 | C2,D6)
FIS(C2 | C2,R10)
FIS(C2 | C2,D6,R10)
FIS(C2 | C2,A13)

𝜒(𝐹𝐼𝑆(𝐶2))

True	Passenger	mutation
FIS	(C2)	≈ 𝜒 𝐹𝐼𝑆(𝐶2 )	<<	FIS(driver)

Latent	Driver
FIS(C2)	<	𝜒 𝐹𝐼𝑆(𝐶2 )	<<	FIS(driver)𝜒 ->	Median	/	Min



Other potential attributes of Latent Driver

Latent driver should have modestly elevated mutation frequency relative to 
background

Multiple latent driver will promote tumorigenesis through a polygenic model. 
Presence of genomic instability should facilitate the polygenic model. 

They will be often linked to CNVs and large structural variations. Biochemical 
connections to known TSGs and oncogens.

Passenger mutation in pan-cancer dataset but latent driver in specific cancer 
type.


