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Abstract 18 
 19 
Enhancers are important noncoding elements. Unfortunately, until recently, they were 20 
difficult to characterize experimentally, and only a few mammalian enhancers were 21 
validated, making it difficult to train statistical models for their identification. Instead, 22 
postulated patterns of genomic features were used heuristically for identification. 23 
Recently, a large number of massively parallel assays for characterizing enhancers have 24 
been developed. Here, we use them to create shape-matching filters based on 25 
enhancer-associated metaprofiles in epigenetic features. We then combine different 26 
features with simple, linear models and predict enhancers in a supervised fashion. By 27 
cross-validating and testing our models, we show that they can be transferred without re-28 
parameterization between cell lines and even between organisms. Finally, we predict 29 
enhancers in cell lines with many transcription-factor binding sites. In turn, this highlights 30 
distinct differences between the type of binding at enhancers and promoters, enabling 31 
the construction of a secondary model discriminating between these two. 32 
 33 
  34 
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Introduction 35 
 36 
Enhancers are gene regulatory elements that activate expression of target genes from a 37 
distance [1]. Enhancers are turned on in a space and time-dependent manner 38 
contributing to the formation of a large assortment of cell-types with different 39 
morphologies and functions even though each cell in an organism contains a nearly 40 
identical genome [2-4]. Moreover, changes in the sequences of regulatory elements are 41 
thought to play a significant role in the evolution of species[5-9]. Understanding 42 
enhancer function and evolution is currently an area of great interest because variants 43 
within distal regulatory elements are also associated with various traits and diseases 44 
during genome-wide association studies [10-12]. However, the vast majority of 45 
enhancers and their spatiotemporal activities remain unknown because it is not easy to 46 
predict their activity based on DNA sequence or chromatin state [13, 14]. 47 
Traditionally, the regulatory activity of enhancers and promoters were experimentally 48 
validated in a non-native context using low throughput heterologous reporter constructs 49 
leading to a small number of validated enhancers that function in the same mammalian 50 
cell-type [15, 16]. In addition to the small numbers, the validated enhancers were 51 
typically selected based on conserved noncoding regions [17] with particular patterns of 52 
chromatin [18], transcription-factor binding, [19] or noncoding transcription [20]. The 53 
small number and biases within the validated enhancers make them inappropriate for 54 
parameterizing tissue-specific enhancer prediction models [16]. As a result, most 55 
theoretical methods to predict enhancers could not optimally parameterize their models 56 
using a gold standard set of functional elements. Instead, most of these models were 57 
parameterized based on certain heuristic features associated with enhancers, which 58 
were then utilized to predict enhancers [19, 21-30]. For example, two of the widest used 59 
methods for predicting enhancers were based on the fact that these elements are 60 
expected to contain a cluster of transcription factor binding sites [24] and their activity is 61 
often correlated with an enrichment of certain post-translational modifications on histone 62 
proteins [27, 30].  These predictions were not rigorously assessed as very few putative 63 
enhancers could be validated experimentally and it remains challenging to assess the 64 
performance of different methods for enhancer prediction.  65 
 66 
In recent times, due to the advent of next generation sequencing, a number of 67 
transfection and transduction-based assays were developed to experimentally test the 68 
regulatory activity of thousands of regions simultaneously in a massively parallel fashion 69 
[31-37]. In these experiments, several plasmids that each contains a single core 70 
promoter upstream of a luciferase or GFP gene are transfected or transduced into cells. 71 
These plasmids are used to test the regulatory activity of different regions by placing one 72 
region near the core promoter in each plasmid as differences in the gene’s expression 73 
occur due to the differences in the activity of the tested region. STARR-seq was one 74 
such MPRA that was used to test the regulatory activity of the fly genome in several cell-75 
types [31, 38] and was used to identify thousands of cell-type specific enhancers and 76 
promoters. MPRAs have confirmed that active enhancers and promoters tend to be 77 
depleted of histone proteins and contain accessible DNA on which various transcription 78 
factors and cofactors bind [39, 40]. These regulatory regions also tend to be flanked by 79 
nucleosomes that contain histone proteins with certain characteristic post-translational 80 
modifications. These attributes lead to an enriched peak-trough-peak (“double peak”) 81 
signal in different ChIP-Seq experiments for various histone modifications such as 82 
acetylation on H3K27 and methylations on H3K4. The troughs in the double peak ChIP-83 
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seq signal represent the accessible DNA that leads to a peak in the DNase-I 84 
hypersensitivity (DHS) at the enhancer [41]. However, the optimal method to combine 85 
information from multiple epigenetic marks to make cell-type specific regulatory 86 
predictions remains unknown. For the first time, using data from several MPRAs, we 87 
have the ability to properly train our models based on a large number of experimentally 88 
validated enhancers and test the performance of different models for enhancer 89 
prediction using cross validation.  90 
 91 
We developed a new supervised machine-learning method that was trained and tested 92 
on large number of experimentally active regulatory regions identified in MPRAs to 93 
accurately predict active enhancers and promoters in a cell-type specific manner. Unlike 94 
previous prediction methods that focused on the enrichment (or signal) of different 95 
epigenetic datasets, we developed a method to also take into account the enhancer-96 
associated pattern within different epigenetic signals. As the epigenetic signal around 97 
each enhancer is noisy, we aggregated the signal around thousands of enhancers 98 
identified using MPRAs to increase the signal-to-noise ratio and identified the shape 99 
associated with active regulatory regions. The epigenetic signal shapes associated with 100 
promoters and enhancers are conserved across millions of years of evolution and these 101 
models can be used to predict enhancers and promoters in different cell-types and 102 
tissues and across diverse eukaryotic species. We further created simple to use 103 
transferrable statistical models with six parameters that can be used to predict 104 
enhancers and promoters in several eukaryotic species including fly, mouse, and 105 
human. We applied these models to predict active enhancers and promoters in the H1-106 
human embryonic stem cell (H1-hESC), a highly studied human cell-line in the ENCODE 107 
datasets. These analyses show that the pattern of transcription factor (TF) binding and 108 
co-binding varies between enhancers and promoters. The pattern of TF and co-TF 109 
binding at active enhancers is much more heterogeneous than the corresponding 110 
patterns on promoters. The pattern of TF binding can be used to distinguish enhancers 111 
from promoters with high accuracy. Thus, our methods provide a framework that utilizes 112 
different epigenetic genomics datasets to predict active regulatory regions in a cell-type 113 
specific manner and then utilizes further functional genomics datasets to identify key TFs 114 
associated with active regulatory regions within these cell-types. 115 
 116 
Results 117 
 118 
Aggregation of epigenetic signal to create metaprofile: 119 
 120 
We developed a framework to predict activating regulatory elements utilizing the 121 
epigenetic signal patterns associated with experimentally validated promoters and 122 
enhancers [31]. We aggregated the signal of histone modifications on MPRA peaks to 123 
remove noise in the signal and created a metaprofile of the double peak signals of 124 
histone modifications flanking enhancers and promoters. MPRA peaks typically consist 125 
of a mixture of enhancers and promoters, and at this stage, we do not differentiate 126 
between the two sets of regulatory elements. These metaprofiles were then utilized in a 127 
pattern recognition algorithm for predicting active promoters and enhancers in a cell-type 128 
specific manner. 129 
 130 
These metaprofiles were initially created using the histone modification H3K27ac at 131 
active STARR-seq peaks (see Figure 1 and Methods) identified in the S2 cell-line of fly. 132 
Approximately 70% of the active STARR-seq peaks contain an easily identifiable double 133 
peak pattern even though there is a lot of variability in the distance between the two 134 
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maxima of the double peak in the ChIP-chip signal (Figure S1). Even though the 135 
minimum tends to occur in the center of these two maxima on average, the distance 136 
between the two maxima in the double peaks can vary between 300 and 1100 base 137 
pairs. During aggregation, we aligned the two maxima in the H3K27ac signal across 138 
different STARR-seq peaks, followed by interpolation and smoothening the signal before 139 
calculating the average metaprofile. In addition, an optional flipping step was performed 140 
to maintain the asymmetry in the underlying H3K27ac double peak because it may be 141 
associated with the directionality of transcription [42]. For the first time, we also 142 
calculated the dependent metaprofiles for thirty other histone marks and DHS signal by 143 
applying the same set of transformations to these datasets. The metaprofile for the 144 
histone marks associated with active regulatory regions were also double peak signals 145 
and the maxima across different histone modification signals tended to align with each 146 
other on average (Figure S2). This indicates that a large number of histone modifications 147 
tend to simultaneously co-occur on the nucleosomes flanking an active enhancer or 148 
promoter. In contrast, as expected, the DHS signal displayed a single peak at the center 149 
of the H3K27ac double peak (Figure 1). In addition, repressive marks such as 150 
H3K27me3 were depleted in these regions and the metaprofile for these regions did not 151 
contain a double peak signal (Figure S2).  152 
 153 
Occurrence of metaprofile is predictive of regulatory activity: 154 
 155 
We evaluated whether these metaprofiles can be utilized to predict active promoters and 156 
enhancers using matched filters, a well-established algorithm in template recognition.  A 157 
matched filter is the optimal pattern recognition algorithm that uses a shape-matching 158 
filter to recognize the occurrence of a template in the presence of stochastic noise [43]. 159 
We evaluated whether the occurrence of the epigenetic metaprofiles identified for the 160 
histone marks and DHS can be used to predict active enhancers and promoters using 161 
receiver operating characteristic (ROC) and precision-recall (PR) curves. The PR curves 162 
are particularly useful to assess the performance of classifiers in skewed or imbalanced 163 
data sets in which one of the classes is observed much more frequently as compared to 164 
the other. On these imbalanced data sets, PR curves are useful alternative to ROC 165 
curves as the precision is directly related to the false detection ratio at different 166 
thresholds. The PR curve highlights differences in performance of different models even 167 
when their ROC curves remain comparable [44]. The matched filter score is higher in 168 
genomic regions where the template pattern occurs in the corresponding signal track 169 
while it is low when only noise is present in the signal (Figure 1). Due to the 170 
aforementioned variability in the double peak pattern, the H3K27ac signal track is 171 
scanned with multiple matched filters with templates that vary in width between the two 172 
maxima in the double peak and the highest matched filter score with these matched 173 
filters is used to rate the regulatory potential of this region (see Methods). The 174 
dependent profiles are then used on the same region with the matched filter to score the 175 
corresponding genomic tracks. 176 
 177 
We used 10-fold cross validation to assess the performance of matched filters for 178 
individual histone marks to predict active STARR-seq peaks. In Figure 2, we observe 179 
that the H3K27ac matched filter is the single most accurate feature for predicting active 180 
regulatory regions (AUROC=0.92, AUPR=0.72) identified using STARR-seq. This is 181 
consistent with the literature as H3K27ac enriched peaks are often used to predict active 182 
promoters and enhancers [23, 45, 46]. In general, several histone acetylation (H3K27ac, 183 
H3K9ac, H4K12ac, H2BK5ac, H4K8ac, H4K5ac, H3K18ac) marks as well as the H1, 184 
H3K4me2, and DHS matched filters are the most accurate marks (see Figure 2 and 185 
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Table S1) because the matched filter scores for these regions on these marks are higher 186 
for STARR-seq peaks (Figure S3). The degree to which the matched filter scores for 187 
promoters and enhancers are higher than the matched filter scores for the rest of the 188 
genome is a measure of the signal to noise ratio for regulatory region prediction in the 189 
corresponding feature’s genomic track and the larger the separation between positives 190 
and negatives, the greater the accuracy of the corresponding matched filter for 191 
predicting active regulatory regions. Interestingly, the distribution of matched filter scores 192 
for STARR-seq peaks are unimodal for each histone mark except for H3K4me1, 193 
H3K4me3, and H2Av, which are bimodal (Figure S3). We also show that the matched 194 
filter scores are more accurate for predicting active STARR-seq peaks than enrichment 195 
of signal alone as they outperform the histone peaks on ROC and PR curves (Figure 196 
S4). 197 
 198 
While a single STARR-seq experiment identifies thousands of active regulatory regions, 199 
these regions display core-promoter specificity and different sets of enhancers are 200 
identified when different core promoters are used in the same cell-type [47-51]. As we 201 
wanted to create a framework to predict all the enhancers and promoters active in a 202 
particular cell-type, we combined the peaks identified from multiple STARR-seq 203 
experiments in the S2 cell-type and reassessed the performance of the matched filters at 204 
predicting these regulatory regions. Merging the STARR-seq peaks from multiple core 205 
promoters in the S2 cell-type leads to higher AUROC and AUPR for the matched filters 206 
from most histone marks (Figure 2).  207 
 208 
Machine learning can combine matched filter scores from different epigenetic 209 
features: 210 
 211 
We combined the normalized matched filter scores (see Methods) from six different 212 
epigenetic marks (H3K27ac, H3K4me1, H3K4me2, H3K4me3, H3K9ac, and DHS) 213 
associated with active regulatory regions by the Roadmap Epigenomics Mapping [52] 214 
and the ENCODE [53] Consortia using a linear SVM [54] and the integrated model 215 
achieved a higher accuracy than the individual matched filter scores (Figure 2). We also 216 
assessed the performance of other statistical approaches for combining the features 217 
(including non-linear models) in Figure S6 and all these models performed similarly. By 218 
using only six features, we ensure that our model is capable of being applied to many 219 
cell-lines and tissues on which the relevant experiments have been performed. These 220 
models are trained to learn the patterns in the matched filter scores for different 221 
epigenetic marks within experimentally verified regulatory regions and we chose these 222 
marks as we wanted to assess the applicability of these machine learning models to 223 
predict active enhancers and promoters across different cell-types and species. As 224 
expected, the integrated models outperformed the individual matched filter scores, as 225 
they are able to leverage information from multiple epigenetic marks. In addition, the six-226 
parameter integrated model displayed higher accuracy after combining the peaks 227 
identified using different core promoters. In the integrated model, the normalized 228 
matched filter score for each epigenetic feature in a particular region is scaled by its 229 
optimized weight and added together to form the discriminant function. The sign of the 230 
discriminant function is then used to predict whether the region is regulatory. The 231 
features with large positive and negative weights are predicted to be important for 232 
discriminating regulatory regions from non-regulatory regions in such models. They can 233 
also be used to measure the amount of non-redundant information added by each 234 
feature in the integrated model. According to the model, the acetylations (H3K27ac and 235 
H3K9ac) are the most important feature for predicting active regulatory regions from 236 
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inactive regions. While the DHS matched filter performed well as an individual feature 237 
(AUPR in Figure 2), the information in DHS is redundant with the information in the 238 
histone marks as indicated by the fact that it has the lowest weight among the six 239 
features in the integrated model. We compared several other machine learning 240 
algorithms including nonlinear SVM (results not shown) to combine the machine learning 241 
models and found that they all displayed nearly similar accuracy and similar features 242 
were more important across these different models (Figure S5).  243 
 244 
To assess the information contained in other epigenetic marks, we combined the 245 
matched filters from all 30 measured histone marks along with the DHS matched filter in 246 
separate statistical models (Figure S6) and these model displayed higher accuracy 247 
(AUROC=0.97, AUPR=0.93 for SVM model with multiple core promoters) than the 6 248 
feature model presented in Figure 2. The feature weights in this model indicated that 249 
H3K27ac contains the most information regarding the activity of regulatory regions. 250 
However, we found that a few other acetylations such as H2BK5ac, H4ac, and H4K12ac 251 
contain additional non-redundant information regarding the activity of these regulatory 252 
regions and might improve the accuracy of promoter and enhancer prediction from 253 
machine learning models (Figure S6). 254 
 255 
Distinct epigenetic signals associated with promoters and enhancers: 256 
 257 
We proceeded to create individual metaprofiles and machine learning models for the two 258 
classes of regulatory activators – promoters (or proximal) and enhancers (or distal). We 259 
divided all the active STARR-seq peaks into promoters or enhancers based on their 260 
distance to the closest transcription start site (TSS) to delineate their likely function in the 261 
native context. Due to the conservative distance metric used in this study (1kb upstream 262 
and downstream of TSS in fly), the enhancers are regulatory elements that are not close 263 
to any known TSS even though a few of the promoters may actually function as 264 
enhancers. We then created metaprofiles of the different epigenetic marks on the 265 
promoters and enhancers and assessed the performance of the matched filters for 266 
predicting active regulatory regions within each category (Figure 3). The highest 267 
matched filter scores are typically observed on promoters and the matched filters for 268 
each of the six features tended to perform better for promoter prediction. The H3K27ac 269 
matched filter continues to outperform other epigenetic marks for predicting active 270 
promoters and enhancers (Figure 3). In addition, the DHS, H3K9ac, and H3K4me2 271 
matched filters also performed reasonably for promoter and enhancer prediction. Similar 272 
to previous studies [55, 56], we observed that the H3K4me1 metaprofile performs better 273 
for predicting enhancers while it is close to random for predicting promoters. In contrast, 274 
the H3K4me3 metaprofile can be utilized to predict promoters and not enhancers. The 275 
histogram for matched filter scores show that H3K4me1 matched filter score is higher 276 
near enhancers while the H3K4me3 matched filter score tends to be higher near 277 
promoters (Figure S7). The mixture of these two populations lead to bimodal 278 
distributions for H3K4me1 and H3K4me3 matched filter scores when calculated over all 279 
regulatory regions (Figure S3). 280 
 281 
We created two different integrated models to learn the combination of features 282 
associated with promoters and enhancers. These integrated models outperformed the 283 
individual matched filters at predicting active enhancers and promoters (Figures 3 and 284 
S8). In addition, the weights of the individual features identified the difference in roles of 285 
the H3K4me1 and H3K4me3 matched filter scores at discriminating active promoters 286 
and enhancers from inactive regions in the genome. The promoter-based (enhancer-287 
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based) model performed much more poorly at predicting enhancers (promoters) 288 
indicating the unique properties of these regions (Figures S10 and S11). We also 289 
created two integrated models utilizing matched filter scores for all thirty histone marks 290 
as features for predicting enhancers and promoters. The additional histone marks 291 
provided independent information regarding the activity of promoters and enhancers as 292 
these features increased the accuracy of these models (Figure S9). The weights of 293 
different features indicate that H2BK5ac again displays the most independent 294 
information for accurately predicting active enhancers and promoters (Figures S9). We 295 
observe similar trends and accuracy with several different machine learning models 296 
(Figures S8 and S9).     297 
 298 
The epigenetic underpinnings of active regulatory regions are highly conserved in 299 
evolution: 300 
 301 
In order to assess the transferability of these metaprofiles and machine learning models 302 
for predicting regulatory regions in other tissues and cell-types, we assessed the 303 
accuracy of these models for predicting regulatory elements identified using the 304 
transduction-based FIREWACh assay in mouse embryonic stem cells (mESC) [36]. The 305 
metaprofiles for individual histone marks learned using active promoters and enhancers 306 
identified with the STARR-seq assay in the S2 cell-line were used with matched filters to 307 
predict the regulatory activity of different regions in mESC based on the epigenetic 308 
signals in mESC (Figure 4). The matched filters for individual histone marks displayed 309 
similar accuracy for predicting enhancers and promoters in mESC as in the original S2 310 
cell-line. In addition, the 6-parameter SVM models learned using STARR-seq data in S2 311 
cell-line were also highly accurate at predicting active enhancers and promoters in 312 
mouse (Figure 4).  313 
 314 
This indicates that the epigenetic profiles associated with active enhancers and 315 
promoters are conserved over 600 million years of evolution underscoring the 316 
importance of such epigenetic modifications in maintaining the regulatory role of 317 
enhancers and promoters across different cell-types and species. As these regulatory 318 
regions were identified using a single core promoter in FIREWACh, the performance of 319 
the different models in Figure 4 is probably underestimated. The accuracy of these 320 
models enables us to use the metaprofiles and statistical models learned using STARR-321 
seq data in fly to predict enhancers in different cell-lines and eukaryotic species.  322 
Consistent with this, the metaprofile and machine learning models learned using 323 
STARR-seq experiment in BG3 cell-line (fly) can be utilized to predict active promoters 324 
and enhancers in the S2 cell-line (Figure S12). 325 

 326 
Different Transcription Factors bind to enhancers and promoters 327 
 328 
The ENCODE consortium has ChIP-Seq data for 60 transcription related factors in H1-329 
hESC cell line, including a few chromatin remodelers and histone modification enzymes. 330 
Collectively we call all these transcription related factors “TF”s for simplicity. We utilized 331 
the 6 parameter integrated model to predict active enhancers and promoters in the 332 
hESC cell-line based on the epigenetic datasets measured by the ENCODE consortium 333 
to study the patterns of TF binding within enhancers and promoters. Using these 334 
models, we predicted 43463 active regulatory regions, of which 22828 (52.5%) are 335 
within 2kb of the TSS and are labeled as promoters. A large proportion of the predicted 336 
enhancers are found in the introns (30.41%) and intergenic regions (13.93%) (Figure 337 
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S13). The predicted promoters and enhancers are significantly closer to active genes 338 
than might be expected randomly (Figure S14).  339 
 340 
We further studied the differences in TF binding at promoters and enhancers (Figure 5 341 
and Figure S15). Most promoters and enhancers contain multiple TF-binding sites.  342 
However, the TF-binding of enhancers is more heterogeneous than promoters: in 343 
particular, more than 70% of the promoters bind to the same set of 2-3 sequence-344 
specific TFs, which is not observed for enhancers. The majority of the promoters also 345 
contain peaks for several TATA-associated factors (TAF1, TAF7, and TBP). Overall, the 346 
high heterogeneity associated with enhancer TF-binding is consistent with the absence 347 
of a sequence code (or grammar) which can be utilized to easily identify active 348 
enhancers on a genome-wide fashion. 349 
 350 
In Figure 5, we show that the patterns of TF binding within regulatory regions can be 351 
utilized in a logistic regression model to distinguish active enhancers from promoters 352 
with high accuracy (AUPR = 0.89, AUROC = 0.87). We were also able to identify the 353 
most important features that distinguish promoters from enhancers. In addition to TATA-354 
box associated factors such as TAF1, TAF7, and TBP, the RNA polymerase-II binding 355 
patterns as well as chromatin remodelers such as KDM4A and PHF8 are some of the 356 
most important factors that distinguish promoters from enhancers in H1-hESC. This 357 
provides a framework that can be utilized to identify the most important TFs associated 358 
with active enhancers and promoters in each cell-type.  359 
 360 
In Figure 5A, we show that the pattern of TF binding at promoters is different from that at 361 
enhancers and TF-binding at enhancers displaying more heterogeneity. As the set of 362 
TFs binding promoters is fairly uniform, the same pairs of TF also tend to bind together 363 
on promoters. In contrast, for enhancers, the patterns of TF co-binding is much more 364 
heterogeneous and different enhancers tend to contain different TF-pairs. This can be 365 
observed in the patterns of TF co-binding in Figures 5C and S16. These TF co-366 
associations could lead to mechanistic insights of cooperativity between TFs. For 367 
example, similar to a previous study [57], CTCF and ZNF143 may function cooperatively 368 
as they are observed to co-occur frequently at distal regulatory regions in this study. 369 
 370 
Discussion 371 
 372 
Our ability to accurately predict active enhancers in a cell-type specific manner using 373 
transferable supervised machine learning models that were trained based on regulatory 374 
regions identified using new NGS-enabled MPRAs distinguishes our method from 375 
previous enhancer prediction methods. Currently, most existing methods were 376 
parameterized (not properly “trained”) with regions that had various features associated 377 
with promoters and enhancers and only a small number of these regions were typically 378 
tested for regulatory activity experimentally in an ad hoc manner. The MPRAs were able 379 
to firmly establish that certain histone modifications occur on nucleosomes flanking 380 
active regulatory regions leading to the formation characteristic double peak pattern 381 
within the ChIP-signal [39]. This motivated us to create matched filter models that were 382 
able to identify these patterns within the shape of the ChIP-signal in the presence of 383 
stochastic noise with the highest signal to noise ratio. Furthermore, we were able to 384 
combine the matched filter scores from different epigenetic features using simple 385 
transferrable linear SVM models and learned the most informative epigenetic features 386 
for regulatory region predictions.  387 
 388 
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The sensitivity and selectivity of various MPRAs is currently a matter of debate. A 389 
majority of these MPRAs test the regulatory activity of different regions by assessing 390 
their ability to induce gene expression in a plasmid after transfecting it into a cell-type of 391 
interest [31]. Such assays may not recapitulate the native chromatin environment found 392 
in chromosomes, which may be necessary for assessing whether the regulatory region 393 
is active in its genomic environment.  394 
 395 
Here, we show for the first time, that the patterns in the epigenetic signals associated 396 
with active enhancers identified using a transfection-based assay (STARR-seq) can be 397 
utilized to predict the activity of enhancers in a transduction-based assay (FIREWACh). 398 
During the FIREWACh assay, random nucleosome-free regions in mESC were captured 399 
and assayed for regulatory activity of the GFP gene by utilizing a lentiviral plasmid vector 400 
and inserted (or transduced) these vectors into the chromosome in mESC cells. As the 401 
FIREWACh assay tests the regulatory activity of enhancers after transduction, we 402 
assume that these regions were tested in their native chromatin environment and 403 
transduction-based assays form a more stringent test for regulatory activity. However, 404 
due to the shorter length of the tested region (< 300 bp) and the single core promoter 405 
used in the FIREWACh assay, we think that the accuracy of the statistical models in 406 
Figure 4 is underestimated. 407 
 408 
We were able to assess the accuracy of different epigenetic metaprofiles for predicting 409 
regulatory activity using our statistical models. While different acetylation modifications 410 
are associated with active regions of the genome, we were able to compare close to 30 411 
histone marks for enhancer and promoter predictions. The H3K27ac matched filter 412 
remains the single most important feature for predicting active regulatory regions while 413 
H3K4me1 and H3K4me3 are known to distinguish promoters from enhancers. However, 414 
our analysis characterizes the amount of redundancy in information within the 415 
metaprofile of different epigenetic features for predicting active regulatory regions and 416 
shows that ChIP-experiments of H2BK5ac, H4ac, and H2A variants could also produce 417 
independent information that can improve the accuracy of promoter and enhancer 418 
predictions. In addition to these 30-feature models, we also provide a simple to use six-419 
parameter SVM model for combining H3K27ac, H3K9ac, H3K4me1, H3K4me2, 420 
H3K4me3, and DHS to predict active promoters and enhancers in a cell-type specific 421 
manner. We also showed that the metaprofiles and the combination of epigenetic marks 422 
associated with active regulatory regions are highly conserved in evolution making these 423 
models highly transferable. These six histone marks have been measured for a number 424 
of different tissues and cell-types by the Roadmap Epigenomics Mapping Consortium 425 
[39], the ENCODE [53], and the modENCODE Consortium [58]. 426 
 427 
One aspect that is discussed less frequently is the effect of core promoter on enhancer 428 
and promoter prediction. MPRAs show that the regulatory activity of enhancers and 429 
promoters in a regulatory assay depends on the core promoter used during the 430 
experiment [51]. As the transcription factors that bind to each regulatory region are 431 
thought to play a key role in core-promoter specificity [47, 51], we suspect that machine 432 
learning models that contain sequence or motif-based features may be biased towards 433 
certain transcription factor binding sites when trained with regulatory regions identified 434 
using a single-core promoter. To avoid such biases, it would be more appropriate to train 435 
models with sequence-based features when the validation experiments are performed 436 
with multiple core promoters. In the absence of validation data with multiple core 437 
promoters, it may be more suitable to train models using epigenetic features as such 438 
models contain no sequence-based information. In comparing the predictions from such 439 



 11

models with experiments using a single core promoter, some of the strongest predictions 440 
may be mislabeled as negatives even though they contain some regulatory activity 441 
leading to a lower accuracy estimate as shown in Figure 2. 442 
 443 
As the epigenetic profiles and statistical models learned in this study are transferable 444 
across different cell-lines and species, we are able to apply these models to predict 445 
active enhancers and promoters in different cell-types. We applied these models to 446 
predict enhancers and promoters in H1-hESC, a highly studied ENCODE cell-line. This 447 
allowed us to analyze the differences in the patterns of TF binding at proximal and distal 448 
regulatory regions. The TF binding and co-binding patterns at enhancers is much more 449 
heterogeneous than that at promoters. We think that this heterogeneity in TF binding 450 
patterns makes it much more difficult to predict enhancers due to the absence of obvious 451 
sequence patterns in distal regulatory regions. However, we were also able to create 452 
highly accurate machine learning models that are able to distinguish proximal promoter 453 
regions from distal enhancers based on the patterns of TF ChIP-seq peaks within these 454 
regulatory regions. The conservation of the epigenetic underpinnings underlying active 455 
regulatory regions sets the stage for our method to study the evolution of tissue-specific 456 
enhancers and their genomic properties across different eukaryotic species. 457 
  458 
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 459 
Figure Captions 460 
 461 
Figure 1: Creation of metaprofile. A) We identified the “double peak” pattern in the 462 
H3K27ac signal close to STARR-seq peaks. The red triangles denote the position of the 463 
two maxima in the double peak. B) We aggregated the H3K27ac signal around these 464 
regions after aligning the flanking maxima, using interpolation and smoothing on the 465 
H3K27ac signal, and averaged the signal across different MPRA peaks to create the 466 
metaprofile in C). The exact same operations can be performed on other histone signals 467 
and DHS to create metaprofiles in other dependent epigenetic signals. D) Matched filters 468 
can be used to scan the histone and/or DHS datasets to identify the occurrence of the 469 
corresponding pattern in the genome. E) The matched filter scores are high in regions 470 
where the profile occurs (grey region shows an example) and it is low when only noise is 471 
present in the data. The individual matched filter scores from different epigenetic 472 
datasets can be combined using integrated model in F) to predict active promoters and 473 
enhancers in a genome wide fashion. 474 
 475 
Figure 2: Performance of matched filters and integrated models for predicting 476 
MPRA peaks. The performance of the matched filters of different epigenetic marks and 477 
the integrated model for predicting all STARR-seq peaks is compared here using 10-fold 478 
cross validation. A) The area under the receiver-operating characteristic (AUROC) and 479 
the precision-recall (AUPR) curves are used to measure the accuracy of different 480 
matched filters and the integrated model. B) The weights of the different features in the 481 
integrated model are shown and these weights may be used as a proxy for the 482 
importance of each feature in the integrated model. C) The individual ROC and PR 483 
curves for each matched filter and the integrated model are shown. The performance of 484 
these features and the integrated model for predicting the STARR-seq peaks using 485 
multiple core promoters and single core promoter are compared. The numbers within the 486 
parentheses in A) refer to the AUROC and AUPR for predicting the peaks using a single 487 
STARR-seq core promoter while the numbers outside the parentheses refers to the 488 
performance of the model for predicting peaks from multiple core promoters. 489 
 490 
 Figure 3: Performance of matched filters and integrated models for predicting 491 
promoters and enhancers. The performance of the matched filters of different 492 
epigenetic marks and the integrated model for predicting active promoters and 493 
enhancers are compared here using 10-fold cross validation. A) The numbers within 494 
parentheses refer to the AUROC and AUPR for predicting promoters while the numbers 495 
outside parentheses refer the performance of the models for predicting enhancers.  B) 496 
The weights of the different features in the integrated models for promoter and enhancer 497 
prediction are shown. C) The individual ROC and PR curves for each matched filter and 498 
the integrated model are shown. The performance of these features and the integrated 499 
model for predicting the active promoters and enhancers using multiple core promoters 500 
are compared.  501 

  502 
Figure 4: Conservation of epigenetic features. The performance of the fly-based 503 
matched filters and the integrated model for predicting active promoters and enhancers 504 
in mouse embryonic stem cells identified using FIREWACh. A Similar to Figure 3, the 505 
numbers within parentheses refer to the AUROC and AUPR for predicting promoters 506 
while the numbers outside parentheses refer the performance of the models for 507 
predicting enhancers.  B) The weights of the different features in the integrated models 508 
for promoter and enhancer prediction are shown. C) The individual ROC and PR curves 509 
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for each matched filter and the integrated model are shown. The performance of these 510 
features and the integrated model for predicting the active promoters and enhancers 511 
identified using FIREWACh are shown.  512 
 513 
Figure 5: Differences in TF binding patterns at enhancers and promoters. A) The 514 
fraction of predicted promoters and enhancers that overlap with ENCODE ChIP-seq 515 
peaks for different TFs in H1-hESC are shown. The names of all TFs in the figure can be 516 
viewed in Figure S15. B) The AUROC and AUPR for a logistic regression model created 517 
from the pattern of TF binding at each regulatory region to distinguish enhancers from 518 
promoters are shown. The weight of each feature in the logistic regression model can be 519 
used to identify the most important TFs that distinguish enhancers from promoters. C) 520 
The patterns of TF co-binding at active promoters and enhancers are shown. The names 521 
of all the TFs in this graph can be viewed in Figure S16. 522 
  523 



 14

References: 524 
 525 1. Banerji, J., S. Rusconi, and W. Schaffner, Expression of a beta-globin gene is 526 

enhanced by remote SV40 DNA sequences. Cell, 1981. 27(2 Pt 1): p. 299-308. 527 2. Ong, C.T. and V.G. Corces, Enhancer function: new insights into the regulation 528 
of tissue-specific gene expression. Nat Rev Genet, 2011. 12(4): p. 283-93. 529 3. Woolfe, A., et al., Highly conserved non-coding sequences are associated with 530 
vertebrate development. PLoS Biol, 2005. 3(1): p. e7. 531 4. Spitz, F. and E.E. Furlong, Transcription factors: from enhancer binding to 532 
developmental control. Nat Rev Genet, 2012. 13(9): p. 613-26. 533 5. Cotney, J., et al., The evolution of lineage-specific regulatory activities in the 534 
human embryonic limb. Cell, 2013. 154(1): p. 185-96. 535 6. Degner, J.F., et al., DNase I sensitivity QTLs are a major determinant of human 536 
expression variation. Nature, 2012. 482(7385): p. 390-4. 537 7. Shibata, Y., et al., Extensive evolutionary changes in regulatory element activity 538 
during human origins are associated with altered gene expression and positive 539 
selection. PLoS Genet, 2012. 8(6): p. e1002789. 540 8. Villar, D., et al., Enhancer evolution across 20 mammalian species. Cell, 2015. 541 
160(3): p. 554-66. 542 9. Xiao, S., et al., Comparative epigenomic annotation of regulatory DNA. Cell, 543 2012. 149(6): p. 1381-92. 544 10. Wray, G.A., The evolutionary significance of cis-regulatory mutations. Nat Rev 545 Genet, 2007. 8(3): p. 206-16. 546 11. Corradin, O. and P.C. Scacheri, Enhancer variants: evaluating functions in 547 
common disease. Genome Med, 2014. 6(10): p. 85. 548 12. Gusev, A., et al., Partitioning heritability of regulatory and cell-type-specific 549 
variants across 11 common diseases. Am J Hum Genet, 2014. 95(5): p. 535-52. 550 13. Slattery, M., et al., Absence of a simple code: how transcription factors read the 551 
genome. Trends Biochem Sci, 2014. 39(9): p. 381-99. 552 14. Levo, M., et al., Unraveling determinants of transcription factor binding outside 553 
the core binding site. Genome Res, 2015. 25(7): p. 1018-29. 554 15. Pennacchio, L.A., et al., Enhancers: five essential questions. Nat Rev Genet, 555 2013. 14(4): p. 288-95. 556 16. Erwin, G.D., et al., Integrating diverse datasets improves developmental 557 
enhancer prediction. PLoS Comput Biol, 2014. 10(6): p. e1003677. 558 17. Pennacchio, L.A., et al., In vivo enhancer analysis of human conserved non-559 
coding sequences. Nature, 2006. 444(7118): p. 499-502. 560 18. Nord, A.S., et al., Rapid and pervasive changes in genome-wide enhancer usage 561 
during mammalian development. Cell, 2013. 155(7): p. 1521-31. 562 19. Visel, A., et al., ChIP-seq accurately predicts tissue-specific activity of enhancers. 563 Nature, 2009. 457(7231): p. 854-8. 564 20. Andersson, R., et al., An atlas of active enhancers across human cell types and 565 
tissues. Nature, 2014. 507(7493): p. 455-61. 566 21. Narlikar, L., et al., Genome-wide discovery of human heart enhancers. Genome 567 Res, 2010. 20(3): p. 381-92. 568 



 15

22. Visel, A., et al., Ultraconservation identifies a small subset of extremely 569 
constrained developmental enhancers. Nat Genet, 2008. 40(2): p. 158-60. 570 23. Bonn, S., et al., Tissue-specific analysis of chromatin state identifies temporal 571 
signatures of enhancer activity during embryonic development. Nat Genet, 572 2012. 44(2): p. 148-56. 573 24. Yip, K.Y., et al., Classification of human genomic regions based on 574 
experimentally determined binding sites of more than 100 transcription-575 
related factors. Genome Biol, 2012. 13(9): p. R48. 576 25. Ghandi, M., et al., Enhanced regulatory sequence prediction using gapped k-577 
mer features. PLoS Comput Biol, 2014. 10(7): p. e1003711. 578 26. Heintzman, N.D., et al., Distinct and predictive chromatin signatures of 579 
transcriptional promoters and enhancers in the human genome. Nat Genet, 580 2007. 39(3): p. 311-8. 581 27. Hoffman, M.M., et al., Unsupervised pattern discovery in human chromatin 582 
structure through genomic segmentation. Nat Methods, 2012. 9(5): p. 473-6. 583 28. Kharchenko, P.V., et al., Comprehensive analysis of the chromatin landscape in 584 
Drosophila melanogaster. Nature, 2011. 471(7339): p. 480-5. 585 29. He, H.H., et al., Nucleosome dynamics define transcriptional enhancers. Nat 586 Genet, 2010. 42(4): p. 343-7. 587 30. Ernst, J., et al., Mapping and analysis of chromatin state dynamics in nine 588 
human cell types. Nature, 2011. 473(7345): p. 43-9. 589 31. Arnold, C.D., et al., Genome-wide quantitative enhancer activity maps identified 590 
by STARR-seq. Science, 2013. 339(6123): p. 1074-7. 591 32. Dickel, D.E., et al., Function-based identification of mammalian enhancers 592 
using site-specific integration. Nat Methods, 2014. 11(5): p. 566-71. 593 33. Gisselbrecht, S.S., et al., Highly parallel assays of tissue-specific enhancers in 594 
whole Drosophila embryos. Nat Methods, 2013. 10(8): p. 774-80. 595 34. Kwasnieski, J.C., et al., High-throughput functional testing of ENCODE 596 
segmentation predictions. Genome Res, 2014. 24(10): p. 1595-602. 597 35. Melnikov, A., et al., Systematic dissection and optimization of inducible 598 
enhancers in human cells using a massively parallel reporter assay. Nat 599 Biotechnol, 2012. 30(3): p. 271-7. 600 36. Murtha, M., et al., FIREWACh: high-throughput functional detection of 601 
transcriptional regulatory modules in mammalian cells. Nat Methods, 2014. 602 
11(5): p. 559-65. 603 37. Patwardhan, R.P., et al., Massively parallel functional dissection of mammalian 604 
enhancers in vivo. Nat Biotechnol, 2012. 30(3): p. 265-70. 605 38. Yanez-Cuna, J.O., et al., Dissection of thousands of cell type-specific enhancers 606 
identifies dinucleotide repeat motifs as general enhancer features. Genome 607 Res, 2014. 24(7): p. 1147-56. 608 39. Shlyueva, D., G. Stampfel, and A. Stark, Transcriptional enhancers: from 609 
properties to genome-wide predictions. Nat Rev Genet, 2014. 15(4): p. 272-86. 610 40. Maston, G.A., et al., Characterization of enhancer function from genome-wide 611 
analyses. Annu Rev Genomics Hum Genet, 2012. 13: p. 29-57. 612 41. Thurman, R.E., et al., The accessible chromatin landscape of the human 613 
genome. Nature, 2012. 489(7414): p. 75-82. 614 



 16

42. Kundaje, A., et al., Ubiquitous heterogeneity and asymmetry of the chromatin 615 
environment at regulatory elements. Genome Res, 2012. 22(9): p. 1735-47. 616 43. Kumar, V.B.V.K., A. Mahalanobis, and R.D. Juday, Correlation Pattern 617 
Recognition. 2005. 618 44. Davis, J. and M. Goadrich, The Relationship Between Precision-Recall and ROC 619 
Curves. Proceedings of the 23rd international conference on Machine 620 Learning, 2006: p. 233-240. 621 45. Creyghton, M.P., et al., Histone H3K27ac separates active from poised 622 
enhancers and predicts developmental state. Proc Natl Acad Sci U S A, 2010. 623 
107(50): p. 21931-6. 624 46. Rada-Iglesias, A., et al., A unique chromatin signature uncovers early 625 
developmental enhancers in humans. Nature, 2011. 470(7333): p. 279-83. 626 47. Butler, J.E. and J.T. Kadonaga, Enhancer-promoter specificity mediated by DPE 627 
or TATA core promoter motifs. Genes Dev, 2001. 15(19): p. 2515-9. 628 48. Li, X. and M. Noll, Compatibility between enhancers and promoters determines 629 
the transcriptional specificity of gooseberry and gooseberry neuro in the 630 
Drosophila embryo. EMBO J, 1994. 13(2): p. 400-6. 631 49. Merli, C., et al., Promoter specificity mediates the independent regulation of 632 
neighboring genes. Genes Dev, 1996. 10(10): p. 1260-70. 633 50. Ohtsuki, S., M. Levine, and H.N. Cai, Different core promoters possess distinct 634 
regulatory activities in the Drosophila embryo. Genes Dev, 1998. 12(4): p. 635 547-56. 636 51. Zabidi, M.A., et al., Enhancer-core-promoter specificity separates 637 
developmental and housekeeping gene regulation. Nature, 2015. 518(7540): 638 p. 556-9. 639 52. Roadmap Epigenomics, C., et al., Integrative analysis of 111 reference human 640 
epigenomes. Nature, 2015. 518(7539): p. 317-30. 641 53. Consortium, E.P., An integrated encyclopedia of DNA elements in the human 642 
genome. Nature, 2012. 489(7414): p. 57-74. 643 54. Burges, C.J.C., A Tutorial on Support Vector Machines for Pattern Recognition. 644 Data Mining and Knowledge Discovery, 1998. 2: p. 121--167. 645 55. Rajagopal, N., et al., RFECS: a random-forest based algorithm for enhancer 646 
identification from chromatin state. PLoS Comput Biol, 2013. 9(3): p. 647 e1002968. 648 56. Koch, C.M., et al., The landscape of histone modifications across 1% of the 649 
human genome in five human cell lines. Genome Res, 2007. 17(6): p. 691-707. 650 57. Bailey, S.D., et al., ZNF143 provides sequence specificity to secure chromatin 651 
interactions at gene promoters. Nat Commun, 2015. 2: p. 6186. 652 58. mod, E.C., et al., Identification of functional elements and regulatory circuits by 653 
Drosophila modENCODE. Science, 2010. 330(6012): p. 1787-97. 654 

 655 












	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

