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Creation of Metaprofile: 8 
 9 
We utilized the smoothed histone signal tracks provided for the S2 cell-line by the 10 
modENCODE consortium [1] to aggregate the corresponding histone signals around the 11 
STARR-seq peaks [2]. This aggregation was performed to remove noise before using 12 
the metaprofile s(n) for identifying active regulatory regions in the genome. The genome-13 
wide profile for open chromatin (DNase-seq or DHS) for the S2 cell-line was calculated 14 
based on the experiments by the Stark lab [2]. To create the smoothened metaprofile, 15 
we aggregated the H3K27ac signal of active STARR-seq peaks with a noticeable 16 
“double peak” pattern within the H3K27ac signal in the S2 cell-line. All the STARR-seq 17 
peaks that overlap with DHS or H3K27ac peaks are assumed to be active regulatory 18 
regions in the genome.  19 
 20 
To identify double peak regions, we initially identified the minimum in the H3K27ac 21 
signal track closest to the middle of the STARR-seq peaks. A minimum is accepted if it 22 
has the lowest signal within a 100 base pair region in the H3K27ac signal track. Then we 23 
proceed to identify the flanking maxima (both sides of the minimum) within a total of 2-24 
kilo base pair region of the STARR-seq peak (1kb on each direction from the center of 25 
the STARR-seq peak). These maxima are accepted only if they have the highest signal 26 
within a 100 base pair region in the H3K27ac signal track. Approximately 70% of the 27 
active STARR-seq peaks contained an identifiable double peak within the H3K27ac 28 
signal. 29 
 30 
After identifying the double peaks surrounding STARR-seq peaks, we aggregated the 31 
signal after aligning the maxima flanking the regulatory region. The signal track is 32 
interpolated with a cubic spline fit so that the signal track contains equal number of 33 
points for each double peak region. All interpolation and smoothing steps were 34 
performed using the scipy module in python. The aggregated signal tracks are averaged 35 
to create the metaprofile for the double peak regions. While the signal tracks are 36 
aggregated based on identifying the double peak regions in the H3K27ac signal track, 37 
the same set of operations can be performed with any epigenetic mark expected to have 38 
the double peak pattern flanking regulatory regions.  39 
 40 
In addition, while creating the metaprofile for H3K27ac signal close to active STARR-seq 41 
peaks, we also performed the same set of transformations on other dependent 42 
epigenomic datasets (other histone marks and/or DHS signal). In this study (Figures 1 43 
and S2), the dependent profiles for all other epigenetic datasets are calculated by 44 
averaging the corresponding signal based on identifying double peak regions within 45 
H3K27ac signal. If the signal tracks of the other epigenetic marks also tend to contain a 46 
double peak pattern in the same regions, the metaprofiles for the corresponding 47 
epigenetic marks will also contain a double peak pattern as observed in Figure S2A. 48 
However, as DHS and repressive histone marks do not contain a double peak pattern 49 
(Figure S2), these regions do not have the same epigenetic template associated with 50 
enhancers. 51 
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 52 
Matched Filter Algorithm: 53 
 54 
The epigenetic signal at enhancers and promoters can be approximated as the linear 55 
superposition of background noise and the metaprofile s(n) learned in Figure 1 (Figure 56 
S2) for the corresponding experimental dataset. The matched filter h(n) is used to scan 57 
the epigenetic signal to identify the occurrence of the metaprofile pattern within different 58 
regions of the genome.  Before calculating the matched filter score, interpolation of 59 
signal is used to ensure that the scanned region contains the same number of points as 60 
the metaprofile. The matched filter process is equivalent to the computation of the cross 61 
correlation between the signal y(n) and the reverse of the transformed metaprofile 62 
template s*(N-n) (where N is the total number of points in the template). In other words: 63 
(݊)ݎ 64  =  ෍ (݅)ݕ ∗ ℎ(݅)ே

௜ୀଵ  

 65 
where h(i) is the matched filter and can be written as: 66 ℎ(݅) = ܰ)∗ݏ  − ݅) 
 67 
As shown in Figure S1, there is a large amount of variability in the span (distance 68 
between the two peaks in the histone signal) of the regulatory region in the epigenetic 69 
signal. As a result, we scan the genome with the matched filter scanning different spans 70 
of the genome (distance between the two peaks allowed to vary between 300 and 1100 71 
base pairs) and take the highest score as the matched filter score for that region. The 72 
matched filter is the filter that recognizes any given template in the presence of noise in 73 
a signal with the highest signal-to-noise ratio [3]. In the presence of white noise alone, 74 
the matched filter score is low and follows a Gaussian distribution (negatives). The 75 
presence of the metaprofile within the signal leads to higher matched filter scores for 76 
positives. 77 
 78 
Statistical Learning Models 79 
The matched filter scores for negatives for different histone marks are unimodal that can 80 
be fit using separate Gaussian distributions. The Z-scores of matched filter scores with 81 
respect to the negatives (random regions of genome) are used as input features for 82 
training different statistical learning models. The Z-score of the matched filter score for a 83 
region (z(i)) is: 84 ݖ(݅) = (݅)ݎ  − ߪߤ  

 85 
where r(i) is the matched filter score for region i while ߤ and ߪ are the mean and 86 
standard deviation of the Gaussian fit to the matched filter scores for random regions in 87 
genome. In the main text, we discuss our results of the Support Vector Machine (SVM) 88 
model, which is one of the most versatile and successful binary classifiers [4]. We 89 
utilized a linear kernel to distinguish between the positives and negatives. The linear 90 
SVM identifies a decision boundary that maximally discriminates the epigenetic features 91 
of regulatory regions from random regions of the genome in the SVM feature vector 92 
space.  93 
 94 
In Figure S5, we also present results for Ridge Regression [5], Random Forest [6], and 95 
Gaussian Naïve Bayes [7] models and the accuracy of different models are comparable. 96 
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Ridge regression is a linear regression technique that prevents over fitting by penalizing 97 
large weights for each feature. Random Forest is an ensemble learning method that 98 
operates by constructing a large number of decision trees and outputting the mean 99 
prediction of different decision trees. We used thousand trees for creating our enhancer 100 
and promoter prediction models. The naïve Bayes classifier is a family of simple 101 
probabilistic classifiers that assumes that all the features are independent of one 102 
another. We used scikit-learn [8] with default parameters for training and assessing the 103 
performance of all the statistical models. In general, the SVM and random forest models 104 
performed the best over all the tests and were the most flexible models.    105 
   106 
 107 
Assessing the Models: 108 
 109 
In order to assess the accuracy of matched filter for predicting enhancers and 110 
promoters, we used 10-fold cross validation. During 10-fold cross validation, the 111 
positives and negatives are randomly divided in to 10 groups each. Nine of the 10 112 
groups are randomly combined to train the model and the predictions are tested on the 113 
10th group. To evaluate the performance of trained classifiers, we performed 10-fold 114 
cross-validation on the training data and quantified our results with area under receiver-115 
operating characteristic (ROC), and area under precision-recall (PR) curves.  116 
 117 
In the ROC curve [9], the true positive (TP) rate is plotted against the false positive (FP) 118 
rate at different thresholds in the statistical model. The TP rate is defined as the fraction 119 
of positives identified correctly by the model (i.e., ratio of number of true positives 120 
identified by the model to the total number of positives). The FP rate is defined as the 121 
fraction of negatives identified correctly by the model (i.e., ratio of number of negatives 122 
misclassified by the model to the total number of negatives). While comparing the 123 
performance of two different classifiers in the ROC curve, the classifier with higher TP 124 
rate at the same FP rate is considered to be a better classifier. The area under the ROC 125 
is a single measure for the accuracy of a model as models with higher area under ROC 126 
are generally considered to be better models. 127 
 128 
In the PR curve, the precision is plotted against recall at different thresholds in the 129 
statistical model. The recall is the same as the TP rate of the model (i.e., ratio of number 130 
of true positives identified by the model to the total number of real positives). The 131 
precision is the fraction of positives in the model that are correct (i.e., ratio of number of 132 
true positives identified by the model to the total number of positives according to the 133 
model). In skewed datasets with large number of negatives in comparison to positives, 134 
the FP rate can be low even when the number of false positives misclassified by the 135 
model is comparable to the number of true positives. For such skewed datasets, te area 136 
under ROC for two different models may be very similar even though they actually differ 137 
in performance with respect to their precision. Hence, the area under the PR curve is a 138 
better reflection of the performance difference between two models with similar area 139 
under ROC in skewed datasets. 140 
 141 
In Figure 2, the positives are defined as the active peaks (intersecting with DHS or 142 
H3K27ac peaks) from a single STARR-seq experiment (singe core promoter) or the 143 
union of active peaks from multiple STARR-seq experiments (multiple core promoters). 144 
The negatives are randomly chosen regions in the genome with H3K27ac signal that 145 
had the same width distribution as the distribution of distance between double peaks 146 
near STARR-seq peaks (shown in Figure S1). We typically chose between 5 to 10x 147 
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number of negatives as compared to number of positives in Figures 2, 3, and 4 as the 148 
number of enhancers and promoters in the genome (positives) are far lesser than the 149 
number of negatives and area under PR curve is dependent on the ratio of negatives to 150 
positives during 10-fold cross validation. The matched filter score for each region is 151 
chosen as the best matched filter score with a 1500 bp region centered on each positive 152 
and negative.  The matched filters are scanned with distances between 300-1100 bp 153 
before choosing the best score. While comparing the performance of the matched filter 154 
to the peak-based models of the different epigenetic marks (Figure S4), we assumed 155 
that histone (DHS) peaks that overlapped with at least 50% (10%) of the STARR-seq 156 
peak is used to rank that prediction. We used a smaller threshold for DHS peaks as they 157 
are much smaller than histone peaks. We achieved similar results with thresholds of 158 
25% for both histone and DHS peaks. The p-value of the intersecting peak is used to 159 
rank the peak-based predictions. The modENCODE histone peaks [1] and DHS peaks 160 
[2] were compared to the matched filter scores in Figure S4. 161 
 162 
During STARR-seq, each peak is functioning as an enhancer within the plasmid 163 
environment in S2 cell-line. However, to delineate the native role of the region, we 164 
classify them as promoters and enhancers based on their distance to the transcription 165 
start sites in the genome. In Figure 3, the active promoters are defined as active 166 
STARR-seq peaks (multiple core promoter) within 1 kb of TSS (Ensembl release 78) 167 
while enhancers were active STARR-seq peaks more than 1kb from any TSS in 168 
Drosophila melanogaster. While calculating the matched filter for positives and 169 
negatives, we considered the best scoring matched filter score after padding each region 170 
to 1.5kb width.  171 
 172 
In Figure 4, the promoters are defined as FIREWACh peaks within 2 kb of TSS 173 
(GENCODE release vM4) while enhancers were FIREWACh peaks more than 2kb from 174 
any TSS. The larger distance (2 kb) for defining promoters was used because of the 175 
larger size of the mouse genome. The FIREWACh assay is performed in a transduction 176 
assay and was based on ChIP-seq peaks of a few key TFs. Hence, we did not split the 177 
FIREWACh peaks in to active and poised enhancers and promoters.  The ENCODE 178 
histone and DHS datasets for mESC were used to predict enhancers and promoters in 179 
Figure 4. 180 

 181 
H1-hESC whole genome prediction 182 
 183 
To predict enhancers and promoters on the whole genome, we utilized the 6 parameter 184 
machine learning model shown in Figure 2. The histone and DHS signals from ENCODE 185 
consortium [10] were used to predict enhancers and promoters in H1-hESC. The histone 186 
signals were converted to log fold enrichment (with respect to control signal) before we 187 
scanned it with the matched filter. There were 43463 active regulatory regions predicted 188 
in the human genome (< 2% of genome). All regions within 2kb of TSS were annotated 189 
as promoters while active regulatory regions that were more than 2kb from TSS were 190 
annotated as enhancers. The distribution of the expression of closest gene (GENCODE 191 
v19 TSS) from ENCODE RNA-seq dataset [10] for H1-hESC was compared to the 192 
expression of all genes from H1-hESC.  The Wilcoxon test was used to measure the 193 
significance of changes in gene expression. 194 
 195 
H1-hESC TF binding 196 
 197 
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To measure the differences in TF binding and co-binding patterns at promoters and 198 
enhancers, we overlapped the ChIP-seq peaks from ENCODE with our predicted 199 
enhancers and promoters using intersectBed. The two regions were considered to be 200 
overlapping if at least 25% of the ChIP-seq peak was overlapping with the predicted 201 
enhancer or promoter. 202 
  203 
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Table S1 – Performance of matched filter models with single epigenetic feature for 204 
all STARR-seq peaks (multiple core promoters) 205 

Feature AUROC AUPR 

H3K27ac 0.95 0.90 

H3K4me1 0.70 0.59 

H3K4me2 0.91 0.79 

H3K4me3 0.84 0.76 

H3K9ac 0.92 0.85 

H4K12ac 0.92 0.86 

H3 0.80 0.70 

H1 0.88 0.81 

H2BK5ac 0.94 0.90 

H4K8ac 0.88 0.79 

H4K5ac 0.87 0.79 

H4K16ac 0.89 0.72 

H3K18ac 0.90 0.84 

H3K9me1 0.71 0.61 

H3K79me2 0.79 0.58 

H4K27me2 0.81 0.68 

H2Av 0.66 0.57 

H3K27me3 0.83 0.64 

H3K23ac 0.66 0.46 

H3K79me3 0.70 0.51 

H3K27me1 0.64 0.43 

H4 0.67 0.49 

H3K36me1 0.54 0.41 

H3K9me3 0.59 0.42 

H3K9me2 0.60 0.41 

H3K36me3 0.57 0.38 

H4K20me1 0.47 0.31 

H3K79me1 0.47 0.30 
 206 
  207 
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Table S2 – Performance of matched filter models with single epigenetic feature for 208 
promoters and enhancers (multiple core promoters). Numbers within (outside) 209 
parenthesis are accuracy of models for predicting promoters (enhancers). 210 

Feature AUROC AUPR 

H3K27ac 0.91 (0.96) 0.60 (0.73) 

H3K4me1 0.88 (0.60) 0.42 (0.16) 

H3K4me2 0.84 (0.92) 0.21 (0.48) 

H3K4me3 0.62 (0.92) 0.09 (0.65) 

H3K9ac 0.85 (0.94) 0.24 (0.70) 

H4K12ac 0.90 (0.93) 0.33 (0.58) 

H3 0.78 (0.83) 0.26 (0.48) 

H1 0.83 (0.92) 0.36 (0.61) 

H2BK5ac 0.91 (0.96) 0.59 (0.70) 

H4K8ac 0.90 (0.86) 0.55 (0.37) 

H4K5ac 0.89 (0.86) 0.52 (0.41) 

H4K16ac 0.90 (0.90) 0.52 (0.40) 

H3K18ac 0.90 (0.88) 0.60 (0.47) 

H3K9me1 0.53 (0.81) 0.09 (0.44) 

H3K79me2 0.70 (0.83) 0.10 (0.27) 

H4K27me2 0.68 (0.85) 0.19 (0.44) 

H2Av 0.63 (0.78) 0.15 (0.36) 

H3K27me3 0.81 (0.86) 0.20 (0.36) 

H3K23ac 0.55 (0.71) 0.07 (0.20) 

H3K79me3 0.61 (0.74) 0.08 (0.23) 

H3K27me1 0.72 (0.57) 0.12 (0.12) 

H4 0.69 (0.68) 0.13 (0.21) 

H3K36me1 0.75 (0.58) 0.19 (0.18) 

H3K9me3 0.59 (0.64) 0.11 (0.15) 

H3K9me2 0.62 (0.63) 0.09 (0.15) 

H3K36me3 0.60 (0.62) 0.09 (0.14) 

H4K20me1 0.55 (0.50) 0.07 (0.10) 

H3K79me1 0.54 (0.58) 0.06 (0.12) 
 211 
  212 
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Figure Captions: 213 
 214 
Figure S1: Variability in double peak pattern. A) The frequency of distance between the two 215 
maxima in a double peak flanking active STARR-seq peaks is plotted. B) The symmetricity of the 216 
double peak pattern is plotted. The ratio of the distance between the two peaks to the ratio 217 
between one of the maxima and the minima is plotted. While there is large amount of variability in 218 
the distance between the two peaks (mostly between 300-1100 bp), the trough in the double peak 219 
tends to occur in the center of the two peaks. 220 
 221 
Figure S2: Metaprofile for different epigenetic marks. The metaprofile around active STARR-222 
seq peaks is plotted for different epigenetic marks. Histone marks that are enriched near STARR-223 
seq peaks display the characteristic double peak pattern shown in A) due to the depletion of 224 
histone proteins at active regulatory regions. In addition, DHS displays a single peak at the center 225 
of these regulatory regions as shown in A). B) On the other hand, no such double peak pattern is 226 
observed on depleted histone marks at STARR-seq peaks. 227 
 228 
Figure S3: Histogram of matched filter scores. The probability density of matched filter scores 229 
for different epigenetic marks for STARR-seq peaks (positives) and random regions of the 230 
genome (negatives) with H3K27ac signal. In most cases, the matched filter scores for positives 231 
and negatives are Gaussian curves. The amount of overlap between these two curves 232 
determines the accuracy of the matched filter for predicting STARR-seq peaks using thematched 233 
filters for the corresponding epigenetic feature. 234 
 235 
Figure S4: Accuracy of matched filter and peak-based models. The performance of the 236 
matched filters of different epigenetic marks and the peak-based models for predicting 237 
all STARR-seq peaks is compared here using 10-fold cross validation. A) The numbers 238 
within the parentheses refer to the AUROC and AUPR for predicting the STARR-seq 239 
peaks (multiple core promoters) with histone peaks while the numbers outside the 240 
parentheses refer to the AUROC and AUPR for the matched filter model. B) The 241 
individual ROC and PR curves for each matched filter and the peak-based model are 242 
shown.  243 
 244 
Figure S5: Comparison of different statistical models. The performance of the different 245 
statistical models to integrate the information from six epigenetic features is shown. A) 246 
The numbers within the parentheses refer to the AUROC and AUPR for predicting the 247 
STARR-seq peaks (single core promoter) with histone peaks while the numbers outside 248 
the parentheses refer to the AUROC and AUPR for predicting STARR-seq peaks 249 
identified after combining multiple core promoters. B) The individual ROC and PR curves 250 
for each statistical model. C) The contribution of the matched filter score for each 251 
epigenetic feature to the different integrated models.  252 
 253 
Figure S6: Comparison of different statistical models for 30-feature model. The 254 
performance of the different statistical models to integrate the information from 30 255 
epigenetic features is shown. A) The numbers within the parentheses refer to the 256 
AUROC and AUPR for predicting the STARR-seq peaks (single core promoter) with 257 
histone peaks while the numbers outside the parentheses refer to the AUROC and 258 
AUPR for predicting STARR-seq peaks identified after combining multiple core 259 
promoters. B) The individual ROC and PR curves for each statistical model. C) The 260 
contribution of the matched filter score for each epigenetic feature to the different 261 
integrated models.  262 
 263 
Figure S7: Histogram of matched filter scores for chosen features in promoters and 264 
enhancers. A) The histogram of matched filter scores for small set of epigenetic features on 265 
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promoters is compared to random regions of the genome. B) The histogram of matched filter 266 
scores for small set of epigenetic features on enhancers is compared to random regions of the 267 
genome. 268 
 269 
Figure S8: Comparison of different statistical models for predicting enhancers and 270 
promoters. The performance of the different statistical models to integrate the 271 
information from six epigenetic features for promoter and enhancer prediction is shown. 272 
A) The numbers within the parentheses refer to the AUROC and AUPR for predicting the 273 
promoters with histone peaks while the numbers outside the parentheses refer to the 274 
AUROC and AUPR for predicting enhancers. The promoters and enhancers from 275 
multiple STARR-seq experiments with different core promoters are merged in this 276 
analysis. B) The individual ROC and PR curves for each statistical model is shown. The 277 
contribution of the matched filter score for each epigenetic feature to the different 278 
integrated models for promoter prediction (C) and enhancer prediction (D) are shown.  279 
 280 
Figure S9: Comparison of different statistical models for predicting enhancers and 281 
promoters. The performance of the different statistical models to integrate the 282 
information from thirty epigenetic features for promoter and enhancer prediction is 283 
shown. A) The numbers within the parentheses refer to the AUROC and AUPR for 284 
predicting the promoters with histone peaks while the numbers outside the parentheses 285 
refer to the AUROC and AUPR for predicting enhancers. The promoters and enhancers 286 
from multiple STARR-seq experiments with different core promoters are merged in this 287 
analysis. B) The individual ROC and PR curves for each statistical model is shown. The 288 
contribution of the matched filter score for each epigenetic feature to the different 289 
integrated models for promoter prediction (C) and enhancer prediction (D) are shown.  290 
 291 
Figure S10: Accuracy of enhancer-trained matched filter and statistical models for 292 
promoter prediction.  The performance of the enhancer-trained matched filters of 293 
different epigenetic marks and statistical models for predicting active promoters is 294 
compared. A) The AUROC and AUPR for each matched filter and statistical model are 295 
tabulated. The individual ROC and PR curves for each matched filter (B) and each 296 
statistical model (C) are shown.  297 
 298 
Figure S11: Accuracy of promoter-trained matched filter and statistical models for 299 
enhancer prediction.  The performance of the promoter-trained matched filters of 300 
different epigenetic marks and statistical models for predicting active enhancers is 301 
compared. A) The AUROC and AUPR for each matched filter and statistical model are 302 
tabulated. The individual ROC and PR curves for each matched filter (B) and each 303 
statistical model (C) are shown.  304 
 305 
Figure S12: Transferability of models across cell-lines. The performance of the BG3-306 
trained matched filters of different epigenetic marks and statistical models for predicting 307 
active promoters and enhancers are compared. A) The AUROC and AUPR for each 308 
matched filter and statistical model are tabulated. The individual ROC and PR curves for 309 
each matched filter (B) and each statistical model (C) are shown. 310 
 311 
Figure S13: Location of H1-hESC predictions. A) The probability density of the distance of the 312 
predicted promoter and enhancer from the closest TSS is shown. B) The location of the 313 
enhancers and promoters on genomic elements are shown. Promoters are defined as TSS +/- 314 
2kb. All TSS, UTR, exons, introns, and intergenic elements are calculated based on GENCODE 315 
19 definitions [11]. A regulatory region is considered to overlap with the elements if more than 316 
50% of the matched filter region overlaps with the corresponding element in B. 317 
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Figure S14: Gene expression of closest gene. The distribution of gene expression of gene 318 
closest to the enhancer/promoters are plotted and compared to the gene expression of all genes 319 
in H1-hESC. A Wilcoxon test shows that P-value for differences in gene expression of genes 320 
close to enhancers and promoters are significantly higher than expression of all genes in H1-321 
hESC (< 10-100 each). 322 
 323 
Figure S15: Overlap of TF binding site with predicted promoters/enhancers. The fraction of 324 
promoters and enhancers that overlap with different TF ChIP-seq peaks in H1-hESC are plotted. 325 
The color of the bar is plotted based on the fraction of ChIP-seq peaks for corresponding TF that 326 
overlap with the promoter/enhancer. The difference in patterns of TF binding was used to create 327 
models that distinguish enhancers from promoters (Figure 5B). 328 
 329 
Figure S16: Patterns of co-TF binding on enhancers and promoters. The patterns of TF co-330 
occurrence on a single matched filter prediction around promoters and enhancers are plotted. 331 
The differences between co-TF binding at enhancers and promoters can be used to gain some 332 
mechanistic insight into TF cooperativity. 333 
 334 
  335 
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