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ABSTRACT 
A major challenge of working with somatic cancer variants is the 
need to identify those variants responsible for disruptions that drive 
cancer progression out of the thousands that arise due to back-
ground mutation processes. One approach is to scan the genome 
for elements with a high frequency of intersecting somatic variants, 
or elevated mutation burdens. The detection of significant mutation 
burdens is also useful in germline variant analysis, as rare variant 
burdens may indicate increased risk of genetic disease.. Here, we 
introduce the Mutations Overburdening Annotations Tool (MOAT), a 
new computational tool designed to identify regions with a high mu-
tation burden relative to the surrounding genome in a non-
parametric way. MOAT is useful for prioritizing annotations to study 
in downstream analyses, as high mutation burden annotations are 
most likely to be driver elements in genetic disease. We release an 
implementation that offers users two forms of mutation burden anal-
ysis through empirical permutations, as well as serial and parallel 
versions of each form. We also demonstrate MOAT’s capability for 
finding known noncoding drivers in cancer variant data. 
Availability: MOAT is available at moat.gersteinlab.org 

2 INTRODUCTION  
High throughput sequencing of genetic disease cohorts has enabled 
the identification of the molecular causes of these illnesses. This 
data can be utilized to find the somatic single nucleotide variants 
(SNVs) in each patient. However, due to the relatively high num-
ber of neutral variants in such patients’ genomes, it is not immedi-
ately apparent which variants are directly connected to the disease 
phenotype. A common strategy for addressing this issue is to look 
for genomic elements with a high accumulation of variants. By 
modeling the factors that influence the stochastic mutation rate, the 
elements that are more mutated than expected under the back-
ground model can be determined. 

It is well known that the background mutation rate is highly het-
erogeneous across the whole genome due to numerous external 
features, such as replication timing and chromatin structure 
(Lochovsky, et al., 2015). This effect may change in a dynamic 
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way across the genome and is usually difficult to model. Hence, 
our Mutations Overburdening Annotations Tool (MOAT) relies on 
no assumption except that background mutation rate changes slow-
ly across the genome and approximately remains the same within a 
local context. Therefore, such non-parametric scheme provides 
robust mutation burden significance results of any element through 
permutations. 

MOAT offers two methods for determining elevated mutation 
burdens, the annotation-centric algorithm (MOAT-a) and the vari-
ant-centric algorithm (MOAT-v), both of which involve a compar-
ison of each annotation’s mutation accumulation to that of the 
surrounding genome. In the following sections, we will describe 
the implementation of MOAT for parallel computer systems, 
which enables highly efficient data size scalability. This scalability 
is important for guaranteeing a reasonable running time given the 
high computational intensity of the permutation step. We also 
evaluate MOAT’s ability to recall known noncoding cancer drivers 
on a collection of several hundred cancer whole genomes’ variant 
data. 

3 METHODS 
MOAT takes two input files: the annotation file (afile) and the 
variant file (vfile). 

3.1 MOAT-a: Annotation-centric Permutation 
The parallel version of MOAT’s annotation-centric permutation 
algorithm, MOAT-a, is a C++ program that uses NVIDIA’s CUDA 
language (Nickolls, et al., 2008) to instantiate parallel graphics 
processing unit (GPU) threads, and divides the computational 
workload across these threads. MOAT-a’s steps are illustrated in 
Fig. 1. MOAT-a iterates through the annotations, computing the 
intersecting variant count per annotation. It then defines an extend-
ed region with a user-defined distance centered at the current input 
annotation, and randomly moves the annotation within this extend-
ed region. MOAT-a will find the variant counts from the vfile that 
intersect each of the random bins, which are compared to the input 
annotation’s variant count. The input annotation’s p-value is de-
fined as the fraction of bins with a variant count equal to or greater 
than the input annotation’s variant count.  
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A typical MOAT-a run involves an annotation count on the order 
of ~105 at a minimum, each of which are permuted 1000 times. 
Hence, the overall computation involves millions—or even bil-
lions—of permutation and intersection calculations, which take an 
inordinate amount of time to complete. However, this computation 
is very easily adaptable to parallel execution, so MOAT-a breaks 
up the overall computation into many separate, independent units 
of computation. 

MOAT-a’s speed can be further improved by taking advantage 
of the thousands of parallel stream processors available on modern 
graphics processing units (GPUs). GPUs are designed for efficient-
ly processing 3D graphics calculations, which largely consist of 
numerous matrix operations with relatively low memory usage 
Due to the limited amount of video RAM (VRAM) available on 
GPUs, MOAT-a’s GPU version was planned to use GPU accelera-
tion only for the most compute intense step. This is the permuta-
tion step, where new annotation locations are determined in the 
local genome surrounding each annotation. The annotation coordi-
nates are copied to VRAM, and one permutation per annotation is 
calculated in parallel. The coordinates for the permuted annota-
tions are copied back to main memory for the fast intersection step. 
This permutation/intersection loop is performed n times (the user-
defined total number of permutations), after which p-values are 
calculated using the observed variant counts and the permuted 
variant counts (Fig. 1). 

3.2 MOAT-v: Variant-centric Permutation 
MOAT-v’s variant-centric permutation algorithm creates permuted 
datasets by assigning new coordinates to each variant within a 
local genome region to account for the covariate effects from 
known genomic features (Fig. 2a). These covariates influence the 
whole genome background mutation rate, hence they must be taken 
into consideration when assessing an annotation’s mutation burden 
relative to background mutation. For small enough regions, we 
assume these covariates are essentially constant, and we can per-
form variant permutations under the assumption of uniformity, 
with one key constraint. MOAT-v must preserve the trinucleotide 
context of the original variant when choosing a new variant loca-
tion. In other words, the new variant must have the same nucleo-
tide identity as the original variant, and the two neighbors of the 
new variant must also have the same nucleotide identity as the 
original variant’s neighbors. For example, if MOAT-v is given an 

input variant that has a reference base G, and is surrounded by a T 
and a C (i.e. the variant’s trinucleotide context is TGC), then 
MOAT-v gathers up every position in the same bin where TGC 
occurs in the reference, and selects one of these with uniform 
probability (Fig. 2b). This constraint reflects the differential muta-
tion probabilities of different trinucleotides (i.e. due to biochemical 
differences, some trinucleotides are more likely to be mutated than 
others), and ensures that the permuted variant set does not change 
the expected distribution of mutated trinucleotides. 

MOAT-v takes a vfile and an afile as inputs, and generates a 
permuted dataset by subdividing the genome into bins of a user-
defined size (excluding mappability blacklist regions), and assign-
ing each bin’s variants new positions within the same bin, preserv-
ing trinucleotide context in the process. This process continues 
until n permutations have been generated. At this point, MOAT-v 
will calculate n intersecting permuted variant counts for each of the 
input annotations. A p-value for each annotation is determined 
based on the fraction of the n intersecting permuted variant counts 
that are equal to or greater than the intersecting variant count de-
rived from the original vfile variants. 

Initial prototypes of the parallel version of MOAT-v used the 
Nvidia CUDA framework, but the necessity of loading the refer-
ence genome sequence to preserve trinucleotide context in the 
permutation step resulted in prohibitive memory requirements with 
respect to the available GPU video RAM. As a result, MOAT-v 
was instead written to parallelize its workflow across multi-core 
CPUs using the OpenMPI framework (Gabriel, et al., 2004). Under 
this arrangement, a single CPU core is designated to run the "mas-
ter" process, and is responsible for dividing up the overall work 
and distributing it to the "worker" processes, which run on the 
remaining cores.  

4 RESULTS 
4.1 MOAT-a 

Figure 1 For each input annotation, MOAT-a finds the number of intersect-
ing vfile variants (red). The annotation’s coordinates are then shuffled to a 
new location within the local genome context bounded by user-defined 
parameters d_min and d_max, producing n permutations (blue). Each per-
mutation’s intersecting variant count is computed 

Figure 2 (a) In MOAT-v, the variant locations are permuted within the 
local genome context. The whole genome is divided into bins of a user-
defined size, and variants are moved to new coordinates within the same 
bin, preserving the local mutation context. As with MOAT-a, n permuta-
tions are produced. (b) To reflect the influence of nucleotide identity on 
mutation likelihood, MOAT-v ensures that variants are moved to locations 
with the same trinucleotide context. 
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Table 1. Speed benchmark of MOAT-a (CPU and GPU versions) with 
respect to the number of input annotations. Each time trial involved using 
MOAT-a to generate 1000 permuted variant datasets. For large datasets, the 
GPU version substantially outperforms the CPU version.  

Annotation 
set 

Number of 
annotations 

CPU version run-
ning time 

GPU version 
running time 

Fold speedup 
of GPU 
version 

DRM ~14,000 1hr23min 1hr22min 1.01x 
TSS ~130,000 1hr55min 1hr26min 1.34x 
DHS ~3,000,000 13hr46min 2hr12min 6.26x 
 
We demonstrate the magnitude of the CUDA speedup by evaluat-
ing the running time of MOAT-a on datasets of various sizes, using 
both the CPU and GPU versions to calculate the output. We took a 
dataset of pan-cancer whole genome variant calls that includes 507 
cancer genomes of various types from (Alexandrov, et al., 2013), 
and 100 stomach cancer genomes from (Wang, et al., 2014), total-
ing ~8 million variants. We used 3 different annotation sets for our 
evaluation, representing 3 different input sizes to demonstrate 
MOAT-a’s scalability. These include the Distal Regulatory Mod-
ule (DRM) annotations from (Yip, et al., 2012), transcription start 
site (TSS) annotations derived by taking the 100bp regions up-
stream of each GENCODE gene start (Harrow, et al., 2012), and 
the Dnase I hypersensitive (DHS) sites from the ENCODE project 
(Thurman, et al., 2012). These annotation sets represent 3 different 
orders of magnitude in size: the DRM set spans ~14,000 annota-
tions, the TSS set spans ~130,000 annotations, and the DHS set 
spans ~3 million annotations. We tested MOAT-a’s running time 
on these 3 annotation sets with the number of random bins n = 
1000, the results of which are shown in Table 1. It is clear that 
when scaling up to very large datasets, the CPU version’s runtime 
increases considerably, while the GPU version’s runtime rises very 
gradually. MOAT-a’s running time is not affected by the number 
of variants (data not shown). 

Due to the relative lack of verified noncoding regulatory ele-
ments associated with cancer, it is difficult to assess the accuracy 
of MOAT’s predictions. Nevertheless, we demonstrate MOAT’s 
usefulness for finding elevated mutation burdens in genomic ele-
ments by identifying highly mutated GENCODE transcription start 
sites, promoters, and distal regulatory modules, using the afore-
mentioned pancancer variant dataset. TERT, which has well-
documented cancer-associated promoter mutations (Vinagre, et al., 
2013), was found to have two TSSes with significant mutation 
burden (both had BH-corrected p-values of zero). Other well-
known cancer-associated TSS sites, including TP53 , LMO3, and 
AGAP5, also had significant mutation burdens (all had BH-
corrected p-values of zero). After applying Bcnjamini-Hochberg 
(BH) false discovery rate correction (Benjamini and Hochberg, 
1995) to all p-values, there were 5037 promoters, 1148 TSSes, and 
305 DRMs with significant mutation burdens. These may be used 
as a shortlist for investigating and validating individual variants’ 
associations with cancer. 

4.2 MOAT-v 
Using the same set of cancer variants used in the MOAT-a tests, 
parallel MOAT-v’s running time was evaluated across multiple 
CPU configurations to demonstrate the performance gains of the 

OpenMPI implementation. MOAT-v in OpenMPI is set up to run 
one master process on one of the available CPU cores, and use the 
rest for worker processes. Hence, the program must be run with 3 
cores to get two cores to process the work simultaneously, 4 cores 
to get three cores to process the work simultaneously, etc. Table 2 
represents the running time improvement relative to the number of 
workers added. This improvement scales close to linear with the 
number of workers, indicating that the load balancing between 
each CPU core is very evenly divided, enabling significant time 
savings when MOAT-v is run in parallel. 

Table 2. Speed benchmark of MOAT-v with respect to the number of CPU 
cores assigned worker processes. Each time trial involved using MOAT-v 
to generate one permuted variant dataset using ~8 million input variants, 
and 1,000,000-bp bins. 

# of worker CPU cores Running time Fold speedup 

1 3hr44min 1.00x 
2 1hr54min 1.97x 
4 1hr4min 3.50x 
8 40min 5.60x 
 

MOAT-v was used on the same variant and annotation sets used 
to demonstrate MOAT-a’s usefulness for finding elevated cancer 
mutation burdens. MOAT-v produced comparable results—the 
same known cancer-associated TSSes flagged as significant in 
MOAT-a were also flagged in MOAT-v. After applying BH cor-
rection to all p-values, there were 1394 promoters, 451 TSSes, and 
109 DRMs with significant mutation burdens. Hence, MOAT-v 
appears to be the more conservative algorithm. 

5 DISCUSSION 
Identification of genomic elements with a high mutation burden is 
useful for narrowing down the exact site of functional disruption. 
We introduce Mutations Overburdening Annotations Tool 
(MOAT), a new software tool to facilitate such analyses. We 
demonstrate the usefulness of this tool for flagging putative 
noncoding cancer drivers, and provide CUDA- and OpenMPI-
accelerated versions that dramatically increase the speed of muta-
tion burden analysis. Given the demand for efficient, meaningful 
analysis of genome sequence data that is now being produced at a 
very high rate, we consider MOAT’s provision of such analysis for 
genetic disease drivers quite timely. 
 
Funding: This work was supported by the National Institutes of 
Health [5U41HG007000-04]. 
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