
© Oxford University Press 2005 1

1 GENOME ANALYSIS

Efficient Detection of Highly Mutated Regions with Mutations
Overburdening Annotations Tool (MOAT)
Lucas Lochovsky1,2 , Jing Zhang1,2 and Mark Gerstein1,2,3*
1Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
2Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
3Department of Computer Science, Yale University, New Haven, Connecticut 06520, USA
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
A major challenge of working with somatic cancer variants is the
need to identify those variants responsible for disruptions that drive
cancer progression out of the thousands that arise due to back-
ground mutation processes. One approach is to scan the genome
for elements with a high frequency of intersecting somatic variants,
or elevated mutation burdens. The detection of significant mutation
burdens is also useful in germline variant analysis, as rare variant
burdens may indicate increased risk of genetic disease.. Here, we
introduce the Mutations Overburdening Annotations Tool (MOAT), a
new computational tool designed to identify regions with a high mu-
tation burden relative to the surrounding genome in a non-
parametric way. MOAT is useful for prioritizing annotations to study
in downstream analyses, as high mutation burden annotations are
most likely to be driver elements in genetic disease. We release an
implementation that offers users two forms of mutation burden anal-
ysis through empirical permutations, as well as serial and parallel
versions of each form. We also demonstrate MOAT’s capability for
finding known noncoding drivers in cancer variant data.
Availability: MOAT is available at moat.gersteinlab.org

2 INTRODUCTION
High throughput sequencing of genetic disease cohorts has enabled
the identification of the molecular causes of these illnesses. This
data can be utilized to find the somatic single nucleotide variants
(SNVs) in each patient. However, due to the relatively high num-
ber of neutral variants in such patients’ genomes, it is not immedi-
ately apparent which variants are directly connected to the disease
phenotype. A common strategy for addressing this issue is to look
for genomic elements with a high accumulation of variants. By
modeling the factors that influence the stochastic mutation rate, the
elements that are more mutated than expected under the back-
ground model can be determined.

It is well known that the background mutation rate is highly het-
erogeneous across the whole genome due to numerous external
features, such as replication timing and chromatin structure
(Lochovsky, et al., 2015). This effect may change in a dynamic

*To whom correspondence should be addressed.

way across the genome and is usually difficult to model. Hence,
our Mutations Overburdening Annotations Tool (MOAT) relies on
no assumption except that background mutation rate changes slow-
ly across the genome and approximately remains the same within a
local context. Therefore, such non-parametric scheme provides
robust mutation burden significance results of any element through
permutations.

MOAT offers two methods for determining elevated mutation
burdens, the annotation-centric algorithm (MOAT-a) and the vari-
ant-centric algorithm (MOAT-v), both of which involve a compar-
ison of each annotation’s mutation accumulation to that of the
surrounding genome. In the following sections, we will describe
the implementation of MOAT for parallel computer systems,
which enables highly efficient data size scalability. This scalability
is important for guaranteeing a reasonable running time given the
high computational intensity of the permutation step. We also
evaluate MOAT’s ability to recall known noncoding cancer drivers
on a collection of several hundred cancer whole genomes’ variant
data.

3 METHODS
MOAT takes two input files: the annotation file (afile) and the
variant file (vfile).

3.1 MOAT-a: Annotation-centric Permutation
The parallel version of MOAT’s annotation-centric permutation
algorithm, MOAT-a, is a C++ program that uses NVIDIA’s CUDA
language (Nickolls, et al., 2008) to instantiate parallel graphics
processing unit (GPU) threads, and divides the computational
workload across these threads. MOAT-a’s steps are illustrated in
Fig. 1. MOAT-a iterates through the annotations, computing the
intersecting variant count per annotation. It then defines an extend-
ed region with a user-defined distance centered at the current input
annotation, and randomly moves the annotation within this extend-
ed region. MOAT-a will find the variant counts from the vfile that
intersect each of the random bins, which are compared to the input
annotation’s variant count. The input annotation’s p-value is de-
fined as the fraction of bins with a variant count equal to or greater
than the input annotation’s variant count.

Lucas Lochovsky� 3/22/2016 12:05 PM
Deleted: High throughput sequencing of
genomes for patients with genetic diseas-
es has opened up the possibility of finding
the precise causes of these diseases, pav-
ing the way for more effective drug devel-
opment for these illnesses in the future.
However, the analysis of this data has not
kept pace with the data’s production rate.
Fast and efficient analysis is necessary to ... [1]

Jing Zhang� 5/4/2016 10:32 AM
Deleted: functional annotations

Lucas Lochovsky� 3/22/2016 12:11 PM
Deleted: Such
Lucas Lochovsky� 3/22/2016 12:14 PM
Deleted: may be potential
Lucas Lochovsky� 3/22/2016 12:12 PM
Deleted:

Jing Zhang� 5/4/2016 10:34 AM
Deleted: One means of detecting deviation ... [2]

Jing Zhang� 5/4/2016 11:15 AM
Deleted: the confounding effect from
Jing Zhang� 5/4/2016 11:17 AM
Deleted: genomic
Jing Zhang� 5/4/2016 11:15 AM
Deleted: .
Lucas Lochovsky� 5/4/2016 3:07 PM
Deleted: [add larva as ref]
Jing Zhang� 5/4/2016 11:18 AM
Formatted: Highlight

Jing Zhang� 5/4/2016 11:14 AM
Deleted: Our
Jing Zhang� 5/4/2016 11:20 AM
Deleted: is designed to automatically over-
come such confounding effect in a non-
parametric way and
Jing Zhang� 5/4/2016 11:21 AM
Deleted: compute the
Jing Zhang� 5/4/2016 11:22 AM
Deleted: of the
Jing Zhang� 5/4/2016 11:22 AM
Deleted: mutation burden

Jing Zhang� 5/4/2016 11:25 AM
Deleted: In essence, MOAT flags an annota-... [3]

Lucas Lochovsky� 3/22/2016 2:19 PM
Deleted: MOAT offers users two types of ... [4]

Lucas Lochovsky� 3/23/2016 10:02 AM
Formatted: Tabs:Not at 2.44"

Lucas Lochovsky� 5/4/2016 2:34 PM
Deleted: defined

K.Takahashi et al.

2

A typical MOAT-a run involves an annotation count on the order
of ~105 at a minimum, each of which are permuted 1000 times.
Hence, the overall computation involves millions—or even bil-
lions—of permutation and intersection calculations, which take an
inordinate amount of time to complete. However, this computation
is very easily adaptable to parallel execution, so MOAT-a breaks
up the overall computation into many separate, independent units
of computation.

MOAT-a’s speed can be further improved by taking advantage
of the thousands of parallel stream processors available on modern
graphics processing units (GPUs). GPUs are designed for efficient-
ly processing 3D graphics calculations, which largely consist of
numerous matrix operations with relatively low memory usage
Due to the limited amount of video RAM (VRAM) available on
GPUs, MOAT-a’s GPU version was planned to use GPU accelera-
tion only for the most compute intense step. This is the permuta-
tion step, where new annotation locations are determined in the
local genome surrounding each annotation. The annotation coordi-
nates are copied to VRAM, and one permutation per annotation is
calculated in parallel. The coordinates for the permuted annota-
tions are copied back to main memory for the fast intersection step.
This permutation/intersection loop is performed n times (the user-
defined total number of permutations), after which p-values are
calculated using the observed variant counts and the permuted
variant counts (Fig. 1).

3.2 MOAT-v: Variant-centric Permutation
MOAT-v’s variant-centric permutation algorithm creates permuted
datasets by assigning new coordinates to each variant within a
local genome region to account for the covariate effects from
known genomic features (Fig. 2a). These covariates influence the
whole genome background mutation rate, hence they must be taken
into consideration when assessing an annotation’s mutation burden
relative to background mutation. For small enough regions, we
assume these covariates are essentially constant, and we can per-
form variant permutations under the assumption of uniformity,
with one key constraint. MOAT-v must preserve the trinucleotide
context of the original variant when choosing a new variant loca-
tion. In other words, the new variant must have the same nucleo-
tide identity as the original variant, and the two neighbors of the
new variant must also have the same nucleotide identity as the
original variant’s neighbors. For example, if MOAT-v is given an

input variant that has a reference base G, and is surrounded by a T
and a C (i.e. the variant’s trinucleotide context is TGC), then
MOAT-v gathers up every position in the same bin where TGC
occurs in the reference, and selects one of these with uniform
probability (Fig. 2b). This constraint reflects the differential muta-
tion probabilities of different trinucleotides (i.e. due to biochemical
differences, some trinucleotides are more likely to be mutated than
others), and ensures that the permuted variant set does not change
the expected distribution of mutated trinucleotides.

MOAT-v takes a vfile and an afile as inputs, and generates a
permuted dataset by subdividing the genome into bins of a user-
defined size (excluding mappability blacklist regions), and assign-
ing each bin’s variants new positions within the same bin, preserv-
ing trinucleotide context in the process. This process continues
until n permutations have been generated. At this point, MOAT-v
will calculate n intersecting permuted variant counts for each of the
input annotations. A p-value for each annotation is determined
based on the fraction of the n intersecting permuted variant counts
that are equal to or greater than the intersecting variant count de-
rived from the original vfile variants.

Initial prototypes of the parallel version of MOAT-v used the
Nvidia CUDA framework, but the necessity of loading the refer-
ence genome sequence to preserve trinucleotide context in the
permutation step resulted in prohibitive memory requirements with
respect to the available GPU video RAM. As a result, MOAT-v
was instead written to parallelize its workflow across multi-core
CPUs using the OpenMPI framework (Gabriel, et al., 2004). Under
this arrangement, a single CPU core is designated to run the "mas-
ter" process, and is responsible for dividing up the overall work
and distributing it to the "worker" processes, which run on the
remaining cores.

4 RESULTS
4.1 MOAT-a

Figure 1 For each input annotation, MOAT-a finds the number of intersect-
ing vfile variants (red). The annotation’s coordinates are then shuffled to a
new location within the local genome context bounded by user-defined
parameters d_min and d_max, producing n permutations (blue). Each per-
mutation’s intersecting variant count is computed

Figure 2 (a) In MOAT-v, the variant locations are permuted within the
local genome context. The whole genome is divided into bins of a user-
defined size, and variants are moved to new coordinates within the same
bin, preserving the local mutation context. As with MOAT-a, n permuta-
tions are produced. (b) To reflect the influence of nucleotide identity on
mutation likelihood, MOAT-v ensures that variants are moved to locations
with the same trinucleotide context.

d_max	 d_min	 d_min	 d_max	annota+on	

permuted	annota+ons	

annota%on	

permuted	variants	

CTTCAAGTTCTGACCTCCTGTCAATATCCCTTCCCCTCAACTTGACAATC	
*	 *	 *	

Original	loca%on	

(a)	

(b)	

*	=	possible	new	loca%ons	

Jing Zhang� 5/4/2016 11:26 AM
Formatted ... [5]

Jing Zhang� 5/4/2016 11:26 AM
Deleted:
Jing Zhang� 5/4/2016 11:27 AM
Formatted ... [6]

Jing Zhang� 5/4/2016 11:28 AM
Deleted: —in other words, it is “embarrass-... [7]

Jing Zhang� 5/4/2016 11:27 AM
Formatted ... [8]

Jing Zhang� 5/4/2016 11:29 AM
Deleted: It is easy to
Jing Zhang� 5/4/2016 11:27 AM
Formatted ... [9]

Jing Zhang� 5/4/2016 11:28 AM
Deleted: : each annotation’s calculations are ... [10]

Jing Zhang� 5/4/2016 11:26 AM
Deleted:
Jing Zhang� 5/4/2016 11:27 AM
Formatted ... [11]

Jing Zhang� 5/4/2016 11:30 AM
Formatted ... [12]

Jing Zhang� 5/4/2016 11:30 AM
Deleted: . Hence, any computational prob-... [13]

Jing Zhang� 5/4/2016 11:27 AM
Formatted ... [14]

Lucas Lochovsky� 3/23/2016 12:06 PM
Deleted: ... [15]

Lucas Lochovsky� 3/23/2016 1:33 PM
Deleted: .
Lucas Lochovsky� 3/23/2016 1:35 PM
Deleted: These regions are fixed-width bins ... [16]

Lucas Lochovsky� 3/23/2016 1:37 PM
Deleted: As with MOAT-a, …OAT-v takes ... [17]

Lucas Lochovsky� 3/23/2016 1:37 PM
Formatted ... [18]

Lucas Lochovsky� 3/23/2016 1:37 PM
Deleted: annotation
Lucas Lochovsky� 3/23/2016 1:38 PM
Formatted ... [19]

Lucas Lochovsky� 3/23/2016 1:36 PM
Deleted: s…as inputs (Fig. 2a).… MOAT-v ... [20]

Lucas Lochovsky� 3/23/2016 10:00 AM
Deleted: <sp>
Jing Zhang� 5/4/2016 11:34 AM
Deleted: There are several ways to choose ... [21]

Lucas Lochovsky� 3/30/2016 1:59 PM
Formatted ... [22]

Efficient Detection of Highly Mutated Regions with Mutations Overburdening Annotations Tool (MOAT)

3

Table 1. Speed benchmark of MOAT-a (CPU and GPU versions) with
respect to the number of input annotations. Each time trial involved using
MOAT-a to generate 1000 permuted variant datasets. For large datasets, the
GPU version substantially outperforms the CPU version.

Annotation
set

Number of
annotations

CPU version run-
ning time

GPU version
running time

Fold speedup
of GPU
version

DRM ~14,000 1hr23min 1hr22min 1.01x
TSS ~130,000 1hr55min 1hr26min 1.34x
DHS ~3,000,000 13hr46min 2hr12min 6.26x

We demonstrate the magnitude of the CUDA speedup by evaluat-
ing the running time of MOAT-a on datasets of various sizes, using
both the CPU and GPU versions to calculate the output. We took a
dataset of pan-cancer whole genome variant calls that includes 507
cancer genomes of various types from (Alexandrov, et al., 2013),
and 100 stomach cancer genomes from (Wang, et al., 2014), total-
ing ~8 million variants. We used 3 different annotation sets for our
evaluation, representing 3 different input sizes to demonstrate
MOAT-a’s scalability. These include the Distal Regulatory Mod-
ule (DRM) annotations from (Yip, et al., 2012), transcription start
site (TSS) annotations derived by taking the 100bp regions up-
stream of each GENCODE gene start (Harrow, et al., 2012), and
the Dnase I hypersensitive (DHS) sites from the ENCODE project
(Thurman, et al., 2012). These annotation sets represent 3 different
orders of magnitude in size: the DRM set spans ~14,000 annota-
tions, the TSS set spans ~130,000 annotations, and the DHS set
spans ~3 million annotations. We tested MOAT-a’s running time
on these 3 annotation sets with the number of random bins n =
1000, the results of which are shown in Table 1. It is clear that
when scaling up to very large datasets, the CPU version’s runtime
increases considerably, while the GPU version’s runtime rises very
gradually. MOAT-a’s running time is not affected by the number
of variants (data not shown).

Due to the relative lack of verified noncoding regulatory ele-
ments associated with cancer, it is difficult to assess the accuracy
of MOAT’s predictions. Nevertheless, we demonstrate MOAT’s
usefulness for finding elevated mutation burdens in genomic ele-
ments by identifying highly mutated GENCODE transcription start
sites, promoters, and distal regulatory modules, using the afore-
mentioned pancancer variant dataset. TERT, which has well-
documented cancer-associated promoter mutations (Vinagre, et al.,
2013), was found to have two TSSes with significant mutation
burden (both had BH-corrected p-values of zero). Other well-
known cancer-associated TSS sites, including TP53 , LMO3, and
AGAP5, also had significant mutation burdens (all had BH-
corrected p-values of zero). After applying Bcnjamini-Hochberg
(BH) false discovery rate correction (Benjamini and Hochberg,
1995) to all p-values, there were 5037 promoters, 1148 TSSes, and
305 DRMs with significant mutation burdens. These may be used
as a shortlist for investigating and validating individual variants’
associations with cancer.

4.2 MOAT-v
Using the same set of cancer variants used in the MOAT-a tests,
parallel MOAT-v’s running time was evaluated across multiple
CPU configurations to demonstrate the performance gains of the

OpenMPI implementation. MOAT-v in OpenMPI is set up to run
one master process on one of the available CPU cores, and use the
rest for worker processes. Hence, the program must be run with 3
cores to get two cores to process the work simultaneously, 4 cores
to get three cores to process the work simultaneously, etc. Table 2
represents the running time improvement relative to the number of
workers added. This improvement scales close to linear with the
number of workers, indicating that the load balancing between
each CPU core is very evenly divided, enabling significant time
savings when MOAT-v is run in parallel.

Table 2. Speed benchmark of MOAT-v with respect to the number of CPU
cores assigned worker processes. Each time trial involved using MOAT-v
to generate one permuted variant dataset using ~8 million input variants,
and 1,000,000-bp bins.

of worker CPU cores Running time Fold speedup

1 3hr44min 1.00x
2 1hr54min 1.97x
4 1hr4min 3.50x
8 40min 5.60x

MOAT-v was used on the same variant and annotation sets used
to demonstrate MOAT-a’s usefulness for finding elevated cancer
mutation burdens. MOAT-v produced comparable results—the
same known cancer-associated TSSes flagged as significant in
MOAT-a were also flagged in MOAT-v. After applying BH cor-
rection to all p-values, there were 1394 promoters, 451 TSSes, and
109 DRMs with significant mutation burdens. Hence, MOAT-v
appears to be the more conservative algorithm.

5 DISCUSSION
Identification of genomic elements with a high mutation burden is
useful for narrowing down the exact site of functional disruption.
We introduce Mutations Overburdening Annotations Tool
(MOAT), a new software tool to facilitate such analyses. We
demonstrate the usefulness of this tool for flagging putative
noncoding cancer drivers, and provide CUDA- and OpenMPI-
accelerated versions that dramatically increase the speed of muta-
tion burden analysis. Given the demand for efficient, meaningful
analysis of genome sequence data that is now being produced at a
very high rate, we consider MOAT’s provision of such analysis for
genetic disease drivers quite timely.

Funding: This work was supported by the National Institutes of
Health [5U41HG007000-04].
REFERENCES
Alexandrov, L.B., et al. Signatures of mutational processes in human cancer. Nature

2013;500(7463):415-421.

Benjamini, Y. and Hochberg, Y. Controlling the false discovery rate: a practical and

powerful approach to multiple testing. Journal of the Royal Statistical Society. Series

B (Methodological). 1995;57(1):289-300.

Gabriel, E., et al. Open MPI: Goals, concept, and design of a next generation MPI

implementation. Springer 2004:97-104.

Lucas Lochovsky� 5/4/2016 2:42 PM
Deleted: .

Jing Zhang� 5/4/2016 11:36 AM
Deleted: Finding the genetic basis of disease
enables the development of highly targeted
therapies that promise to be far more effective
than previous therapies. The current wave of
next generation sequencing of thousands of
genomes has provided the data necessary to
find the precise phenomena responsible for the
functional disruption that gives rise to disease
phenotypes.

K.Takahashi et al.

4

Harrow, J., et al. GENCODE: the reference human genome annotation for The

ENCODE Project. Genome research 2012;22(9):1760-1774.

Lochovsky, L., et al. LARVA: an integrative framework for large-scale analysis of

recurrent variants in noncoding annotations. Nucleic acids research

2015;43(17):8123-8134.

Nickolls, J., et al. Scalable parallel programming with CUDA. Queue 2008;6(2):40-

53.

Thurman, R.E., et al. The accessible chromatin landscape of the human genome.

Nature 2012;489(7414):75-82.

Vinagre, J., et al. Frequency of TERT promoter mutations in human cancers. Nature

communications 2013;4:2185.

Wang, K., et al. Whole-genome sequencing and comprehensive molecular profiling

identify new driver mutations in gastric cancer. Nature genetics 2014;46(6):573-582.

Yip, K.Y., et al. Classification of human genomic regions based on experimentally

determined binding sites of more than 100 transcription-related factors. Genome

biology 2012;13(9):R48.

