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Enhancer prediction using pattern recognition within signal of epigenetic datasets 
 

Abstract 
 
Enhancers are an important category of tissue-specific noncoding functional elements, 
whose activity is often associated with changes in gene expression across different 
tissues, which are thought to be essential for multi-cellularity. Unfortunately, until 
recently, enhancers were difficult to characterize experimentally and only a small 
number of tissue-specific mammalian enhancers were extensively validated. Hence, for 
predicting enhancers at a genomic scale, people often utilized features associated with 
enhancers such as clusters or transcription factor binding sites or enrichment of 
particular histone marks in an unsupervised fashion to predict putative enhancers. Now, 
due to the advent of next generation sequencing, there are a large number of massively 
parallel assays for characterizing enhancers. We use the output of these assays to 
properly train and test a statistical model for predicting enhancers. We find that we can 
build a statistical model that characterizes the shape of the signal for different epigenetic 
marks associated with enhancers and our model contains a small number of parameters 
that combines these features together. This statistical model characterizes enhancers in 
a cell-type specific manner and we show that this model can be transferred without 
change between various cell lines and even between different organisms. This statistical 
model allows us to characterize enhancers on a large scale across many tissues and 
cell lines. It will also allow us to characterize enhancers in cell lines with many 
experimentally measured transcription factor binding sites and this in turn allow us to see 
a distinct difference between the binding of transcription factors at enhancers and 
promoters, allowing us to construct a secondary model that better discriminates between 
these two active regulatory regions. 
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Introduction 
 
Enhancers are gene regulatory elements that activate expression of target genes from a 
distance \cite{}. Enhancers are turned on in a space and time-dependent manner leading 
to the formation of a large assortment of cell-types with different morphologies and 
functions even though each cell in an organism contains nearly identical genome \cite{}. 
Moreover, changes in the sequences of regulatory elements is thought to play a 
significant role in the evolution of species \cite{}. Understanding enhancer function and 
evolution is currently an area of great interest because variants within distal regulatory 
elements are also associated with various traits and diseases during genome-wide 
association studies \cite{}. However, the vast majority of enhancers and their 
spatiotemporal activities remain unknown because it is not easy to predict their activity 
based on DNA sequence or chromatin state \cite{}. 

Traditionally, the regulatory activity of enhancers and promoters were experimentally 
validated in a non-native context using low throughput heterologous reporter constructs 
leading to a small number of validated enhancers that function in the same mammalian 
cell-type \cite{}. In addition to the small numbers, the validated enhancers were typically 
biased towards conserved noncoding regions \cite{} with particular patterns of chromatin 
or transcription factor binding \cite{} making these validated enhancers inappropriate for 
training supervised machine learning models of enhancers. As a result, most theoretical 
methods to predict enhancers could not optimally parameterize their models using a gold 
standard set of functional elements. Instead, most of these models were trained based 
on certain features associated with enhancers, which were then utilized to predict 
enhancers. Active enhancers and promoters tend to be depleted of histone proteins and 
contain accessible DNA on which various transcription factors and cofactors bind \cite{}. 
These regulatory regions also tend to be flanked by nucleosomes that contain histone 
proteins with certain characteristic post-translational modifications \cite{}. These 
characteristics lead to an enriched “double peak” signal containing troughs on regulatory 
regions within different ChIP-Seq experiments for various histone modifications such as 
acetylation on H3K27 and methylations on H3K4 \cite{}. Hence, conservation, TF binding 
motifs, TF binding sites, as well as enrichment of epigenetic marks have each been used 
to train models for enhancer prediction \cite{}. A small number of the predicted 
enhancers were then validated experimentally to test the accuracy of these predictions.  
 
However, as very few enhancers had been experimentally validated, it remains 
challenging to assess the performance of different methods for enhancer prediction and 
we are still unsure about the optimal method to combine information from multiple 
chromatin marks to make cell-type specific regulatory predictions. In recent times, due to 
the advent of next generation sequencing, a number of transfection and transduction-
based assays were developed to experimentally test the regulatory activity of up to a 
hundred thousand regions in a massively parallel fashion \cite{}. In these experiments, 
several plasmids that each contain a single core promoter upstream of a luciferase or 
GFP gene are transfected or transduced into cells \cite{}. These plasmids are used to 
test the regulatory activity of different regions by placing them near the core promoter as 
differences in the gene’s expression occur due to the differences in the activity of the 
tested region. STARR-seq was one such MPRA that was used to test the regulatory 
activity of the fly genome in several cell-types \cite{} and was able to identify thousands 
of cell-type specific enhancers. For the first time, using data from massively parallel 
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reporter assays (MPRAs), we have the ability to properly train our models based on a 
large number of experimentally validated enhancers and assess the performance of 
different models for enhancer prediction.  
 
We developed a new supervised machine-learning method trained from large numbers 
of experimentally active regulatory regions in MPRAs to accurately predict active 
enhancers and promoters in a cell-type specific manner. Unlike previous enhancer 
prediction methods that focus on the enrichment (or signal) of different epigenetic 
datasets, we developed a method to also take into account the signal pattern within 
different epigenetic datasets associated with active regulatory regions. As the epigenetic 
signal around each enhancer is noisy, we aggregated the signal around thousands of 
enhancers identified using MPRAs to increase the signal-to-noise ratio and identified the 
signal shape associated with active regulatory regions. The epigenetic signal shapes 
associated with promoters and enhancers are conserved across millions of years of 
evolution and these models can be used to predict enhancers and promoters in different 
cell-types and tissues and across diverse eukaryotic species. We further created simple 
to use transferrable machine learning models with six parameters that can be used to 
predict enhancers and promoters in several eukaryotic species like fly, mouse, and 
human. We applied these models to predict active enhancers and promoters in the H1-
hESC, a highly studied human cell-line in the ENCODE datasets. These analyses show 
that the pattern of transcription factor (TF)  binding and co-binding varies between 
enhancers and promoters. The pattern of TF and co-TF binding at active enhancers is 
much more heterogeneous than the corresponding patterns on promoters. The pattern 
of TF binding can be used to distinguish enhancers from promoters with high accuracy. 
Thus, our methods provide a framework that utilizes different epigenetic genomics 
datasets to predict active regulatory regions in a cell-type specific manner and then 
utilizes further functional genomics datasets to identify key TFs associated with active 
regulatory regions within these cell-types. 
 
Results 
 
Aggregation of epigenetic signal to create metaprofile: 
We developed a framework to predict activating regulatory elements utilizing the 
epigenetic signal patterns associated with experimentally validated promoters and 
enhancers \cite{}. We aggregated the signal of histone modifications on MPRA peaks to 
remove noise in the signal and created a metaprofile of the double peak signals of 
histone modifications flanking enhancers and promoters. These metaprofiles were then 
utilized in a pattern recognition algorithm for predicting active regulatory region in a cell-
type specific manner. 
 
These metaprofiles were initially created using the histone modification H3K27ac at 
active STARR-seq peaks (see Figure 1 and Methods) identified in the S2 cell-line of fly. 
There is a large amount of variability in the distance between the two maxima of the 
double peak in the ChIP-chip signal (Figure S1). Even though the minimum tends to 
occur in the center of these two maxima on average, the distance between the two 
maxima in the double peaks can vary between 300 and 1100 base pairs. During 
aggregation, we aligned the two maxima in the H3K27ac signal across different STARR-
seq peaks, followed by interpolation and smoothening the signal before calculating the 
average metaprofile. In addition, an optional flipping step was performed to maintain the 
asymmetry in the underlying H3K27ac double peak because it may be associated with 
the directionality of transcription \cite{}. Finally, we also calculated the dependent 
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metaprofiles for thirty other histone marks and DHS signal by applying the same set of 
transformations to these datasets. The metaprofile for the histone marks associated with 
active regulatory regions were also double peak signals and the maxima across different 
histone modification signals tended to align with each other on average (Figure S2). In 
contrast, as expected, the DHS signal displayed a single peak at the center of the 
H3K27ac double peak (Figure 1). In addition, repressive marks such as H3K27me3 were 
depleted in these regions and the metaprofile for these regions did not contain a double 
peak signal (Figure S2).  
 
Occurrence of metaprofile is predictive of regulatory activity: 
We evaluated whether these metaprofiles can be utilized to predict active regulatory 
regions using matched filters, a well-established algorithm in template recognition.  A 
matched filter is the optimal pattern recognition algorithm that uses a linear filter to 
recognize the occurrence of a template in the presence of stochastic noise \cite{}. We 
evaluated whether the occurrence of the regulatory metaprofiles identified for the histone 
marks and DHS can be used to predict active regulatory regions using receiver 
operating characteristic (ROC) and precision-recall (PR) curves. The PR curves are 
particularly useful to assess the performance of classifiers in skewed or imbalanced data 
sets in which one of the classes is observed much more frequently as compared to the 
other class. On these imbalanced data sets, PR curves are useful alternative to ROC 
curves as they are more sensitive to false positives and can highlight performance 
differences even when the ROC curves remain comparable \cite{}. The matched filter 
score is higher in genomic regions where the template pattern occurs in the 
corresponding signal track while the matched filter score is low when only noise is 
present in the signal (Figure 1). Due to the aforementioned variability in the double peak 
pattern, the H3K27ac signal track is scanned with multiple matched filters with templates 
that vary in width between the two maxima in the double peak and the highest matched 
filter score with these matched filters is used to rate the regulatory potential of this region 
(see Methods). The dependent profiles are then used on the same region with the 
matched filter to score the corresponding genomics tracks. 
 
We used 10-fold cross validation to assess the performance of matched filters for 
individual histone marks to predict active regulatory regions identified in a STARR-seq 
experiment. In Figure 2, we observe that the H3K27ac matched filter is the single most 
accurate feature for predicting active regulatory regions (AUROC=0.92, AUPR=0.72) 
identified using STARR-seq. This is consistent with the literature as H3K27ac enriched 
peaks are often used to predict active promoters and enhancers \cite{}. In general, 
several histone acetylation (H3K27ac, H3K9ac, H4K12ac, H2BK5ac, H4K8ac, H4K5ac, 
H3K18ac) marks as well as the H1, H3K4me2, and DHS matched filters are the most 
accurate marks for predicting regulatory regions (see Figure 2 and Table S1) because 
the matched filter scores for active regulatory regions on these marks are higher than 
the matched filter scores for non-regulatory regions (Figure S3). The degree to which the 
matched filter scores for regulatory regions are higher than the matched filter scores for 
the rest of the genome is a measure of the signal to noise ratio for regulatory region 
prediction in the corresponding feature’s genomic track and the larger the separation 
between positives and negatives, the greater the accuracy of the corresponding 
matched filter for predicting active regulatory regions. Interestingly, the distribution of 
matched filter scores for regulatory regions are Gaussian for each histone mark except 
for a bimodal distribution for the H3K4me1, H3K4me3, and H2Av matched filter scores 
(Figure S3). We also show that the matched filter scores are more accurate for 
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predicting active regulatory regions than enrichment of signal alone as they outperform 
the histone peaks on ROC and PR curves (Figure S4). 
 
While a single STARR-seq experiment identifies thousands of active regulatory regions, 
these regions display core-promoter specificity and different sets of enhancers are 
identified when different core promoters are used in the same cell-type \cite{}. As we 
wanted to create a framework to predict all the regulatory regions active in a particular 
cell-type, we combined the regulatory regions identified from multiple STARR-seq 
experiments in the S2 cell-type and reassessed the performance of the matched filters at 
predicting these regulatory regions. Merging the STARR-seq peaks from multiple core 
promoters in the S2 cell-type leads to higher AUROC and AUPR for the matched filters 
from most histone marks (Figure 2).  
 
Machine learning can combine matched filter scores from different epigenetic 
features: 
We combined the normalized matched filter scores (see Methods) from six different 
epigenetic marks associated with active regulatory regions by the Roadmap 
Epigenomics Mapping \cite{} and the ENCODE \cite{} Consortia using a linear SVM 
\cite{} and the integrated model achieved a higher accuracy than the individual matched 
filters (Figure 2). These models are trained to learn the patterns in the matched filter 
scores for different epigenetic marks within experimentally verified regulatory regions 
and we chose these marks as we wanted to assess the applicability of these machine 
learning models to predict active regulatory regions across different cell-types and 
species. As expected, the integrated models outperformed the individual matched filter 
scores, as they are able to leverage information from multiple epigenetic marks. In 
addition, the six-parameter integrated model displayed higher accuracy after combining 
the peaks identified using different core promoters. In the integrated model, the 
normalized matched filter score for each epigenetic feature in a particular region is 
scaled by its optimized weight and added together to form the discriminant function. The 
sign of the discriminant function is then used to predict whether the region is regulatory. 
The features with large positive and negative weights are predicted to be important for 
discriminating regulatory regions from non-regulatory regions in such models. They can 
also be used to measure the amount of non-redundant information added by each 
feature in the integrated model. According to the model, the acetylations (H3K27ac and 
H3K9ac) are the most important feature for predicting active regulatory regions from 
inactive regions. While the DHS matched filter performed the second best as an 
individual feature (AUPR in Figure 2), the information in DHS is redundant with the 
information in the histone marks as indicated by the fact that it has the lowest weight 
among the six features in the inegrated model. We utilized several other machine 
learning algorithms to combine the machine learning models and found that they all 
displayed nearly similar accuracy and similar features were more important across these 
different models (Figure S5).  
 
To assess the information contained in other epigenetic marks, we combined the 
matched filters from all 30 measured histone marks along with the DHS matched filter in 
a separate SVM model (Figure S6) and this model displayed higher accuracy than the 6 
feature model presented in Figure 2. The feature weights in this model indicated that 
H3K27ac contains the most information regarding the activity of regulatory regions. 
However, we found that a few other acetylations such as H2BK5ac, H4acTetra, and 
H4K12ac contain additional non-redundant information regarding the activity of these 
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regulatory regions and might improve the accuracy of regulatory region prediction from 
machine learning models (Figure S7). 
 
Distinct epigenetic signals associated with promoters and enhancers: 
We proceeded to create individual metaprofiles and machine learning models for the two 
classes of regulatory activators – promoters (or proximal) and enhancers (or distal). We 
divided all the active STARR-seq peaks into promoters or enhancers based on their 
distance to the closest transcription start site (or TSS). Due to the conservative distance 
metric used in this study (1kb upstream and downstream of TSS), the enhancers are 
regulatory elements are not close to any known TSS even though a few promoters may 
actually function as enhancers. We then created metaprofiles of the different epigenetic 
marks on the promoters and enhancers and assessed the performance of the matched 
filters for predicting active regulatory regions within each category (Figure 3). The 
highest matched filter scores are typically observed on promoters and the matched filters 
for each of the six marks tended to perform better for promoter prediction. The H3K27ac 
matched filter continues to outperform other epigenetic marks for predicting active 
promoters and enhancers (Figure 3). In addition, the DHS, H3K9ac, and H3K4me2 
matched filters also performed reasonably for promoter and enhancer prediction. Similar 
to previous studies \cite{}, we observed that the H3K4me1 metaprofile peforms better for 
predicting enhancers while it is close to random for predicting promoters. Similarly, the 
H3K4me3 metaprofile can be utilized to predict promoters and not enhancers. The 
histogram for matched filter scores show that H3K4me1 matched filter score is higher 
near enhancers while the H3K4me3 matched filter score is higher near promoters 
(Figure S8). The mixture of these two populations lead to bimodal distributions for 
H3K4me1 and H3K4me3 matched filter scores when calculated over all regulatory 
regions. 
 
We created two different six-parameter SVM models to learn the combination of features 
associated with promoters and enhancers. These integrated models outperformed the 
individual matched filters at predicting active enhancers and promoters. In addition, the 
weights of the individual features identified the difference in roles of the H3K4me1 and 
H3K4me3 matched filter scores at discriminating active promoters and enhancers from 
inactive regions in the genome. The promoter-based (enhancer-based) model performed 
much more poorly at predicting enhancers (promoters) indicating the unique properties 
of these regions (Figure S8). We also created two integrated models utilizing matched 
filter scores for all thirty histone marks as features for predicting enhancers and 
promoters. The additional histone marks provided independent information regarding the 
activity of promoters and enhancers as these features increased the accuracy of these 
models (Figure S9). The weights of different features indicate that H2BK5ac again 
displays the most independent information for accurately predicting active enhancers 
and promoters (Figures S10 and S11). We observe similar trends and accuracy with 
several different machine learning models (Figures S9-S11).     
 
The epigenetic underpinnings of active regulatory regions are highly conserved in 
evolution: 
In order to assess the transferability of these metaprofiles and machine learning models 
for predicting regulatory regions in other tissues and cell-types, we assessed the 
accuracy of these models for predicting regulatory elements identified using the 
transduction-based FIREWACh assay in mouse embryonic stem cells (mESC) \cite{}. In 
addition, as these regulatory regions were identified using a single core promoter in 
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FIREWACh, the performance of the different models are probably underestimated 
similar to Figure 2. 
 
The metaprofiles for individual histone marks learned using active promoters and 
enhancers identified with the STARR-seq assay in the S2 cell-line were used with 
matched filters to predict the regulatory activity of different regions in mESC based on 
the epigenetic marks in mESC (Figure 4). The matched filters for individual histone 
marks displayed similar accuracy for predicting regulatory regions in mESC as in the 
original S2 cell-line.  We also show that the matched filter learned from S2 cell-line can 
be utilized to predict active promoters and enhancers in the BG3 cell-line of fly (Figure 
S12). In addition, the 6-parameter SVM models learned using STARR-seq data in S2 
cell-line were also highly accurate at predicting active enhancers and promoters in 
mouse (Figure 4) and the BG3 cell-line (Figure S12). This indicates that the epigenetic 
profiles associated with active enhancers and promoters are conserved over 600 million 
years of evolution and the metaprofiles learned using STARR-seq data in fly could be 
utilized to predict enhancers in higher eukaryotes. 

 
Different Transcription Factors bind to enhancers and promoters 
 
We utilized the 6 parameter SVM model to predict active regulatory regions in the H1-
human embryonic stem cell (hESC) based on the epigenetic datasets measured by the 
ENCODE consortium. Using these models, we predicted 43463 active regulatory 
regions, of which 22828 are within 2kb of the TSS and are labeled as promoters. A large 
proportion of the predicted enhancers are found in the introns and intergenetic regions 
(Figure S13). The predicted promoters and enhancers are significantly closer to active 
genes than might be expected randomly (Figure S14).  
 
As the ENCODE consortium has measured binding data for 60 transcription related 
factors in the H1-hESC cell-line using ChIP-seq, we further studied the differences in TF 
binding at promoters and enhancers (Figure 5). These 60 factors include a few 
chromatin remodelers and histone modification enzymes that we will call TFs for 
simplicity. A large fraction of promoters and enhancers contain different TF-binding sites 
with more than 70% of promoters containing ChIP-seq peaks for some TFs. A majority of 
the promoters also contain peaks for several TATA-associated factors (TAF1, TAF7, and 
TBP). In addition, a few of the factors contain a majority of their ChIP-seq peaks within 
these predicted enhancers and promoters as well. Overall, TF-binding at enhancers is 
more heterogeneous than TF-binding at promoters and this is consistent with the 
absence of a sequence code (or grammar) that can be easily utilized to identify active 
enhancers on a genome-wide fashion. 
 
In Figure 5, we show that the patterns of TF binding within regulatory regions can be 
utilized in a logistic regression model to distinguish active enhancers from promoters 
with high accuracy (AUPR = 0.89, AUROC = 0.87). We were also able to identify the 
most important features that distinguish promoters from enhancers. In addition to TATA-
box associated factors such as TAF1, TAF7, and TBP, the RNA polymerase-II binding 
patterns as well as chromatin remodelers such as KDM4A and PHF8 are some of the 
most important factors that distinguish promoters from enhancers in H1-hESC. This 
provides a framework that can be utilized to identify the most important TFs associated 
with active enhancers and promoters in each cell-type.  
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So we we've just shown that the set of TF that bind up promoters is very different than 
bind enhancers and TF-binding at enhancers is more heterogeneous than TF-binding at 
promoters. As the set of TF that bind promoters is fairly uniform, the same pairs of TF 
also tend to bind together on promoters. In contrast, for enhancers, the patterns of TF 
co-binding is much more heterogeneous and different enhancers tend to contain 
different TF-pairs. This can be observed in the patterns of TF co-binding in Figure 5. 
These TF co-associations could lead to mechanistic insights of cooperativity between 
TFs. For example, similar to a previous study \cite{}, CTCF and ZNF143 may function 
cooperatively as they are observed to co-occur frequently at distal regulatory regions in 
this study. 
 
 
 
Discussion 
 
Our ability to accurately predict active regulatory regions in a cell-type specific manner 
using transferable supervised machine learning models that were trained based on 
regulatory regions identified using new NGS-enabled MPRAs distinguishes our method 
from previous works that were trained with regions that had various features associated 
with promoters and enhancers. Only a small number of these regions were typically 
tested experimentally and the precision/recall of these different features for regulatory 
region prediction remained unknown.  These MPRAs were able to firmly establish that 
certain histone modifications occur on nucleosomes flanking active regulatory regions 
leading to the formation characteristic double peak pattern within the ChIP-signal \cite{}. 
We created matched filter models that were able to identify these patterns within the 
shape of the ChIP-signal in the presence of stochastic noise with the highest signal to 
noise ratio. Furthermore, we were able to combine the matched filter scores from 
different epigenetic features using simple transferrable linear SVM models and learned 
the most informative epigenetic features for regulatory region predictions.  
 
The validity of the regulatory regions identified using massively parallel regulatory 
assays (MPRA) for training machine learning models that predict enhancers remains 
controversial as the sensitivity and selectivity of these assays remains questionable. A 
majority of these MPRAs test the regulatory activity of different regions by assessing its 
ability to induce gene expression in a plasmid after transfecting it into a cell-type of 
interest \cite{}. Such assays may not recapitulate the native chromatin environment 
found in chromosomes, which may be necessary for assessing whether the regulatory 
region is active in its genomic environment \cite{}. Here, we show for the first time, that 
the patterns in the epigenetic signals associated with active enhancers identified using a 
transfection-based assay (STARR-seq) can be utilized to predict the activity of 
enhancers in a transduction-based assay (FIREWACh). During the FIREWACh assay, 
random nucleosome-free regions in mESC were captured and assayed for regulatory 
activity of the GFP gene by utilizing a lentiviral plasmid vector and inserted (or 
transduced) these vectors into the chromosome in mESC cells. As the FIREWACh 
assay tests the regulatory activity of enhancers after transduction, these regions are 
assumed to be tested in their native chromatin environment and transduction-based 
assays form a more stringent test for regulatory activity. However, due to the shorter 
length of the tested region (< 300 bp) and the single core promoter used in the 
FIREWACh assay, we think that the accuracy of the statistical models in Figure 4 are 
underestimated. 
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We were able to assess the accuracy of different epigenetic signals for predicting 
regulatory activity using our statistical models. While different acetylation modifications 
are associated with active regions of the genome, we were able to compare close to 30 
histone marks for enhancer and promoter predictions. The H3K27ac matched filter 
remains the single most important feature for predicting active regulatory regions while 
H3K4me1 and H3K4me3 are known to distinguish different promoters from enhancers. 
However, our analysis shows for the first time the amount of redundancy in information 
in different epigenetic features for predicting active regulatory regions and shows that 
ChIP-experiments of H2BK5ac, H4acTetra, and H2A variants could also produce 
independent information that can improve the accuracy of promoter and enhancer 
predictions. In addition to these 30-feature SVM models, we also provide a simple to use 
six-parameter linear SVM model for combining H3K27ac, H3K9ac, H3K4me1, 
H3K4me2, H3K4me3, and DHS to predict active regulatory regions in a cell-type specific 
manner. The metaprofiles and the combination of epigenetic marks associated with 
active regulatory regions are highly conserved in evolution making these models highly 
transferable as shown in this work. These six histone marks have been measured for a 
number of different tissues and cell-types by the Roadmap Epigenomics Mapping 
Consortium \cite{}, the ENCODE \cite{}, and the modENCODE Consortium \cite{}. 
 
One aspect that is discussed less frequently is the effect of core promoter on enhancer 
and promoter prediction. MPRAs show that the regulatory activity of enhancers and 
promoters in a regulatory assay depends on the core promoter utilized during the 
experiment \cite{}. As the transcription factors that bind to each regulatory region are 
thought to play a key role in core-promoter specificity \cite{}, we think that machine 
learning models that contain sequence or motif-based features could be biased towards 
certain transcription factor binding sites when they are trained with regulatory regions 
identified experimentally using a single-core promoter. On the other hand, the 
performance of machine learning models that are trained with epigenetic features and 
contain no sequence-based information may be underestimated when utilizing data from 
a single core promoter as shown here in Figure 2. On comparing the predictions from 
such models with experiments using a single core promoter, some of the strongest 
predictions could be mislabeled as negatives even though they contain some regulatory 
activity leading to a lower accuracy estimate. 
 
We also analyzed the differences in the patterns of TF binding at proximal and distal 
regulatory regions. The TF binding and co-binding patterns at distal regulatory regions is 
much more heterogeneous than that at proximal regulatory regions. We think that this 
heterogeneity in TF binding patterns makes it much more difficult to predict distal 
regulatory regions due to the absence of obvious sequence patterns in distal regulatory 
regions. We were also able to create highly accurate machine learning models that are 
able to distinguish proximal promoter regions from distal enhancers based on the 
patterns of TF ChIP-seq peaks within these regulatory regions. 

  
 


