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Supporting Information for Matched Filter Paper 
 
Methods 
 
Creation of Metaprofile: 
 
We utilized the smoothed histone signal tracks provided for the S2 cell-line by the 
modENCODE consortium \cite{} to aggregate the corresponding histone signals around 
the STARR-seq peaks \cite{}. This aggregation was performed to remove noise before 
using the metaprofile s(n) for identifying active regulatory regions in the genome. The 
genome-wide profile for open chromatin (DNase-seq or DHS) for the S2 cell-line was 
calculated based on the experiments by the Stark lab \cite{}. To create the smoothened 
metaprofile, we utilized the H3K27ac signals of “double peak” regions around active 
STARR-seq peaks in the S2 cell-line \cite{}. The active regulatory regions are assumed 
to be STARR-seq peaks that occur on open DHS regions in the genome \cite{}. In this 
study, we chose all the STARR-seq peaks that overlap with DHS or H3K27ac peaks to 
be active regulatory regions in the genome.  
 
To identify double peak regions, we initially identified the minimum in the H3K27ac 
signal track closest to the middle of the STARR-seq peaks. A minimum is accepted if it 
has the lowest signal within a 100 base pair region in the H3K27ac signal track. Then we 
proceed to identify the flanking maxima (both sides of the minimum) within a total of 2-
kilo base pair region of the STARR-seq peak (1kb on each direction from the center of 
the STARR-seq peak). These maxima are accepted only if they have the highest signal 
within a 100 base pair region in the H3K27ac signal track. Approximately 70% of the 
active STARR-seq peaks contained an identifiable double peak within the H3K27ac 
signal. 
 
After identifying the double peaks surrounding STARR-seq peaks, we aggregated the 
signal after aligning the maxima flanking the regulatory region. The signal track is 
interpolated with a cubic spline fit so that the signal track contains equal number of 
points for each double peak region. The aggregated signal tracks are averaged to create 
the metaprofile for the double peak regions. While the signal tracks are aggregated 
based on identifying the double peak regions in the H3K27ac signal track, the same set 
of operations can be performed with any histone mark expected to have the double peak 
pattern flanking regulatory regions.  
 
In addition, while creating the metaprofile for H3K27ac signal close to active STARR-seq 
peaks, we also performed the same set of transformations on other dependent 
epigenomic datasets (other histone marks and/or DHS signal). In this study (Figures 1 
and S2), the dependent profiles for all other epigenetic datasets are calculated by 
averaging the corresponding signal based on identifying double peak regions within 
H3K27ac signal. 
 
Matched Filter Algorithm: 
 
The epigenetic signal at enhancers and promoters can be approximated as the linear 
superposition of background noise and the metaprofile s(n) learned in Figure 1 (Figure 
S2) for the corresponding experimental dataset. The matched filter h(n) is used to scan 
the epigenetic signal to identify the occurrence of the metaprofile pattern within different 
regions of the genome.  The matched filter process is equivalent to the computation of 
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the cross correlation between the signal y(n) and the reverse of the transformed 
metaprofile template s*(N-n) (where N is the total number of points in the template). In 
other words: 
 

𝑟 𝑛 =  𝑦 𝑖 ∗ ℎ(𝑖)
!

!!!

 

 
where h(i) is the matched filter and can be written as: 

ℎ 𝑖 =  𝑠∗(𝑁 − 𝑖) 
 
As shown in Figure S1, there is a large amount of variability in the span (distance 
between the two peaks in the histone signal) of the regulatory region in the epigenetic 
signal. As a result, we scan the genome with the matched filter scanning different spans 
of the genome (distance between the two peaks allowed to vary between 300 and 1100 
base pairs) and take the highest score as the matched filter score for that region. The 
matched filter is the filter that recognizes any given template in the presence of noise in 
a signal with the highest signal-to-noise ratio. In the presence of white noise alone, the 
matched filter score is low and follows a Gaussian distribution (negatives). The presence 
of the metaprofile within the signal leads to higher matched filter scores for positives. 
 
Statistical Learning Models 
The matched filter scores for negatives for different histone marks are unimodal that can 
be fit using separate Gaussian distributions. The Z-scores of matched filter scores with 
respect to the negatives (random regions of genome) are used as input features for 
training different statistical learning models. In the main text, we discuss our results of 
the Support Vector Machine (SVM) model, which is one of the most versatile and 
successful binary classifiers \cite{}. We utilized a linear kernel to distinguish between the 
positives and negatives. The linear SVM identifies a decision boundary that maximally 
discriminates the epigenetic features of regulatory regions from random regions of the 
genome in the SVM feature vector space. In the Supporting Information, we also present 
results for Ridge Regression, Random Forest, and Gaussian Naïve Bayes models and 
the accuracy of different models are comparable. We use scikit-learn \cite{} for training 
and assessing the performance of all the machine learning models.   
   
 
Assessing the Models: 
 
In order to assess the accuracy of matched filter for predicting enhancers and 
promoters, we used 10-fold cross validation. In Figure 2, the positives are defined as the 
active peaks (intersecting with DHS or H3K27ac peaks) from a single STARR-seq 
experiment (singe core promoter) or the union of active peaks from multiple STARR-seq 
experiments (multiple core promoters). The negatives are randomly chosen regions in 
the genome with H3K27ac signal that had the same width distribution as the distribution 
of distance between double peaks near STARR-seq peaks (shown in Figure S1). We 
typically chose between 5 to 10x number of negatives as compared to number of 
positives in Figures 2, 3, and 4 as the number of enhancers and promoters in the 
genome (positives) are far lesser than the number of negatives. During 10-fold cross 
validation, the positives and negatives are randomly divided in to 10 groups each. Nine 
of the 10 groups are randomly combined to train the model and the predictions are 
tested on the 10th group. To evaluate the performance of trained classifiers, we 
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performed 10-fold cross-validation on the training data and quantified our results with 
area under ROC, and area under precision-recall (AUPR) curves. In Figure 3, the active 
promoters are defined as active STARR-seq peaks (multiple core promoter) within 1 kb 
of TSS (Ensembl release 78) while enhancers were active STARR-seq peaks more than 
1kb from any TSS in Drosophila melanogaster. While calculating the matched filter for 
positives and negatives, we considered the best scoring matched filter score after 
padding each region to 1.5kb width. In Figure 4, the promoters are defined as 
FIREWACh peaks within 2 kb of TSS (GENCODE release vM4) while enhancers were 
FIREWACh peaks more than 2kb from any TSS. The FIREWACh assay is performed in 
a transduction assay and was based on ChIP-seq peaks of a few key TFs. Hence, we 
did not split the FIREWACh peaks in to active and poised enhancers and promoters.   

 
H1-hESC whole genome prediction 
To predict enhancers and promoters on the whole genome, we utilized the 6 parameter 
machine learning model shown in Figure 2. The H3K27ac matched filter was utilized with 
5% FDR (with respect to negative Gaussian model) to set the threshold for the machine 
learning model. There were 43463 active regulatory regions predicted in the human 
genome (< 2% of genome). All regions within 2kb of TSS were annotated as promoters 
while active regulatory regions that were more than 2kb from TSS were annotated as 
enhancers. The distribution of the expression of closest gene (GENCODE v19 TSS) 
from ENCODE RNA-seq dataset for H1-hESC was compared to the expression of all 
genes from H1-hESC.  The Wilcoxon test was used to measure the significance of 
changes in gene expression. 
 
H1-hESC TF binding 
To measure the differences in TF binding and co-binding patterns at promoters and 
enhancers, we overlapped the ChIP-seq peak from ENCODE with our predicted 
enhancers and promoters using intersectBed. The two regions were considered to be 
overlapping if at least 25% of the ChIP-seq peak was overlapping with the predicted 
enhancer or promoter. 


