Hi-C updates

- Reproducibility and QC metrics in ENCODE
 3D nucleome subgroup
- 2. Identifying topologically associating domains in multiple resolutions

Updates of the ENCODE 3D nucleome subgroup

- Preparation of manuscript for ENCODE guidelines for assessing the quality and the reproducibility of chromosome conformation capture experiments
 - Similar to ENCODE ChIP-seq guidelines (Landt et al. Genome Research 2012)

Hi-C data 11 cell types 2 **replicates**

Hi-C data Mouse forebrain Time course 2 **replicates**

Evaluate reproducibility metric

Pilot study of reproducibility metrics

- We generated a pilot dataset of 42 pairs of Hi-C experiments
 - Set1
 - Pseudo-replicates
 - Real biological replicates
 - Non-replicates (data from different cell lines)
 - Set2
 - (Real data, 75% Real data + 25% noise)
 - (Real data, 50% Real data + 50% noise)
 - (Real data, 25% Real data + 75% noise)
 - (Real data, %100 noise)
- Evaluate performance by comparing expected vs. metric based rank (spearman corr.)

Quantifying reproducibility using spectral graph theory

 leading eigenvectors capture the structures of the graph (dimension reduction)

	А	A'	Euclidean distance
leading 5	ev1	ev1'	d1
eigenvectors	ev2	ev2'	d2
	ev3	ev3'	d3
	ev4	ev4'	d4
	ev5	ev5'	d5
			score= sum over d

Pair 6 is more reproducible than pair 22

Results of various metrics

. . .

- Studies of reproducibility and QC metric in ENCODE 3D nucleome subgroup
- Identifying Topologically associated domains in multiple resolutions

А

chromatin features near domain boundary

10

chromatin features near domain boundary

res=1, hESC, all chr

Domains interaction strength

chromatin features near domain boundary

look at all peaks, what fraction of them are close to the TAD boundaries?

Identifying boundary regions based on histone mark

Classification

TAD boundary regions (40kb)

TAD middle regions (40kb)

CTCF DNAse1 H3K4me1 H3K9me3 H3K27ac H3K27me3 H3K27me3 H3K36me3 Rad21

Features

random forest AUC=0.93

Identifying boundary regions based on histone mark

Identifying boundary regions based on histone mark

Compartments versus domains $C_{ij} = cor(W_{ij}/E_{ij})$

Compartments versus domains

hESC chr10

Lamina associated domains (LADs)

the next steps

- Keep fishing the interplay between TADs and other genome annotation in different resolution
 - annotation like ChromHMM
 - replication timing (ENCODE repli-seq)
 - TF binding pattern in TADs across multiple resolutions (with ANS, Yunsi)
 - k-mer frequency (ANS, Yunsi, SKL)
- Comparison between different cell types
- To compare with existing methods: Dixon et al. Nature 2012, Rao et al. Cell 2014, Weinreb and Raphael Bioinformatics 2015 (TADtree), Malik and Patro bioRxiv 2015 (Matryoshka)