
 

Specific Aims 
We propose a Center for Functional Validation and Evaluation of ENCODE Enhancer regions. We will employ 
assays to evaluate both sufficiency and necessity of candidate regulatory elements on transcription.  Broadly 
speaking we will perform two types of assays.  First, we will use regulatory element (enhancer) reporter assays 
to test for sufficiency of candidate non-coding DNA sequences to modulate gene expression, relying on STARR-
seq for high throughput implementations and on genomic integration of smaller numbers of predicted elements 
to be tested in biological models. Second, we will use mutation/genetic-engineering assays to test for necessity 
of predicted enhancer sequences for normal expression of endogenous genes, relying on CRISPR technology 
with quantitative RNA measurements in both populations of cells and at the single-cell level.  Several related 
variations on each of these assay types will be applied.  

In addition to existing ENCODE data and cell lines, the Center will study two biological systems relevant 
to human disease. The first biological system, implemented by the White and Roggin labs at the University of 
Chicago, uses freshly resected primary and malignant pancreatic tissue to grow organoids in three-dimensional 
culture. The second system, developed by the Quertermous and Snyder labs at Stanford, uses iPS cells that are 
differentiated into smooth muscle cells grown and studied in a disease phenotypic state (phenotypic modulation). 
These two different biological systems were chosen for the relevance to inherited traits (coronary artery disease) 
and to somatically acquired traits (pancreatic cancer).  Genetic variation plays a major role in both of these 
biological systems, with mounting evidence for the role of non-coding cis-regulatory genetic variation.  We will 
also use ENCODE immortalized cell lines and cancer cell lines for comparison, and as tools for whole genome 
and rapid assay of putative enhancers and the effects of genetic variation.  We envision the Center effort being 
equally divided among four parts: (1) coronary-artery and smooth-muscle studies, (2) pancreatic-tumor/normal 
organoids, (3) ENCODE cell lines, and (4) applying our approaches to a common set of elements decided on by 
the ENCODE consortium and tested across all of the Centers (as designated in the RFA). 
 
Aim 1.  Using ENCODE and other public data sets to identify regulatory elements for testing 
First, we will identify high-confidence active regulatory regions from ENCODE and other public datasets for 
downstream functional analysis. Second, we will use GWAS and whole genome sequencing data available for 
samples related to coronary artery disease (CAD) and pancreatic cancer. Finally, in conjunction with the 
ENCODE Data Analysis Center and Analysis Working Group, we will select tools to deploy for further 
computational analysis to refine the definition of enhancer elements, including those developed by Gerstein and 
colleagues.  Using these three sets of computational predictions as a guide, in Aims 2 and 3 we will investigate 
candidate enhancers, as well as the effects of inherited and somatic variation, using the CAD and pancreatic-
cancer models, respectively. 
 
Aim 2. Testing for enhancer sufficiency using enhanced STARR-seq 
For candidate enhancer sufficiency we will use variations of the STARR-seq high throughput reporter assay in 
cell lines, in human 3-dimensional tissue models of pancreatic cancer, and in human smooth muscle cell models 
of coronary heart disease. These variations include the use of whole genome screening, capture-based 
screening, and site-directed mutagenesis to assess the impact of synthetic or naturally occurring mutations 
predicted to effect enhancer function.  
 
Aim 3. Testing for enhancer necessity using CRISPR mutagenesis 
For candidate enhancer necessity we will use CRISPR mediated mutation of candidate enhancers in their 
endogenous chromatin state. Two main variants of CRISPR mediated putative enhancer mutation will be 
pursued. In the first variant we will generate mutations in putative enhancers using a 96-well plate format and 
qRT-PCR of nearby genes to generate quantitative transcriptional read out. In the second variant we will use 
Drop-seq paired to CRISPR in order to get a high throughput, single cell resolution assessment of enhancer 
mutations. This second variant has the potential to create an “all-by-all” matrix of enhancer-by-transcription unit 
effects. We will also coordinate with other Centers who are taking similar approaches with complementary assays 
in other biological systems.  
 
Aim 4. Testing selected human enhancers in vivo  
We will use mouse transgenic models to test a limited set of enhancers that are validated in Aims 2 and 3, and 
that are also implicated in genetic risk for coronary artery disease or in recurrent mutations in pancreatic cancer. 
For CAD we will test both high risk and low risk alleles for differential function, and for pancreatic cancer we will 
test both normal and mutated variants of each candidate enhancer assayed. 
 



 

Research Strategy 
A. Significance 

Great strides have been taken in the last 30 years toward understanding the regulation of genes.  
Concepts developed originally to describe the DNA sequences that control gene expression in prokaryotes and 
in viruses, such as promoters and enhancers, have been extended and refined to create working models of how 
eukaryotic genes are expressed. The decoding of model organism and human genomes, coupled with 
technology developments over the last 15 years, have radically altered our ability to systematically map and 
interrogate candidate sequences in the non-coding genome for gene regulatory functions.  Scientists today are 
presented with unprecedented opportunities to discover and validate the candidate regulatory elements that 
drive the expression of genes in each biological cell type, tissue, normal or diseased system of interest.  

The ENCODE project has seized upon these technological advancements, and in doing so has created 
high resolution mappings of chromatin modifications, transcription factor binding sites, chromatin accessibility, 
gene expression, and other necessary data for the genome-wide identification of candidate regulatory elements 
such as enhancers. Other projects have contributed extensive mapping efforts as well, including the 
Epigenomics Roadmap and the GTEx consortia – along with countless other individual researchers worldwide 
who, driven by the goal of unraveling the complexities of gene expression in their particular biological systems 
of interest, collectively have made even greater contributions to technology development and to detailed maps 
and functional validations for particular cell types.  

However, presently we are at the cusp of another leap in the ability to systematically characterize and 
validate gene regulatory elements. Technologies have emerged that allow testing of gene regulatory elements, 
including STARR-seq (self-transcribing active regulatory region sequencing) and CRISPR (Clustered regularly-
interspaced short palindromic repeats) Cas9 - based genomic mutation and engineering.  The challenge that lies 
immediately ahead involves using ENCODE and other related data to accurately predict which candidate DNA 
elements will have biological activity, and then applying these testing/validation approaches in large scale and 
efficient assays that can be extended and generalized to fit a wide range of biological applications. 

 
Why focus a center on enhancers?  

Encoded within the DNA regulatory elements that drive gene expression are the genomic algorithms that 
are at the root of each cell’s identity.  Enhancers are one of the most potent and abundant classes of such 
regulatory elements.  Importantly, much of the specific information that leads to cell type-specificity and that is 
associated with complex (and some Mendelian) human diseases appears to be encoded in enhancers. However, 
while hundreds of thousands of candidate enhancers have been predicted by the ENCODE consortium and other 
investigators, and much genetic variation (inherited and somatic) has been mapped to enhancers, a relatively 
small fraction of these DNA sequences have been tested and validated for function or biological relevance. 

Transcriptional enhancers are often short stretches of DNA (a few hundred to a few thousand base pairs) 
that are able to modify transcription from the promoter of a target gene. Enhancers were originally discovered in 
simian virus 40 (SV40) (1, 2), but were subsequently identified within much more complex loci such as the 
mammalian immunoglobulin genes (3-5).  In the 1980s it became widely recognized that such enhancer 
sequences acted as key determinants of cell-type-specific gene expression, which led to launching of many 
projects in model organisms and human cells to clone and characterize these sequences. It was discovered that 
enhancers can exert their effect over long distances of thousands, even millions of base pairs, either from 
upstream, downstream, or from within transcription units (6-8). Most human genes, and those of other 
multicellular organisms, are thought to be controlled by several enhancers that dictate expression at different 
developmental stages, in different cell types and in response to different signaling cues.  

The ENCODE Consortium, along with work by many individual labs, has resulted in thousands of data 
sets for genome-wide transcription factor binding sites (TFBS), and other chromatin-associated factors, in a wide 
range of human cell types. TFBS sometimes cluster in a non-random fashion, and particularly when these 
clusters co-occur with certain chromatin states and marks, they are often considered to be good candidates for 
cis-regulatory modules (CRMs)(9). The prefix “cis” defines these elements are located in the same DNA molecule 
as the regulated target. CRMs are organized in a “modular” style, and they can regulate transcription in an 
additive, or sometimes non-additive, manner (10). Based on their functions and mechanisms of action, CRMs 
can be classified into enhancers, silencers, promoters, locus control regions (LCRs), and insulators (9). The 
ENCODE project, and its sister model organism ENCODE (modENCODE) projects, have made great strides in 
systematically mapping these various classes of CRMs.  For example, White and colleagues led the effort in 
Drosophila to systematically identify CRMs in the fruit fly genome (11-14).  Gerstein, Waterston and colleagues 



 

produced similar maps in C. elegans (15, 16).  Snyder, White and Gerstein have been among a large team of 
researchers in the human ENCODE project who have focused in producing CRM maps for the human 
genome(17).   

Among the various types of CRMs, enhancers were initially defined to regulate the transcription of target 
genes in a location and orientation independent manner (6, 18). However, there is significant evidence, as 
quantitative and detailed measurements of enhancer function have been made, that location and orientation may 
sometimes affect enhancer function (19, 20).  Enhancers are predicted to be the most abundant class of CRMs 
in the mammalian genome(21), and often function in a highly cell/tissue specific way (22) compared to other 
types of CRMs. They can also reproduce highly restricted temporal and spatial expression patterns in vivo (23, 
24), suggesting that enhancers are a major contributor of tissue/temporal specific gene expression patterns that 
are vital in development, and in human disease (25). 

Enhancers are typically a few hundred base pairs long, and are often close to the transcription start site 
(TSS) of the gene they regulate, but they can also be far away from their target gene(18). For example, the wing 
margin enhancer in the Drosophila cut locus is 85kbp upstream of its promoter (26). In human cells, systematic 
mapping of chromatin interactions between TSSs and candidate enhancers by Dekker and colleagues has 
revealed widespread long-range interactions as well, with an average “long-range” candidate enhancer distance 
of 120kbp (27).  How do enhancers regulate genes that are so far away in the genome? Studies have shown 
that some enhancers can directly interact with the promoter of their target genes through chromosome 
looping(28, 29), facilitated by utilizing targeted tethering of looping factors(30). One recent study on the human 
β-globin locus showed that looping factor GATA1 is critical for enhancer interaction with the promoter of the β-
globin gene. Without GATA1, enhancer activation of β-globin gene is abolished. However, engineering an 
artificial zinc-finger to tether the enhancer to β-globin promoter in the absence of GATA1 activates transcription 
substantially, and the removal of this artificial tethering zinc-finger again abolishes this activation. This study 
provided direct evidence that the chromosome looping/tethering event is critical in enhancer-promoter interaction 
and regulation at the β-globin gene expression(31).   

Major efforts have been made to map enhancers on a genome-wide scale, including large-scale efforts 
such as the ENCODE project (22), and the FANTOM project (32) and the Roadmap Epigenome Consortium(33).  
Most of these studies rely on one or more enhancer markers to identify them. These markers include: chromatin 
accessibility markers such as DNase I hypersensitive site (DHS) (34)and Formaldehyde-Assisted Isolation of 
Regulatory Elements (FAIRE)(35); chromatin marks such as H3K4me1, H3K4me2, H3K9Ac, and H3K27Ac(36); 
transcription factor binding, such as p300/CBP co-activators(37); and enhancer RNAs(32, 38). Enhancers can 
have many transcription factors bound to them (Highly Occupied Transcription factor binding, HOT, regions) or 
few (Low Occupied Transcription factor binding, LOT, regions) (12, 15, 17, 39). One common finding from 
enhancer mapping studies is that comparing to other groups of CRMs, enhancers are highly tissue-specific(22, 
24, 40), and temporally dynamic(41). These tissue specific and temporal dynamic patterns of enhancer activities 
are tightly correlated with their target gene expression patterns in vivo, suggesting their important roles of 
directing expression changes throughout mammalian development and disease (7, 42). These studies 
established a landscape of active enhancers in human and other organisms, and provided a foundation for 
further studies in enhancer function. 

While the vast majority of candidate enhancers identified in the human genome have not been 
functionally tested or validated, a rapidly growing body of evidence indicates that variation in human enhancers 
plays an important role in human disease.  For example, the vast majority of genetic variation associated with 
human complex diseases mapped through genome wide association studies (GWAS) is found in the non-coding 
genome (43). Accordingly, chromatin marks and states associated with candidate enhancers have been shown 
to be pervasively abundant in GWAS loci across a wide range of diseases (44), useful in fine-mapping of complex 
traits (e.g. (45)), and to be associated with gene expression variation (e.g. (46)). Enhancers have already been 
functionally implicated in GWAS loci for coronary artery disease(47-52), obesity(53), and diabetes(54, 55), and 
cancer(56-59). Furthermore, in some cases, such as TCF21 in CAD, expression quantitative trait variation 
mapped to target genes has been shown to be significantly enriched for variants with low P-values in the GWAS 
analyses, suggesting a possible functional interaction between TCF21 binding and causal variants in other CAD 
disease loci (60).  With the growing body of evidence implicating gene regulatory sequences in complex human 
disease, it has become increasingly important to develop methods and approaches to characterize the potential 
functions of enhancers and the effects of inherited variation contained within them. 

Intriguingly, the identification of recurrent somatic mutations in enhancers has emerged as a key driver 
of cancers, a discovery enabled by data from large-scale and whole genome sequencing projects. Initial 



 

examples of CRMs frequently mutated in cancer involved promoters, such as activating mutations in the TERT 
gene promoter in myelomas (61, 62).  However examples of enhancers soon followed.  For example, in a subset 
of T-cell acute lymphoblastic leukemias a specific recurrent mutation creates a novel MYB binding site upstream 
of the TAL1 oncogene (63). This novel MYB binding site results in creation of a “super enhancer” that recruits 
chromatin acetylation and gene activation transcriptional co-factors, thus driving the over-expression of TAL1.  
Subsequently large numbers of whole genomes have been scanned for recurrent non-coding regulatory 
mutations, including initial work by Gerstein and colleagues using early versions of algorithms described in 
subsequent sections (64), by Weinhold et al and Fredriksson et al. across hundreds of whole genomes and more 
than a dozen tumor types (65, 66), and subsequently accompanied by functional assessments of enhancer 
mutations by Snyder and colleagues (67). In addition to the frequently mutated non-coding regulatory sequences, 
many studies have shown that the epigenomic patterns associated with enhancer activity are altered in cancers, 
reflecting the altered gene expression states.  For example, signatures of colon cancer have been derived from 
profiling of epigenomic enhancer marks genome-wide (68).  Thus characterizing enhancers in the context of 
cancer is of critical importance both for understanding the altered gene expression patterns that typically 
accompany cancerous lesions, and for understanding the mechanisms by which somatic mutations in enhancers 
lead to cancer development and progression.  
 
B. Innovation  
The proposed Center will require innovation on several levels.  First, each Center contributor will build and extend 
upon conceptual and methodological approaches that their individual laboratory has advanced over the course 
of the last decade or longer. Over the last three years White’s lab has made important refinements on the 
STARR-seq technique in collaboration with Stark’s lab, and the Center represents an opportunity to extend and 
hone their preliminary work on optimizing whole genome STARR-seq and variants of capture STARR-seq on 
more complex models of disease than have been examined to date.  Similarly, very little work has been done on 
utilizing the CRISPR Cas9 system for high throughput candidate enhancer validation.  Advances by our team in 
creating ENCODE cell lines expressing Cas9 promise to open up the opportunity to scale this methodology, 
while the incorporation of Drop-seq with new bead chemistry and pooled gRNAs in Aim3 we believe is a highly 
innovative approach that stands to revolutionize our ability to screen candidate enhancer mutations for 
transcriptional consequences at the whole genome level. Additionally, Gerstein’s group will apply the cutting-
edge tools that they have developed as part of the ENCODE project to nominate the candidate enhancers that 
will be tested experimentally by the other Center investigators. Nobrega brings the latest methods for testing 
human enhancers in mice for the handful of disease relevant candidate enhancers that pass successfully through 
our tests in human cellular and organoid models of disease. 

Second, the biological models that are brought to the Center by the participating laboratories are state of 
the art.  The Quertermous and Snyder groups from Stanford will study patient derived iPS cells differentiated 
into coronary smooth muscle cells as a model of coronary heart disease, while White and Roggin from University 
of Chicago bring the latest technology in pancreatic cancer organoid culture from freshly resected and patient 
derived xenograft models.  Both the Stanford and U. Chicago groups have extensively studied their biological 
model systems of disease on a genomic level for chromatin accessibility, chromatin marks, transcription factor 
binding and transcriptional profiling, providing ample data to combine with ENCODE data for predicting candidate 
enhancers in these disease models. 

Third, we believe that the Center is conceptually innovative. The model systems were chosen expressly 
as exemplars of the two major types of disease-causing genetic variation in non-coding regulatory regions of the 
human genome, inherited risk factors and somatic genetic mutation.  Besides representing two diseases that 
have tremendous impact on human health and society, coronary artery disease and pancreatic cancer represent 
biological systems where either inherited or somatic genetic variation play major roles. Thus by refining our 
technologies and approaches on ENCODE cells and then intensely studying these two biological model systems 
of disease, our Center aims to develop generalizable and state-of-art approaches that can be applied by others 
to the wide swath of complex human disease that include both inherited multigenic diseases and human 
somatically acquired cancers.  In both these categories of genetically rooted disease there is growing and 
undeniable evidence for a key role of non-coding regulatory genetic variation, including genetic risk-causing 
polymorphisms and cancer-driving mutations in enhancers.  

Finally, for us perhaps the most exciting aspect of the proposed Center is the unique combination of 
investigators, all of whom have made important contributions to the study of genome-wide study of gene 
expression in the human genome, most of whom have been participants in the ENCODE project that has 



 

produced the data enabling this Center, and all of whom have a track record of successful projects together in a 
pair-wise fashion but for the first time will work together in combination as a team focused on the common goal 
of developing and applying generalizable methods for characterizing the role of enhancers in human disease.    
 
C. Approach and Preliminary Data 
The purpose of each ENCODE Functional Characterization Center is “to develop and apply generalizable 
approaches to characterize the role of candidate functional elements identified the ENCODE project in specific 
biological contexts”.  Our proposed Center will focus on characterization of candidate enhancer elements.  We 
will develop, refine and apply experimental methods for functional assays of enhancers.  We will use two very 
different biological models chosen for their high potential to act as generalizable exemplars for the study of 
enhancers in the context of (i) inherited risk factors for disease, and (ii) somatic mutations involved in cancers.  
We will also develop and refine our experimental methods in ENCODE cell lines, and we will reserve 25% of our 
efforts for testing candidate genomic elements that will be studied in common across all of the ENCODE 
Functional Characterization Centers.  Using STARR-seq, and variations thereof, we will test for sufficiency of 
candidate enhancer elements to modulate gene expression.  Using CRISPR-Cas9 methods we will edit the 
human genome, testing for necessity of candidate enhancer elements in their endogenous context.  We will 
utilize these methods to examine the effects of inherited DNA variation on enhancer function in models of 
coronary artery disease (CAD), and to examine the effects of acquired somatic DNA mutations on enhancer 
function in models of pancreatic cancer (Pancreatic Ductal Adenocarcinoma – PDAC). While our approach 
necessarily requires a bioinformatics component to utilize ENCODE and other existing data sets in order to 
define the best candidate enhancer elements for testing in the specific biological models we will assay, our 
Center will be focused on experimental characterization of enhancers, testing different combinations of 
approaches in order to create extensible and generalizable protocols for systematic and accurate 
characterization of enhancer function.   
 
Aim1.  Using ENCODE and other public data sets to identify regulatory elements for testing 
Intelligent identification of candidate enhancers in specific biological contexts requires the appropriate integration 
of existing ENCODE data with the appropriate cell-type and disease specific data sets.  We expect that our 
Center will interact and collaborate with the ENCODE Data Analysis Center (DAC) and the Analysis Working 
Groups (AWGs), and Center investigators Gerstein, White and Snyder have a considerable track record of 
participating in, and collaborating with, the existing ENCODE DAC and AWG groups.  However, there is a need 
in our Center for a modest level of dedicated bioinformatics effort in order to focus specifically on integrating 
ENCODE data with datasets from coronary artery disease and pancreatic cancer, and in order to interface with 
the ENCODE DAC and AWGs.  Additionally, logically we must first identify and choose the candidate enhancers 
we will test, before we perform experimental assays to test them.  We also recognize that new data will emerge 
during the course of the Center grant, both for the disease models we will focus on and from the ENCODE 
mapping centers.  Other work from our own laboratories, as well as from the larger community, will produce more 
refined maps of CAD and PDAC models that in turn lead to the opportunity for more refined enhancer predictions.  
Furthermore, the very scale at which we will test candidate enhancers will lead to new data sets that can be used 
for better enhancer predictions.  For example, whole genome STARR-seq data in K562 cells produced by Kevin 
White’s laboratory are already contributing to the algorithms being developed by the ENCODE DAC and 
functional characterization AWG.  Our Center will be well positioned to take advantage of these and future 
developments to choose the best sets of candidate enhancers for experimental functional characterization in our 
two disease-relevant models.  Therefore, Aim 1 will be focused on candidate enhancer identification for testing 
in Aims 2 and 3.  Initially, we will simply finalize our preliminary results to pick a set of candidate enhancers to 
experimentally test. However, as additional outside data of relevance is produced, and as algorithmic 
approaches are improved as part of other efforts, we will apply such data and approaches to refine and improve 
the quality of the candidate enhancers we will examine in Aims 2-4.  We will not develop new computational 
methods for predicting enhancers as part of the Center, but we will instead apply the latest methods developed 
as part of other efforts.  Identification of targets in Aim 1 is expected to represent 15%, or less, of the total Center 
effort.  
 Figure 1 outlines the high-level work flow of our approach for nominating candidate enhancers for 
functional characterization testing in the Center.  ENCODE and related existing data, including from CAD and 
PDAC, are used as the starting point.  These data include histone, chromatin accessibility, expression profiling 
and transcription factor ChIP-Seq experiments. Machine learning algorithms are applied to identify candidate 



 

enhancers genome-wide.  The resulting candidate enhancers are further processed by computational pipelines 
that identify genetic variants and predict their effects on candidate enhancer function (required for Aims 2 & 3), 
and by algorithms that match candidate enhancers to candidate target genes (required for Aim 3 assays of 
effects of CRISPR enhancer mutation on endogenous genes).  All of these algorithms are already developed 
and are routinely applied to ENCODE and other datasets such as whole genome cancer sequences. 

 
 
1.1.1 Existing datasets:  
We will begin by integrating existing ENCODE data and results with existing data and results from CAD and 
PDAC that include (but are not limited to) chromatin modification profiling, chromatin accessibility profiling, 
transcription factor mapping, whole genome sequencing, GWAS, and eQTL studies.  From these analyses we 
will identify an initial set of candidate enhancers that we will characterize, each annotated with results from one 
or more of the aforementioned data types. The Gerstein lab, with extensive experience developing and applying 
computational pipelines to predict elements from sequencing data, will lead this effort.  Datasets that we will 
initially apply are listed in tabular form below (Table 1).  
 

 
Cell/Tissue Type K4Me/K27Ac/EP300 Dnase/Faire/5C RNAseq GWAS 

Roadmap 
K4me/K27ac/Dnase 

GM12878 (ENCODE) 6b 5b >10b 13c 2a 

K562 (ENCODE) 12b 11b >10b 20c 2a 

HeLa S3 (ENCODE) 5b 5b 9b 2c 0 

HEPG2 (ENCODE) 4b 5b >10b 1c 6a 

HUVEC (ENCODE) 14b 5b 2b n/a 0 

A549 (ENCODE) 4b 1b >10b 47c 4a 

MCF-7 (ENCODE) 8b 11b >10b,d 49c 1a 

SK-N-SH (ENCODE) 7b 3b >10b 4c 0 

Pancreas 3b,d 3b,d 10b 9c 10a 

Heart  15b,e 13b,e >10b,e 60c 28a 
Table 1. Identified ENCODE and GWAS datasets for analysis. Existing data generated by ENCODE and GWAS studies 
have been identified. The number of each type of study, the marks identified and the cells/tissue associated with the data. 
Datasets are procured from the a) NIH Roadmap Epigenomics Consortia 
(www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics, Bernstein Nat Biotech 2010), b) ENCODE consortium 
(www.encodeproject.org, ENCODE Consortium Nature 2012), c) GWAS studies (www.gwascentral.org), and d) internal 
data from the White and e) Quetermous labs.   

Figure 1. Overview of computational pipeline for identifying and annotating candidate enhancers for 

STARR-seq and CRISPR-Cas9 assays. 

http://www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics
http://www.encodeproject.org/
http://www.gwascentral.org/


 

 
1.1.2 Genome-wide identification of candidate enhancers (in support of Aims 2 & 3):  
Using the ENCODE and auxiliary datasets outlined in Table 1, we will predict high-confidence candidate 
enhancers for downstream functional analysis. Prior to inputting the data into our machine learning algorithms 
for candidate enhancer identification (described below), we have processed the datasets in Table 1 using tools 
developed by the Gerstein lab, PeakSeq (69) and MUSIC (70) which have been applied by the ENCODE 
consortium and to ENCODE and Roadmap Epigenomics Consortium (RMEC) data.  The main bulk of the 
datasets that will be used are listed in Table 1, featuring existing functional genomics datasets from ENCODE 
and RMEC projects. Specifically, we will utilize peaks from histone marks and transcription factors and build a 
priori probability estimates for localization of the regulatory regions. We will use the activating marks and 
transcription factors that associate with enhancers (H3K4me1, H3K27ac, H3K9ac, P300, DNase/FAIRE) to build 
these probabilities. We will also utilize transcription factor binding motif and sequence conservation data as 
variants in the a-priori estimates of localization.  

These data will be input into enhancer prediction algorithms.  A variety of enhancer prediction methods 
have been employed by the ENCODE consortium to examine existing data sets.  For example, Ren and 
colleagues developed a Random-Forest based algorithm, RFECS (Random Forest based Enhancer 
identification from Chromatin States)(71). Park and colleagues developed a supervised machine learning 
method to identify and classify enhancers using chromatin marks across multiple metazoan species studied in 
ENCODE and modENCODE(72).  As part of the ENCODE and modENCODE projects, Gerstein, Snyder and 
colleagues have developed methods that integrate ChIP-seq, chromatin, conservation, sequence and gene 
annotation data to identify gene-distal enhancers(73), which they have partially validated(74) (Figure 2).  In 
addition, the Gerstein lab has also developed a tool that utilizes the pattern within the histone marks to predict 
active regulatory regions in each tissue or cell line. The performance of some of these enhancer prediction 
algorithms was compared by the DAC as part of the ENCODE Enhancer challenge and the pattern recognition-
based algorithm developed by the Gerstein lab was one of the top performing algorithms for enhancer 
prediction in mouse forebrain. 

Figure 2. Overview of the pipeline for identifying CRMs and separating out candidate enhancers. 

A. The left side of panel A shows input data types. The right side 

shows how these datasets were used to identify the regions. We 
constructed statistical models that capture the genomic features of 
three paired types of regions by machine-learning methods: firstly, 
regions with active (BARs) or inactive binding (BIRs); secondly, 
those with extremely high or low degrees of co-binding, termed 
HOT and LOT regions; and finally, regulatory modules proximal 
(PRMs) or distal (DRMs) to genes. From the DRMs, we developed 
computational pipelines to identify candidate enhancers, many of 
which were validated experimentally in (20). We further associated 
the predicted enhancers with potential target transcripts and the 
transcription factors involved.  
B. Low resolution, genome-wide view of DRMs predicted as 

candidate enhancers from 5 ENCODE cell lines.  70% of the 
candidate enhancers are cell-type specific, with 30% shared 
between 2 or more cell lines. Inset (i) and (ii) show examples of 
regions of chromosomes that differ between cell lines in DRM 
density. 
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Some of the top performing methods for enhancer prediction in the ENCODE enhancer challenge will be 
used to predict enhancers initially.  We will assess the datasets for each ENCODE cell line individually, and all 
in combination, and then we will compare the locations of candidate enhancers to the locations of candidate 
enhancers similarly identified in our CAD and PDAC models. From these analyses we expect to identify both 
cell/tissue-specific candidate enhancers and candidate enhancers that are shared across cell types, including 
among ENCODE cell lines and our CAD and PDAC models.  For each cell line or tissue type we can expect tens 
of thousands of candidate enhancers, and in some cases more than 100,000, based on previous results(71, 72, 
74). We also expect 50-70% of these enhancers to be cell type specific based on previous results (22, 74). 

Although we will initially use the approach outlined above for genome-wide candidate enhancer 
identification, it is worth noting that presently the ENCODE Functional Characterization AWG is evaluating this 
and other approaches for enhancer identification, with candidate enhancer validation experiments being 
performed by the Kevin White lab using whole genome STARR-seq and by the Len Pennacchio lab using in vivo 
mouse reporter assays.  Our Center will apply the statistical and bioinformatics approaches used to nominate 
the candidate enhancers to be tested, we will use ensemble approaches to combine predictions from the best 
performing methods based on the results from the current ENCODE Functional Characterization AWG, and from 
other future Functional Characterization Centers in the ENCODE consortium with whom we will test a common 
set of candidate elements. 

 
 
1.1.2 Annotating and classifying genetic variation in candidate enhancers (in support of Aims 2 & 3):  
A key goal of our Center is to develop and apply functional assays for assessing the impact of genetic variation, 
both inherited and somatically acquired, on candidate enhancers.  We therefore need to annotate and classify 
variation in candidate enhancer regions we intend to test.  

Previously we have extensively analyzed patterns of variation in noncoding regions, along with their 
coding targets, creating the tool ncVAR for assessing genetic variation in TFBSs (75). In recent studies (62), we 
have integrated and extended these methods to develop a prioritization pipeline called FunSeq (and 
subsequently FunSeq2). FunSeq prioritizes variants with respect to their deleterious impact on many different 
types of noncoding functional elements, including TF binding sites, regulatory elements, and regions of open 
chromatin. It identifies the regions under strong selective pressure as estimated using the variant frequencies 
computed from the whole genome sequencing data in 1000 Genomes Project and uses these regions as 
sensitive and ultra-sensitive non-coding regions of the genome. For each noncoding mutation in a regulatory 
element, FunSeq analyzes the target of the affected regulatory element. Then it scores the impact of the variants 
and prioritizes them based on a number of factors like network connectivity and motif disruption. It identifies 
deleterious variants in many noncoding functional elements, including TF binding sites, enhancer elements, and 
regions of open chromatin corresponding to DNase I hypersensitive sites. We will determine linkage of variants 
identified in candidate enhancers with variants identified in the GWAS datasets for CAD in Table 1.  We will thus 
use FunSeq to annotate candidate enhancers.   

We will next characterize the regulatory elements in terms of their association with human diseases. We 
will analyze GWAS and whole genome sequencing data available for diseases related to coronary artery disease 
and to pancreatic cancer, respectively.  On this front, we have developed LARVA that can identify recurrently 
damaging non-coding mutations and prioritize them with respect to their significance. To estimate significance, 
LARVA utilizes models that estimate background mutation frequencies in non-coding elements using as features 
the functional genomics datasets from ENCODE and RMEC projects (Table 1). We will use the whole genome 
sequencing datasets from 1000 Genomes Project, and polymorphism datasets from dbSNP and Exome 
Aggregation Consortium (ExAC) projects as reference backgrounds to filter out the non-causative mutations. We 
will integrate the tissue specific expression quantitative trait datasets (eQTL) from GTex Project to generate 
evidence for the causal variants generated by the mutation STARR-Seq experiments. Using these computational 
predictions and characterizations as a guide for Aims 2 and 3, we will investigate examples of disease-related 
variation in the human genome that represent both inherited variation and somatic variation, using coronary 
artery disease (CAD) and pancreatic cancer respectively. Extensive tissue-specific allele-specific expression, 
vascular cell epigenome mapping, and in vitro functional studies identifying CAD causal variants and enhancers 
will be employed to validate the bioinformatic findings. 
 
 



 

1.1.3 Predicting which candidate enhancers are potentially associated with which genes (in support of 
Aim 3):  
In Aim 3 we will assay endogenous gene expression (using qRT-PCR and using high-throughput single cell 
sequencing) in response to CRISPR-Cas9 mediated mutations in candidate enhancers.  To assist in formulating 
hypotheses about which genes are regulated by which candidate enhancers in each cell type we will examine, 
we will computationally characterize the regulatory regions by linking them with their putative targets.  

We have previously developed computational pipelines for identification of targets of candidate regulatory 
elements, including methods that can successfully identify targets for gene-distal and gene-proximal regulatory 
elements. Our methods utilize the correlation between the gene expression levels and the activity of the 
regulatory element to identify significantly correlating activity. We will utilize sets of chromatin conformation 
datasets, generated from experiments including 4C, 5C, Hi-C, and ChIA-Pet. Furthermore, the Gerstein lab 
recently developed a method, named ENGINE, for utilizing these datasets in a machine learning framework for 
assigning targets to regulatory elements. ENGINE is a new version of the component of FunSeq that performs 
enhancer-target matching  (http://papers.gersteinlab.org/papers/funseq2). Table 1 shows that there are many 
conformation datasets from ENCODE and RMEC datasets that we can utilize by combining the correlation based 
target estimation with conformation datasets. In particular, the conformation datasets will narrow down the 
possible targets of candidate enhancers to a subset of regions in which each candidate enhancer interacts. We 
expect this to dramatically decrease the false positive rate of the correlation. Specifically, ENGINE computes the 
correlation of the activity at the candidate enhancer region (using ENCODE and RMEC datasets) with the 
expression levels of the genes that each candidate enhancer region has contact with. Then, ENGINE uses the 
expression levels and several statistics about the shapes of the histone modification and transcription factor 
binding signals as additional features and builds a random forest based prediction model to score the candidate 
target genes. We will utilize the validated sets of enhancer-target gene linkages for training ENGINE. To increase 
the specificity of the model, we will build random backgrounds for distribution of the correlation levels and signal 
profiles and estimate significance of the linkage between the candidate targets of the enhancer region. In our 
previous efforts, we have utilized ENCODE data to build a set of such linkages between candidate regulatory 
elements and their target genes. For the work within the Center we will aim at stratifying the tissue specific 
behavior of the novel candidate enhancers using the tissue specific datasets for CAD and PDAC.  
 
1.2.1 Human Pancreatic cancer analysis and preliminary results:  

The Chicago Pancreatic Cancer Initiative (CPCI), led by Dr. White and in collaboration with Dr. Roggin 
in the Department of Surgery at U. Chicago, has a patient data set of 400 tumor/normal pairs at time of 
submission. Sample sources include ongoing retrospective and prospective studies at the University of Chicago 
as well as from the University of Rochester and North Shore University Health Systems.  Pancreatic ductal 
adenocarcinomas (PDACs) comprise the vast majority of the pancreatic cancers being studied. Most samples 
have been collected from paraffin embedded slides and sequenced with a custom panel. However, a subset of 
samples has been subjected to whole genome sequencing.  Importantly, as part of the CPCI we have developed 
a streamlined experimental pipeline for 3-dimensional organoid cell culture using both primary tumor and normal 
tissue that has been surgically resected. This organoid system also is routinely used for patient-derived xenograft 
(PDX) models. This tissue model is where we plan to functionally validate our characterized enhancers.  

In addition to the datasets in Table 1, which include PDAC chromatin and histone mark profiling, we have 
assembled 224 whole genome sequencing (WGS) data sets from The Cancer Genome Atlas (TCGA) and the 
International Cancer Genome Consortium (ICGC). We have compared the matched tumor-normal pairs to 
identify the somatic mutations. In total 1,704,431 somatic variants were found in all samples, with an average of 
5,041 variants per sample. We applied the same approach to data from the Chicago Pancreatic Cancer Initative 
and found similar numbers of mutations, indicating that the somatic mutation algorithms are consistent across 
different data sets. We represent this with a boxplot of the number of variants per sample is shown in Fig. 3A. In 
addition for the TCGA and ICGC data, we selected around 10k open chromatin regions (with average length at 
1kb per region) as test regions for enhancer activity evaluation. In total, we found that 3,012 out of these 10k 
regions have at least one somatic variant (Fig. 3B). In a typical STARR-Seq experiment, around 20 to 50 percent 
of the test regions are expected to demonstrate some level of enhancer activity, hence we expect that there are 
600 to 1,500 active enhancers with at least one somatic variant. 

 Furthermore, using the TCGA and ICGC data set we utilized 382 external genomic features to 
accurately estimate the background mutation rate for precise mutation burden evaluation. We found that our 
model performs well in pancreatic cancer. Indeed, the Pearson correlation between the predicted and observed 

http://papers.gersteinlab.org/papers/funseq2


 

mutation rate can be as high as 0.94 (Fig. 3C). Based on this background mutation rate, we evaluated the 
mutation burdens on the promoters of protein coding genes, and discovered 11 promoters as highly mutated (Q-
Q plots of P values in Fig. 3D).  Many of them, such as TP53 and SMAD4, have been well documented as 
pancreatic cancer related. In the Center we will extend this analysis to distal candidate enhancer regions, and 
we will test these recurrent mutations in functional assays. 
 

 
 
1.2.2 Human smooth muscle cell analysis and preliminary results: The Snyder and Quertermous labs have 
generated extensive maps of chromatin accessibility, TF binding, enhancer histone modification, and gene 
expression (under basal and growth factor stimulated states) in primary cultured HCASMC and also in medial 
layers of normal and atherosclerotic coronary arteries from explanted human hearts (see Table 1). These 
coronary vascular genomic datasets have enabled us to prioritize mechanisms of candidate causal variants 
associated with CAD in GWAS meta-analyses and ultimately to generate hypotheses of potential causal 
signaling pathways that mediate CAD susceptibility in humans. For instance, we identified a candidate SNP 
rs17293632 (C risk allele) in the SMAD3 locus to create a consensus binding site for AP-1, leading to greater 
chromatin accessibility, AP-1 binding, and allele-specific expression in HCASMC (Fig. 4). We validated the 
SMAD3 enhancer activity in cells using gain and loss of AP-1 function in luciferase reporter assays and also in 
vivo by generating site-specific integrase mediated transgenic mice, which demonstrated allele-specific 
differences in LacZ reporter expression and localization in the developing vasculature. We also validated our 
candidate variants in a large eQTL cohort of human atherosclerotic aortic tissue obtained at the time of coronary 
artery bypass graft surgery, which further emphasizes the context-specific functional roles of these variants 
during CAD. We have now expanded our HCASMC collection to 60 individuals, which have undergone WGS 
and RNA-seq profiling for ASE analysis.  Nonetheless, it still remains a challenge to identify causal variants for 
complex phenotypes such as CAD. For instance, the majority of these variants in regulatory regions in HCASMC 
are not predicted to alter known TFBS or have small effects on candidate gene expression, as determined by a 
combination of ASE, eQTL or reporter assays. To create highly credible sets of candidate enhancers for both 
CAD and pancreatic cancer using an unbiased prioritization scheme, we plan to run these overlapping regions 
and GWAS variants through a custom functional annotation pipeline that includes tools such as FunSeq, and 
LARVA, as described above.  
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Figure 3. Preliminary analysis of 
Pancreatic data sets using our 
pipelines.  
(A) Boxplots of ICGC and TCGA 
somatic mutations (left) and Chicago 
Pancreatic Cancer initative somatic 
mutations (right) with mutation calls 
(lower).  
(B) Variants per region in ICGC and 
TCGA data identified in our pipelines. 
(C) Pearson correlation between the 
predicted and observed mutation 
rate (ICGC and TCGA) = 0.94.  
(D). mutation burdens on the 
promoters of protein coding genes = 
11 promoters as highly mutated (Q-Q 
plots of P values. 

 



 

 

 
 
 
Aim 2. Testing for enhancer sufficiency using enhanced STARR-seq 
 
Validation of enhancer sufficiency will be investigated using variations of the STARR-seq high throughput assay 
in ENCODE cell lines, primary cell lines and in human 3D tissue models. Our variations and enhancements of 
the STARR-seq assay include the use of whole genome screening and capture-based screening to assess the 
impact of natural variation, and site-directed mutagenesis to assess the impact of naturally occurring or synthetic 
mutations that affect enhancer function. We have optimized this assay by developing large-scale transfection 
methods, optimizing transfection efficiency, and using barcoding primers to eliminate PCR duplicates and to 
increase measurement accuracy.  
 
2.1 Background 
STARR-seq provides direct measurement of genome wide enhancer activity in a high-throughput manner, and 
was initially demonstrated using the Drosophila genome by our collaborator Alex Stark and colleagues (76) (see 
attached letter).(76)This method is, in principle, similar to massively parallel functional dissection (MPFD) and 
massively parallel reporter assays (MPRA), but differs by inserting enhancers into the transcript, instead of 
upstream of promoters in the reporter vector. The enhancer sequence effectively acts as a barcode in high-
throughput sequencing. More specifically, genomic DNA is sheared and end-repaired, and subsequently cloned 
into screening vectors containing a promoter, and expresses a reporter transcript. The enhancers are cloned 
into the 3’ end of the transcript, whereby the reporter transcript will contain the enhancer sequence. This pool of 
screening vectors is transfected into cells, mRNA is purified and reverse transcribed, and then sequenced using 
high-throughput sequencing. High copies of the reporter transcripts that contain specific enhancers can identify 
enhancers that are up-regulating transcription. STARR-seq removes the need for expensive array synthesis of 
enhancers.  

Fig. 4. Epigenome mapping and in vitro studies in 
HCASMC to identify coronary artery disease causal 
variation and disease enhancers. (a) UCSC browser 
screenshot at SMAD3 locus, showing overlap of 
candidate SNP rs17293632 with ATAC-seq open 
chromatin tracks in coronary medial tissue and 
HCASMC treated under various conditions, 
transcription factor binding ChIP-seq tracks for TCF21, 
JUN, and JUND, and active enhancer histone 
modification H3K27Ac ChIP-seq, as well as ENCODE 
layered H3K27Ac for HUVEC (blue) and NHLF cells 
(purple). Also shown, motifs in open chromatin regions 
with alignment to reference sequence and position 
relative to rs17293632. (b) Allele-specific ChIP 
(haploChIP) for AP-1 proteins (JUN, JUNB, ATF3), 
TCF21, and H3K27ac in HCASMC heterozygous at 
rs17293632. Values represent mean ± SEM of 
triplicates from a representative experiment (n=5). 
*P<0.01 versus Control, IgG or between two genotypes. 
(c) Allelic expression imbalance for candidate 
regulatory SNP rs17293632 at SMAD3 detected by 
TaqMan qPCR in HCASMC pre-mRNA from 
heterozygous individual donors. P-values shown 
represent comparison of AEI from all samples versus 
expected allelic ratio of 1.0 using a Welch’s unequal 
variances t test. **P<0.001, ***P<0.0001. 



 

 A major limitation of this technique, prior to our optimizations, has been the transfection step: for example 
screening through the Drosophila melanogaster genome required transfection of between 0.5 and 1 billion S2 
cells. This makes the direct application of STARR-seq technique to the human genome very difficult and 
expensive, because the human genome is 20 times larger than the fly genome. Our optimizations of STARR-
seq in human cells modifies and builds upon the episomal plasmid library approach, expanding its capabilities. 
We have overcome the major challenges for scaling up STARR-seq to the entire human genome; namely 
required library complexity, large-scale transfection of cells, and inaccuracy of the assay due to PCR duplicates 
during the sequencing step. By optimizing multiple parameters in the candidate element cloning step we have 
increased complexity while introducing molecular barcodes that allow for PCR duplicate elimination, resulting in 
a screening library that covers 2.65 Gb of the human genome.  Our typical libraries now on average have >50 
fragments covering each base pair, given ~250 million post-filtering fragments. This represents a comprehensive 
screening library, and allows us to effectively screen genomic fragments with enhancer activity in downstream 
experiments. Using industrial scale transfection protocols, the White lab has now devised a robust technique to 

screen either the entire human genome or a 
fraction of the genome that has been captured 
using oligonucleotide probes. We are now able to 
produce whole genome STARR-seq data sets at 
>10X per expressed base pair coverage with 
200-300 million paired end 100bp reads, or 
significantly fewer reads for capture STARR-seq. 
Table 2 shows the various cell lines and STARR-
seq experiments that we have completed thus 
far. 

 
2.2 Optimization of Human STARR-seq: Developing STARR-seq in 
human cells requires scaling the experimental and computational 
workflow to cover a larger genome. The White lab has optimized 
techniques to improve the experimental protocol and to increase the 
number of transcripts collected per cell. Collecting data at this scale 
requires an increase in the number of cells surveyed, an increase in the 
complexity of the libraries and a reduction in PCR artifacts. To address 
these three issues we; 1) enabled large-scale transfection using a BTX 
transfection system coupled with optimized transfection reagents and 
parameters that have been carefully tuned for each human cell line. 
Additionally, we introduced a GFP-control plasmid to monitor 
transfection efficiency and batch effects; 2) increased genomic coverage 
and library complexity; and 3) we applied two strategies to overcome 
PCR duplicates.  The first PCR duplicate reduction strategy is to 
introduce additional index sequencing primers, which helps to 
distinguish the plasmid-transcribed-mRNA copy and PCR duplicates.  
Our current standard protocol is to introduce 160 different indexes (see 

Figure 5).  The second PCR reduction strategy is to introduce barcoded cDNA primers during the initial reverse 
transcription phase of building the RNA seq libraries (“safe” seq). This represents the ultimate solution to 
distinguish the plasmid-transcribed-mRNA from PCR duplicates, since individual mRNA strands are barcoded 
prior to the reverse transcription reaction, in which every mRNA transcript is barcoded to represent its 
uniqueness.  By also labeling the mRNAs with modified cDNA primers to include six base pair molecular 
barcodes we can essentially distinguish all individual transcripts. Others have applied similar strategies for 
traditional RNA-seq (43). 

With these strategies, we can create around 100 million distinct fragments from the human-STARR-seq 
library after transfecting 500 million cells. Positive regions that represent enhancer activity in our assay are called 
from statistical tests based-on signals from human-STARR-seq library. This scale represents practical and robust 

Cell Line Type Replicates 
Ave. Reads 
(millions) 

GM12878 Capture 2 100M 

GM12878 WG 2 535M 

GM12878 WG-Safe 2 188M 

K562 WG 1 500M 

LnCAP Capture 8 34M 

LnCAP WG 2 190M 

SNU16 Capture 1 16M 

OCUM1 Capture 1 29M 

MCF-7 Capture 2 29M 

Fig 5. Genome-wide coverage of 
distinct fragments with (blue line) 
or without the 160 indexes 
(orange line). 

Table 2. White lab STARR-seq datasets 
collected with sequencing depth and 
number of replicates shown 

 



 

human genome STARR-seq and can be applied to captured genomic fragments, whole genome, or with the 
above modifications using barcoding for capture or whole genome “safe” sequencing (Figure 6). This powerful 
technique has been applied on two ENCODE tier-1 cell lines GM12878 and K562, and preliminary results for 
these cell lines has been collected and analyzed (see Preliminary Results below).  

 

 
2.3 Whole genome STARR-seq data in human cells:  
2.3.1 Preliminary data  
Thus far we have generated data using whole genome STARR-seq using a diverse set of three different human 
cell lines. These included two ENCODE cell lines (GM17828 and K562 cells) and one cancer cell line (LnCAP 
androgen-sensitive prostate cancer cells).  Example data from GM17828 cells are shown above in Figure 6 
(panels D and E). In these experiments, approximately 500 million GM12878 cells were transfected and collected 
24hrs post-transfection. RNA extraction, mRNA purification and cDNA synthesis were performed. In the final 
amplification step, cDNA templates were evenly divided into 160 distinct PCR reactions, each with a different 
index. We consider fragments from the same genomic location but with different indexes to be distinct and not 
PCR duplicates (note Figure 6D shows results plus or minus indexing, the blue line shows an example of a 
STARR-seq peak that was not apparent without the indexing). We identified 71,160 genomic regions that show 
enhancer activity in human GM12878, with average length of 213 bp and this represents 15.2 Mbp (~0.5%) of 
the human genome.  A sliding-window based approach was used throughout the entire genome and positive 
windows were finally merged to give the final peak calls.  We also applied the barcoding (safe)-STARR-seq 
approach to GM12878 cells. Although raw data quality was similar to our standard whole genome STARR-seq 
data, we found that we required 33% less sequencing depth using Safe-STARR-seq compared to the multi-
indexing human STARR-seq (200 million pairs vs. 300 million pairs). For whole genome (safe)-STARR-seq in 
GM12878, we observed 90,058 genomic regions (covering ~20Mb) with enhancer activities, which is comparable 
to the 71,160 observed for the multi-indexing human STARR-seq performed in the same cell line. The signal of 
enhancer activities of these two approaches correlates well (PCC=0.5). Importantly, the whole genome (safe)-
STARR-seq allows us to quantitatively estimate the artifacts brought by PCR duplicates. We estimated the copy 
number of plasmid-transcribed mRNA that is represented by the number molecular barcodes labeling each 
mRNA, and we found that 1.5% of plasmid-transcribed mRNA fragments were labeled by more than 10 molecular 

Figure 6. Diagram of White-lab approaches to STARR-
seq: (A) Capture panels are created and transfected into 
human cells to create the screening library for 
sequencing, note this is not whole genome. (B) Human 
whole genome STARR-seq is prepared with indexing 
primers post reverse-transcription. (C) Human whole 
genome (safe) STARR-seq with barcoding at the time of 
post reverse transcription. In all cases we create at least 
2 biological replicates for each data-set. (D) Genome 
Browser screen shot from whole genome STARR-seq of 
ENCODE GM12878 lymphoblastoid cells shows signals 
piled-up by raw sequencing fragments. 1st row: with 
index; 2nd row: without index; 3rd row: screening library; 
4th row: DNase-seq data in the same cell line. (E) 
Enhancer-seq peaks align well with DNase-seq and 
H3K27ac ChIP-seq signals. 

D 
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barcodes given the current sequencing depth (200 million pairs), and 44 of the transcripts were labeled by more 
than 100 molecular barcodes. We then estimated artifacts from PCR duplicates, calculated from the number of 
sequenced reads that share the same molecular barcode and aligned to the same genomic location, and 
estimated relatively few artifacts from PCR duplication, with 78.3% of templates represented as distinct 
fragments. 

  

Figure 7. Whole genome STARR-seq (A) Genome browser screen shot shows consistency between K562 human-
STARR-seq signal (1st row) and DNase-seq signal (3rd row). (B) Genomic snapshot displaying the GPI locus region as 
detected by WG-STARR-seq. There is a strong enhancer region approximately 10-kb upstream of GPI and another, 
weaker enhancer regions in the 3’UTR region. Each blue track signifies normalized enhancer signal of each biological 
replicate. The gray track represents the normalized input library. (C) WG-STARR-seq shows a wide range of enhancer 
signal strength distribution of all detected enhancers. The median fold change observed was 3.08, with a dynamic range 
between 1.33 and 119.12. (D) The enhancer activity of 6 strong and 9 weak enhancers were validated using traditional 
luciferase assays in biological triplicates. A strong correlation was observed between luciferase signal and WG-STARR-
seq enhancer activity, providing validation of the technique. (E) Normalized reads from sequencing were used for 
reproducibility plots between biological replicates. (F) Comparison of expression levels of genes (denoted as RPKM) 
nearby different groups of enhancers. Statistical significance was calculated using Wilcox Sum Rank test (*p = 2.2e-16). 
(G) Plot comparing expression level of nearby genes in relation to both DNase I signal and enhancer activity. Both 
DNase I signal and enhancer signals are binned into 6 separate groups according to DNase I signal and enhancer signal 
rank (0 – 5), respectively. 

 
 

 



 

Similarly we have performed whole genome STARR-seq in K562 and LnCAP cells using the multiple-
indexing approach. Figure 7A shows a strong overlap between K562 STARR-seq peaks and DNAse-seq data 
from the ENCODE project.  Whole genome STARR-seq in LnCAP cells (Figure 7B-G) illustrates high 
reproducibility (panels 7B and 7E), with an r-squared value of 0.93 between replicates.  We identified 97,527 
enhancer regions that were significantly enriched over the input library (MACS2, q-value < 0.05) and that 
displayed a median enhancer enrichment activity of 3.1 with most enhancers showing enrichment scores 
between 2.0 and 5.0 (Figure 7C). In order to validate the function of the active enhancers determined by our 
whole human genome STARR-seq, we randomly selected 15 regulatory regions previously reported to be 
nuclear receptor binding sites, and measured their activity using traditional Renilla luciferase reporter assays.  
As seen in Figure 7D, we observe a strong correlation (R2 = 0.73) between enhancer activity and luciferase 
reporter signal, with most of the luciferase validated enhancers also having strong WG-STARR-seq enrichment 
(fold change > 2.0). Alternatively, most regions that did not have positive STARR-seq enrichment did not test 
positive in the luciferase validation assay (blue dots).   

We also have investigated the relationship between chromatin context, enhancer strength and nearby 
gene expression using whole genome STARR-seq data. We first analyzed nearby gene expression level to 
enhancers of varying activity and chromatin accessibility. We observed the expression level of genes near active, 
inaccessible enhancers were lower than the expression of genes near accessible sites lacking enhancer activity 
(regions lacking WG-STARR-seq signal) (Figure 7F). However, we found the highest expression of genes nearby 
accessible WG-STARR-seq called enhancers.  We then categorized all active and accessible enhancers into 36 
separate groups (ranked 0 – 5), based on their DNase I signal and enhancer activity, respectively (Figure 7G). 
We found that the average gene expression level of genes nearby STARR-seq enhancers increases as one of 
the variables (DNase hypersensitivity or enhancer activity) stays fixed. However, the highest gene expression 
values were observed for genes nearby strong STARR-seq identified enhancers that also had high DHS levels. 
Since the STARR-seq assay is episomal in nature, outside of the native chromatin context, these results suggest 
that STARR-seq is a sensitive measure of the intrinsic potential of an enhancer to affect target gene expression. 
These results also indicate that quantification of STARR-seq assay reflects the biological activity of enhancers 
on their target genes.   

  
 
2.3.2 Whole genome STARR-seq approach 
In years 1 and 2 of the Center, we will continue to focus our whole genome STARR-seq efforts on validating 
candidate enhancers from the ENCODE project immortalized and cancer cell lines (see Table 1).  Thus initially 
our whole genome STARR-seq efforts will not be focused on the disease models studied by our Center (CAD 
and PDAC), which we will only attempt to examine using whole genome STARR-seq after we have tested several 
rounds of capture STARR-seq using a more restricted set of predictions from Aim 1 in these model systems.  
Our rationale for focus on the ENCODE immortalized and cancer cell lines is two-fold.  First we wish to optimize 
the assay in the CAD and PDAC models using capture STARR-seq due to the lower requirements for transfection 
efficiency.  This two phase approach (capture then whole genome STARR-seq) is similar to how we have 
approached the cell lines we have assayed thus far.  Second, the results from whole genome STARR-seq in 
ENCODE cell lines will provide valuable data that will help the DAC and overall consortium to develop better 
predictive algorithms and better genome-wide enhancer annotations.  Thus, as the project progresses, results 
from our Center will positively affect the success of all other Centers that are focused on enhancer 
characterization as all or part of their work. 
 Accordingly we will assay the eight ENCODE cell lines in Table 1 during the first two years of the Center. 
We will perform additional replicates in GM12878 and K562 cells, as these have been “flagship” cell lines of 
ENCODE where a large and diverse set of data have been produced over the last decade.  We will also add 
MCF-7, HeLaS3, HepG2, HUVEC, A549 and SK-N-SH cells to the repertoire of whole genome STARR-seq data 
sets.  Experiments will be performed as described above for GM12878, K562 and LnCAP cells. At least two 
replicates will be performed for each cell line, with 4-6 total replicates performed for GM12878 and K562 to 
examine the statistical power effects of performing deeper replication.  

Cell characteristics and media conditions are listed in Table 3. We already have experience growing both 
adherent and suspension cells in the White lab. Suspension cells are grown in T175 flasks with 100ml of media 
and split 1:2 when the density hits 1M cells/ml. Adherent cells for transfection will be grown in Hyperflasks 
(Corning), which enables growth of 300-400M cells per hyperflask. These methods allow for maximal cellular 
growth to obtain the large numbers of cells needed for transfection. 



 

 
Before beginning STARR-seq protocol, cell types in Table 3 that have not been used in this assay before 

will undergo transfection tests using GFP, to determine transfection efficiency in our BTX AgilePulse Max 
electroporation machine (Harvard Apparatus). This device uses electronic waveform pulses instead of single 
intensity shocks to open cells then force in the plasmids. This method allows for a higher density of transfection 
(10-100M cells/ml) and high cuvette capacity (2-6mls at once) than other electroporation methods. These tests 
will not only test transfection efficiency but optimal transfection density. Our current methods include transfection 
parameters for GM12878/K562 (100M cells/ml) and MCF-7 (30M cells/ml). We also have methods for 
transfecting MCF10A, T47D, and HEK293T cells. We will test the cells in two types of electroporation buffer: the 
BTX electroporation buffer T4 recommended by Harvard apparatus and the Lonza kit buffer that would be used 
on their nucleofector machine. We have had success using both types of buffer in a cell-dependent manner. 
Each cell type with transfection efficiency of >60% will first be used for whole genome enhancer-seq. Cells whose 
transfection efficiency <61% will immediately be used for the capture method.  

For whole genome STARR-seq, 500M cells will be used for each replicate. Suspension cells will be 
collected through centrifugation while adherent cells will be collected via trypsinization. Cells will then be 
combined with electroporation buffer and whole genome library, electroporated, and plated back in their growth 
media. The whole genome library consists of the promega human male genomic DNA being sheared into 500bp 
regions and cloned via Gibson assembly into our screening vector. The 500bp region is placed downstream of 
a luciferase transgene. This library is then sequenced to assure good coverage of all of the regions within the 
genome. 24 hours after transfection for suspension cells or 48 hours for adherent cells, the cells will again be 
collected and frozen in liquid nitrogen. 5M cells from each replicate will be taken for downstream RNA-seq. RNA 
will be extracted using the RNeasy Maxi kit (Qiagen). mRNA will be isolated using Dynabeads (ThermoFisher) 
followed by DNAse treatments to rid the sample of genomic and plasmid DNA contamination. cDNA synthesis 
from the mRNA then occurs using SuperscriptIII reverse transcriptase and a reverse transcriptase primer specific 
for the luciferase gene, thereby only causing cDNA synthesis of our putative enhancer regions in our screening 
vector, and not cellular mRNAs. This is also a critical step as the primer also contains a molecular barcode. 
RNAse is then used to remove all remaining RNA from the samples and cDNA samples are purified with the 
MinElute PCR purification kit (Qiagen). Finally PCR amplification is used to complete the library.  

The key to our system is the molecular barcode added to each individual mRNA. This allows for removal 
of PCR duplicates after sequencing but affords us the ability to keep each single mRNA that was amplified. We 
use a 6 bp barcode creating 4,096 possible combinations and our ability to deconvolve up to 4,096 single mRNAs 
to the same region at single base pair resolution. This barcode also allows us to sequence for fewer reads for 
the same level of fold change calculations. For each whole genome enhancer-seq we plan to perform a minimum 
of two biological replicates.  
 
2.3.3 Whole genome STARR-seq analysis 
With these whole genome STARR-seq data sets in hand, and working as appropriate in coordination with the 
DAC and other interested groups in the consortium, we will take a systematic approach whereby we will process 
the STARR-seq signal profiles with PeakSeq (69) and MUSIC (70) to generate a relaxed set of regions that show 
significant enrichment. These regions will be very highly sensitive but will contain many false positives. Therefore 
we will use the large compendium of existing functional genomics datasets from ENCODE and RMEC projects 
listed in Table 1, utilizing peaks from histone marks and transcription factors to build a priori probability estimates 
for localization of the regulatory regions. We will use the activating marks and transcription factors that associate 

Table 3. ENCODE Cell Types for analysis: characteristics and media conditions 



 

with enhancers (H3K4me1, H3K27ac, H3K9ac, P300, DNase/FAIRE) to build these probabilities. We will also 
utilize transcription factor binding motif and sequence conservation data as variants in the a-priori estimates of 
localization. Next we will combine the whole genome STARR-seq results with these probabilities of localization 
in a Bayesian framework, and we will train generalized linear models for scoring the candidate relaxed list of 
regions that we identified from STARR-seq. The sorted list of regions will be provided to the experimental groups 
for further validation. This approach can be used for tissue, cell line, and species-specific STARR-seq scoring 
models as described using cell line, tissue, and species-specific datasets. For our Center, we will concentrate 
specifically on the vascular smooth muscle and pancreas for the downstream experimental validations that we 
will perform on these tissues. 
 

Timeline: We expect to complete this component of the project by the end of year 2.  We will add 
additional cell lines, or perform additional experiments as needed by the overall ENCODE consortium in years 
3 and beyond. 
 
2.4 Capture STARR-seq:  
2.4.1 Preliminary Results 
The application of whole genome STARR-seq requires 60% of cells to be transfected; this makes the technique 
difficult for some applications, such as primary cells and some cell lines. For such cells, we are able to utilize 
capture libraries (Figure 8). The method we will employ uses a solution-based genomic capture system to 
enrich for genomic regions that corresponds to putative regulatory elements (identified in Aim 1). This 
significantly reduces the complexity of the library and allows for fewer cells to be transfected. This method is 
referred to as Cap-STARR-seq.  Thus far we have performed Cap-STARR-seq on six different cell lines including 
GM12878, K562, LnCAP, MCF-7, SNV16 and OCUM1 cells. 

The Cap-STARR-seq library utilizes in-house designed Nimblegen capture probes. After genomic DNA 
shearing and hybridization to the capture probes to isolate specific regions of the genome, the resulting 
fragments are cloned into the plasmid. Using this method we typically screen 10-100MB of the genome instead 
of all 3GB. This technique will be particularly useful for the smooth muscle CAD model and PDAC 3D culture 
model cells.  

The experimental implementation of Cap-STARR-seq similar to whole genome STARR-seq, described 
above, and cells are processed in the same way. Unlike the whole genome STARR-seq, where the distribution 
of plasmids entering the cells should be equal, in Cap-STARR-seq it is important to get a more accurate reading 
of the plasmids present in the population, since our experience has been that slight changes to the library can 
lead to larger fold change differences and high variability between replicates. It is for this reason that for each 
Cap-STARR-seq cell type we will perform 3 biological replicates.  
  One example of how we have used capture-STARR-seq was to test a set of candidate enhancers for 
estrogen-responsiveness in Estrogen Receptor positive MCF-7 breast cancer cells.  In this experiment we 
probed the regulatory activity of close to 10,000 DNase I hypersensitivity sites (DHSs) in MCF-7 cells. We 
enriched a total of ~10 Mb regions using NimbleGen SeqCap EZ customized capture probes, and we cloned 
them into a screening library driven by the SCP1 minimal promoter. The screening library encompassed nearly 
all the target regions (99.8%) with low off-target rate (11%). Deep sequencing results indicated the library had 
high complexity. We transfected screening library plasmids into MCF-7 cells followed by 48-hr hormone 
deprivation and 10 nM E2 or vehicle treatment (40 million cells per replicate per condition), and enriched 
screening library transcribed mRNA for high throughput sequencing. Sequencing of these libraries required 30 
million paired end 100bp reads, which led to an average depth coverage of 300X.  We were able to detect more 
than 1,600 high confident and reproducible STARR-seq peaks from the ~ 10,000 candidates.  In addition to 
calling active enhancers, we were able to further measure estrogen-regulated enhancer activity by comparing 
enhancer activity in estrogen vs. vehicle treatment. At as early as 45 min post estrogen treatment, which is too 
early for conventional luciferase assay to detect any change, we were able to determine 245 E2-upregulated 
enhancers and 180 E2 down-regulated enhancers. E2-upregulated enhancers are significantly associated with 
E2-upregulated genes (Fisher’s exact p = 0.0002) and enriched for ER binding sites (Figure 9). 



 

 

 
 
2.4.2 Capture STARR-seq approach 
Determination of regions captured for our CAD and PDAC biological models will be made based on enhancer 
predictions in Aim 1 using ENCODE, RMEC and CAD or PDAC data from Table 1, as well as conditioned on 
results from the whole genome STARR-seq in cell lines as it becomes available.  As described in Aim 1, we will 
also consider recurrent somatic mutation data in non-coding candidate enhancer regions for pancreatic cancer 
and GWAS data for CAD, based on analyses performed by the Gerstein lab. These candidate enhancers will be 
captured from total human genomic DNA (we generally capture from a mixed pool of normal DNA isolated from 
human blood samples), and they will be cloned into plasmids or lentiviral vectors as described in the previous 
section and below. 
 
Capture STARR-seq in pancreatic normal and cancer organoid models: The Chicago Pancreatic Cancer 
Initiative (CPCI) is sequencing cancer genomes and developing tools to study the molecular basis of this disease. 
One of those tools is the pancreatic organoid. The team takes fresh surgical specimens and creates 3-
dimensional cell culture models of the tumor and the normal tissue.  They also produce patient-derived xenograft 
(PDX) tumors in mice, which in turn provide a large supply of material for organoid culture.  These organoid 
models provide an ideal substrate for experimental interrogation.  In particular, we propose to use these 
organoids as a tool to test the functions of candidate enhancer regions predicted in Aim 1.   Figure 10 shows 
that these organoid models can have many characteristics in common with primary tumors from the same 
patients. We histopathologically compared an organoid to the same patient’s primary tumor using formaldehyde 
fixed, paraffin embedded sections that were H&E stained and scored for mitotic index, cytological appearance, 
and histological grade, or stained for biomarkers of pancreatic cancer, and scored for expression and localization 
by a board-certified gastrointestinal pathologist. Both the primary tumor and organoids had a mitotic activity of 
5-7/10 HPF, a moderately differentiated histologic grade, and irregular nuclear membranes, open chromatin and 
prominent nucleoli. These findings suggest that organoids are reliable patient-specific pathophysiological models 
to study pancreatic cancer. 

Figure 8. CAP-STARR-seq protocol. Diagram 
showing  process of generating capture libraries 
for capture based STARR seq. In this example, 
cells have been differentially exposed to a ligand 
(see Figure 9) 

Figure 9. Estrogen regulated cap-STARR-seq 
enhancer assay. a) ER binding site occurrence in E2-
upregulated enhancers and E2-downregulated 
enhancers. b) Snapshot of E2-upregulated enhancer. 
c) Snapshot of E2-downregulated enhancer. 



 

For the proposed experiments we will use both PDX 
derived organoids and primary tumor/normal organoids, as 
available.  Pancreatic cancer surgical resections provide the 
fresh precursor material to grow organoid cultures. In 
collaboration with surgical oncologist Dr. Kevin Roggin, we have 
refined the procedure to grow and manage normal pancreatic 
and PDAC organoid cultures. Immediately following surgical 
resection, pancreatic tissue and tumor are placed in individual 
15ml conical tubes containing digestion media for 10 minutes 
incubation. The tumor is minced into 1-2mm pieces in a petri dish 
and transferred back to the 15ml conical tubes containing the 10 
mL of digestion media, and incubated at 37ºC for 1.5 hours. To 
break up large pieces of tumor, tissue and media are triturated 
with a 10ml pipette. Cells are pelleted by centrifugation and pellet 
is re-suspended in media containing DNase and incubated at 
37ºC 10 minutes. The reaction is stopped and cells are collected 
by centrifugation. The pellet is re-suspended in cold Matrigel 
(Corning), which is a reconstituted basement membrane 
containing a rich assortment of laminins, collagen, growth 

factors, and other basement membrane components. 50l of the 
Matrigel suspension is then plated onto a pre-warmed 24 well 
plates as a droplet, which will form domes upon polymerization 
at 37°C. The plate is then placed in a 5% CO2 tissue culture 
incubator for 20 minutes. Finally, cells are bathed in liquid 
medium.  Within 1-2 days, organoids form hallowed spheroids. 
Media is changed every 2-3 days, depending how fast organoids 
grow, and organoids are passaged once a week. 

We will use a retroviral version of our pGL4.23.ccdB STARR-Seq screening vector, where the ccdB 
expression cassette is cloned out of pGL4.23-ccdB into the multiple cloning site of pMSCV-loxp-dsRed-eGFP-
Puro-WRE, a validated retroviral expression system for use in organoid cultures (77, 78). An advantage of this 
plasmid is that expression of libraries can be induced by addition of Cre recombinase at any time during organoid 
development, preventing any possibility of toxicity from overexpression or any growth advantage from non-
induced cells. Addition of Cre removes the dsRED cassette, but retains EGFP, allowing for easy visual 
confirmation of EGFP expression to confirm successful induction by Cre.  

Organoids for viral transduction will be prepared in 24-well plates, using one well per transduction. 

Organoids are transduced by gently combining organoid fragments with the 250l retroviral supernatant in one 
well of a 48- well plate. Cells are “spinoculated” by spinning the plate at 600 x g for 1hr at 32°C, then incubating 
the plate for 6 hours. Fragments are with matrigel and resuspended by gentle pipetting. Matrigel containing 
infected organoids is then seeded in a new, pre-warmed 24-well plate. The plate is then incubated for 2-3 days. 

Puromycin selection (1g/ml) begins after 2-3 days. When the fragments start to form organoids, medium is 
replaced with medium supplemented with puromycin. Budding structures will be evident within 1-2 weeks. At this 
time, expression of the libraries is induced with the addition of 4-OHT, and successful induction is determined 
by the loss of dsRed signal and maintenance of EGFP signal. 

Our initial rounds of cap-STARR-seq will be performed in PDX organoids due to their abundant supply.  
Once the protocol is fully tested, candidate enhancer libraries will be transduced into patient-derived primary 3-
D cultured human pancreatic cells (tumor and normal). In this second round of STARR-seq assays we will 
validate the positive findings from the initial screening, but more importantly we will identify the extent to which 
there are differences in enhancer activity between normal pancreatic organoids and tumor organoids. 
Additionally, recent results from Baily et al. analyzing over 450 pancreatic cancers have identified novel 
molecular subtypes that can be distinguished by expression pattern(79).  We are collaborating with the authors 
of this work to categorize each of our CPCI patient tumors into these molecular subtypes. Our Center will 
therefore also the question of whether tumors of different molecular subtypes show different enhancer 
activities.  In the mutation STARR-seq assays proposed in the next section of Aim 2 and in Aim 4, we will 
separately address the question of whether somatic mutations lead to differential candidate enhancer activities. 
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Figure 10 (A). Similar gross morphology of 
malignant tumor cells and organoid cells 
from the same patient (B) Both primary 
tumor and organoid demonstrated diffuse 
moderate-to-strong positivity for CK7, 
CEA, p53, and Claudin-4, and focal weak 
positivity for CK20.  

 



 

Capture STARR-seq data for the organoid models will be analyzed similarly to whole genome STARR-seq 
data, as described above. 
 
Capture STARR-seq in a coronary artery disease model: Atherosclerotic coronary artery disease (CAD) is the 
world-wide leading cause of death, not only in high-income countries, but also increasingly in developing 
countries. Through genome wide association studies (GWAS) and the recent meta-analyses of such GWAS 
data, over 60 associated loci have been validated, and approximately 200 additional loci identified at an 
FDR<0.05. Despite the phenomenal progress in identifying genetic loci that harbor genes associated with CAD 
and other complex human disease, there has been limited progress toward deciphering the genetic and 
molecular mechanisms by which causal variation regulates gene function (80). The majority of disease-
associated variation has been found to reside outside of structural genes and presumed to regulate gene 
expression rather than encoded protein sequence (44, 81-85). The lack of functional annotation of these 
regulatory regions of the genome accounts for the lack of progress toward identifying and understanding the 
mechanism of effect for such variation. Given the public health crisis associated with this disease, and the robust 
genetic association findings that promise to point to disease mechanisms, we have chosen to incorporate the 
study of vascular cells and tissues in this application.  
 Vascular smooth muscle cells (SMC) are increasingly recognized as pivotal contributors to the vascular 
response to injury and genetic dissection of signaling pathways that modulate the response of this cell type to 
disease initiating stimuli would contribute significantly to our understanding of human vascular disease (86). The 
risk of CAD events is inversely correlated to the number of vascular smooth muscle cells (SMC) in atherosclerotic 
plaque, and it is speculated that this cell type stabilizes the lesion to protect against plaque rupture and 
myocardial infarction (86-90). In fact, SMC contribute up to 80% of cells in atherosclerotic plaque (91) and 
express a majority of CAD-associated genes(92). For these reasons, we have focused our studies investigating 
the mechanisms of genetic CAD risk on loci encoding genes that are fundamentally linked to SMC biology, e.g. 
previously establishing causality and investigating the SMC biology of CDKN2B at 9p21.3(93, 94) and TCF21 at 
6q23.2(47, 48, 92, 95). These cells never fully differentiate but rather possess a phenotypic plasticity that allows 
them to respond to epigenetic signals and to downregulate the classic SMC contractile marker gene expression 
program in the setting of stimulation by disease related factors(96). This process is postulated to promote medial 
SMC downregulation of lineage marker expression, proliferation, and migration to the luminal surface of the 
atheroma where these cells contribute to the plaque stabilizing fibrous cap(86, 91). This phenotypic switch is 
dependent on chromatin remodeling, and can be modeled in vitro by growing SMC in the presence of serum 
(proliferative, undifferentiated, disease state) or absence of serum (quiescent, differentiated, physiologic 
phenotype)(96). This in vitro differentiation model may be used to bolster in vitro studies aimed at dissecting 
transcriptional mechanisms by which CAD-associate causal variants contribute to risk. Human vascular cells 
grown in culture may represent a disease or healthy phenotype, with related chromatin organization and gene 
expression that may or may not represent the functional environment in which the causal regulatory variants 
impact disease risk related processes. Evaluating chromatin structure, transcription factor binding and 
transactivation in SMC under both disease and physiologic conditions should increase the likelihood that in vitro 
experiments have in vivo relevance, and that disease related pathways can be identified and studied. Thus, 
because of the significant contribution of this cell type to CAD risk, and the apparent involvement of causal 
variation with enhancer function, we will investigate through these studies the enhancer makeup of SMC, and 
correlate findings to our previous epigenetic and mechanistic studies. 

As background for the studies proposed here, we have used ATAC-seq to map regions of open 
chromatin, performed ChIP-seq for histone modifications (H3K4me1, H3K4me3, H3K27ac) and disease relevant 
transcription factor binding in primary cultured HCASMC, and combined these and ENCODE datasets to promote 
the identification of causal variants and genes in CAD associated loci (see Aim 1). In fact, ChIP-seq studies for 
JUN, JUND, JUNB, FOS, CEBPB, and SMARCA4 were conducted in HCASMC as a pilot using ENCODE 
antibodies and methodology, and these data will be uploaded as part of the ENCODE dataset. We have identified 
10 causal variants in enhancer regions in CAD loci, some of which have been validated with in vitro CRISPR 
studies and in vivo transgenic mice(49). These data will provide an important opportunity for validation of the 
bioinformatic and computational approaches described in Aim 1, as well as the STARR-seq and other 
approaches described here. 

Although studies with SMC have provided for significant new insights into the mechanisms of gene 
expression and in particular those associated with risk for complex disease such as CAD, these cells senesce 
after a limited number of passages and cannot be transfected at sufficient efficiency to allow primary STARR-



 

seq enhancer screening. An alternative approach that allows the continued access to unlimited numbers of cells 
from the same human subjects with defined genotype and disease risk profiles are currently provided by the 
derivation and culture of iPSC. As for a number of other cell types, iPSC can readily be differentiated into SMC 
populations(97, 98). Also, they can be transfected to >60% efficiency. Importantly, by employing different 
chemically defined conditions, it is possible to reproducibly differentiate induced pluripotent stem cells (iPSC) 
into distinct SMC populations that reflect spatial specificity that normally results from different embryonic 
origins(97). A recently derived method allows for the robust and rapid differentiation of human iPSC into vascular 
SMC, and we have streamlined this approach to generate SMC in 5 days(98). . 

We will source iPSC lines from our collection generated through our GENESiPS study (U01 HL107388) 
that is part of the NHLBI funded Next Generation Genetic Association Studies (Next Gen) consortium (RFA-HL-
11-006). Through this effort, we have generated 3-6 clonal iPSC lines for each of 200 subjects that have been 
phenotyped for CAD risk factors and undergone whole genome genotyping with imputation to 1000 genomes. 
The iPSC lines were created from erythroblasts using the non-integrative Sendai virus system, passaged to allow 
clearance of Sendai virus and growth in feeder free conditions. The lines have been extensively characterized 
for markers of pluripotency (Tra1-60), sample identity and genomic integrity. We are currently re-consenting 
GENESiPS subjects with an open consent form according to recent ENCODE recommendations to allow sharing 
of cells and data. Enhancer mapping using cap-STARR-seq and other methods described below will be 
performed in iPSC-derived SMC, iPS-SMC, with transfection efficiency approaching 60%.  

For differentiation, iPSC are plated as single cells with the Rhokinase inhibitor Y-27632, subsequently 
differentiated to mesoderm using CP21 and BMP4 for 2 days, followed by treatment with N2B27, PDGF-BB and 
activin A and then maintained in PDGF-BB plus heparin. We can easily culture the needed number of cells and 
perform the Cap-STARR-seq transfection employing the Amaxa system with Lonza reagents. In our pilot studies, 
after 5 days the fully differentiated SMC maintain significant levels of reporter gene (luciferase) expression, and 
we will further validate that the level of RNA reporter expression is sufficient for STARR-seq. We will thus 
transfect cells, immediately initiate the differentiation protocol, and begin the assay after 5 days of in vitro 
differentiation. An alternative approach would be to conduct the transfection with a selectable drug selection 
marker, drug select pools of transfected iPSC and subsequently put them through the differentiation protocol. 
We will pilot these two approaches to determine which is the more viable method.  

Enhancers identified through the initial Cap-STARR-seq screen will be validated by transfection of 
relevant reporter constructs (libraries) into patient-derived primary cultured human coronary artery smooth 
muscle cells (HCASMC). In this second round of Cap-STARR-seq assays we will validate the positive findings 
from the initial screen, employing an in vitro SMC differentiation paradigm that recapitulates the phenotypic 
modulation that occurs in vivo in the disease setting. The in vitro disease phenotype is induced by culturing cells 
in high percentage serum, or including growth factors such as platelet derived growth factor BB in the culture 
medium. Cells grown in 1-2% serum are quiescent, and express numerous SMC markers including MYH11, 
ACTA2, and TAGLN. By growth in serum or PDGF-BB, the cells adopt the disease phenotype, by 48hrs 
downregulating the SMC markers and increasing proliferation rates. While these cells are not suitable for the 
initial high-throughput STARRseq screen, they can be electroporated with the relevant Amaxa protocol to 
achieve >30% transfection of the reporter constructs, which is more than adequate for the secondary STARR-
seq screens. Evidence for enhancer function in the phenotypic modulated cells but not in the serum starved cells 
would argue for disease relevance for enhancer function.  

 
Timeline: In years 1 and 2 we will exclusively focus on capture-STARR-seq for the PDAC and CAD 

model systems. We will begin testing whole genome STARR-seq in year 3 for these model systems, but we 
will continue the cap-STARR-seq approach throughout the course of the Center grant, continually testing 
refined predictions from Aim 1.  We will also integrate mut-STARR-seq in the next section, starting in year 2. 
 
2.5 Mut-STARR-seq: Combining site-directed mutagenesis with STARR-seq to assay the effects of 
genetic variation on candidate enhancer funcion: Site directed mutagenesis has long been an invaluable tool 
in studying specific mutations in the context of protein-structure interactions and mutational effects on target 
gene expression. This technique is general used to generate DNA sequences that induce mutated codons, 
insertions or deletions. To generate desired mutations, PCR reactions are conducted using a pair of 
oligonucleotide primers that amplify a targeted region of interest, designed in such a fashion where mismatching 
nucleotides are located in the center of the primers. The resulting PCR product is the target region that contains 
the mutation of interest. This region is subsequently cloned into a vector for downstream experimental analysis. 



 

Unfortunately, current standard of protocols for site-directed mutagenesis require the picking and processing of 
individual colonies for downstream Sanger sequencing to identify the correct clone. Additionally, these current 
methods are low-throughout and expensive to conduct. 

The White lab has extensive expertise in this area of molecular biology. His team has led the recombinant 
engineering of transcription factor tags for the ENCODE consortium, for use in ChIP experiments conducted in 
the White, Farnham and Snyder labs. Our production has focused largely on tagging transcription factors by 
recombineering to generate the TF-GFP fusion within Bacterial Artificial Chromosomes (BACs). We created over 
1,000 tagged constructs using this technique. More recently we have adopted the CRISPR/Cas system for our 
tagging needs. Using this technique we have tagged 42 pairs of constructs for the ENCODE consortium.  Site-
directed mutagenesis is very similar to the protocols we have been using thus far.  Using site-directed 
mutagenesis we will generate mutations within our STARR-seq libraries. By using our STARR-seq libraries and 
mutagenic DNA oligo primers made in batch similar to our Nimblegen capture probles, we will create “batches” 
of mutants in STARR-seq libraries and screen them in the same way as non-mutated libraries. From these data 
different mutational variants for the same candidate element can be distinguished computationally when 
processing sequencing results. These mutations differ in contrast to established random mutagenesis pipelines, 
since it is not possible to separate one mutant sequence from another in random mutagenesis protocols, and as 
such the whole pool can only be used from the same assay together. Others(99) have used this type of approach 
to study proteins. Overall, this approach represents a rapid and cost-effective method to screen mutations. Those 
mutations can be based on somatic mutations identified in PDAC or on inherited polymorphisms associated with 
CAD GWAS. 

To perform this mutation STARR-seq (mut-STARR-seq) we will use the same candidate enhancer 
regions, identified and annotated in Aim 1, that are used in the previous sub-Aims.  We will systematically test 
the function of these candidate enhancers when mutated to contain precise somatic mutations identified from 
primary PDAC or the exact polymorphisms identified in CAD GWAS. In order to quality control this technique, 
we will perform our STARR-seq enhancer evaluation pipeline up until the step where we will clone our regions 
of interest in our vector system. Before doing so, we will perform batch site-directed mutagenesis to introduce 
mutations in our target enhancer regions, and then proceed to cloning them into the vector. This way, we will be 
testing at the same scale as our enhancer evaluation pipelines, the effect of the mutation on each enhancer 
region as compared to wild-type. Just as we do for our cap-STARR-seq libraries, we will sequence the resulting 
libraries to determine the baseline coverage of each candidate enhancer, as well as the frequencies of introduced 
mutations (we expect a mix of mutated and wild type fragments). This experiment will provide us with an initial 
assessment of which enhancers may be affected by single base or small indel changes, and as a result may 
provide a way to priortize further testing of specific enhancers in the functional validation assays we plan to 
explore in Aims 3 and 4.  

We will plan to perform this technique on all of the same CAD and PDAC models we will perform cap-
STARR-seq on. Other than the site-directed mutagenesis step, the protocols will be identical to those described 
in the previous section. 

 
Timeline: In year 1 we will optimize the method, building and sequencing the initial libraries for use in the 

ENCODE cell lines for testing purposes.  In years 2 and beyond we will turn the effort to PDAC and CAD models.   
 

Aim 3. Testing for enhancer necessity using CRISPR mutagenesis 

A major caveat of the STARR-seq method is that all assays are done on transfected plasmids that lack the 
contextual framework of the genomic loci from which they have been derived. The advantage of this method is 
that it allows us to systematically test thousands of genomic regions for regulatory potential; however, for many 
loci it can be only a modest indicator of the actual regulatory function within the native genomic context.  Based 
on previous experience, we expect that data collected as described in Aim 2 will narrow the regions of interest 
from tens of thousands of candidate enhancer elements down to hundreds or thousands of partially validated 
enhancer elements. We will prioritize lists of functionally-validated enhancer elements based on Aim 1 and other 
computational methods developed in the Consortium. We will then test these regulatory elements using CRISPR 
mediated genome editing to determine which regulatory elements show differential function when mutated. 

Traditional candidate enhancer validation assays have historically involved cloning candidate sequence 
of interest into a construct upstream of a reporter gene, in order to determine its regulatory activity by measuring 
the output of reporter gene expression. However, these methods do not take into account the endogenous 
chromatin environment the target enhancer resides in.  Nor does it address which nearby genes the enhancer 



 

region transcriptionally controls. To obtain a better understanding of the functional role candidate enhancers 
validated by STARR-seq in Aim 2 have on endogenous transcriptional regulation, we propose to functionally 
validate a subset of these candidate enhancer regions by endogenously mutating them using the CRISPR/Cas9 
targeting system. By utilizing CRISPR technology, we are able to edit the genome using CRISPR and CRISPR-
associated (Cas) genes that have been exploited to achieve site-specific DNA recognition and cleavage. (100).  
In this fashion, not only are we interrogating our target enhancers in their endogenous chromatin context, but we 
will also be able to obtain a clearer picture on which gene(s) the regulatory element may control.  

Testing for enhancer necessity will be approached in two ways; 1) we will generate mutations in putative 
enhancers using a 96-well plate format and use a qRT-PCR (quantitative reverse transcriptase PCR) assay of 
nearby gene transcripts to generate quantitative transcriptional read outs (See Aim 3.1); and 2) we will use Drop-
seq paired to CRISPR/Cas9 in order to get a high throughput, single cell resolution view of enhancer mutations 
(See Aim 3.2). This second variant has the potential to create an “all-by-all” matrix of enhancer-by-transcription 
unit effects. We will coordinate with other Centers who are taking similar approaches with complementary assays 
in ENCODE cell lines and other biological systems to ensure that we create a robust data set. 

In addition to testing the necessity of our target enhancer regions discovered in Aim 2 by targeting them 
directly, we will also plan to knockdown/knockout a selected number of transcription factors that are observed to 
bind our target enhancer regions to see the downstream effect on nearby genes. TFs are widely known to exert 
their transcriptional regulatory potential via binding to enhancers. Therefore, by targeting TFs themselves, we 
will obtain similarly valuable insights on enhancer function, necessity, and the trans-effects of specific TFs. In 
order to determine which TFs we plan on interrogating, we will rely on the combination of computational analysis 
performed in Aim 1, alongside motif enrichment analysis we will perform on our putative enhancer regions from 
the various STARR-seq datasets generated in Aim 2. In all, we will plan to test 10-15 highly relevant TFs that 
are found to be enriched in our target regions for each biological model system we will examine (CAD, PDAC, a 
limited set of ENCODE cell lines for technique development and comparison to other ENCODE consortium data). 
 

3.1.1 High throughput enhancer validation: We propose to 
perform the aforementioned experiments using a CRISPR-qRT-
PCR workflow (Figure 11). For targeting candidate enhancers 
and TFs, we plan to design 2 gRNAs for each candidate.  For 
screening we will using a 96-well plate format (Figure 11), 
seeding cells at a density of 1.0e4 – 3.0e4 cells per well, 
depending on cell type (see Table 3). For ENCODE cell lines, 
we have already created stably expressed Cas9 (see Figure 
12A), which will result in a higher efficiency and success rate of 
gRNA targeting. Furthermore, the gRNAs will be constructed as 
gBlocks (IDT). This approach provides us with many benefits, 
which include: A) it will allow us to bypass difficult co-
transfection approaches of both Cas9 and the gRNA, B) it 
eliminates the need to clone all the gRNAs individually into a 
vector, C) eliminates lentiviral approaches for gRNA 
introduction and D) this workflow will allow us to functionally test 
up to 96 different conditions simultaneously on one plate. We 
plan to interrogate the expression levels of the closest or most 
likely 3-5 gene targets of each candidate enhancer (determined 
in Aim 1) via qRT-PCR. Transfection experiments will be 
conducted 24 hrs after initial cell seeding, using Lipofectamine 
3000 transfection reagent, according to standard 
manufacturer’s protocol. After transfection, cells will then be 

incubated for 72 hrs at 37C before harvesting for RNA. High 
quality RNA will be extracted using a combination of the Trizol 
Reagent  (Thermo Fisher) and Direct-Zol RNA Miniprep kit 
(Zymo Research). cDNA synthesis will be performed using 
SuperScript III First Strand Synthesis kit (Thermo Fisher). We 
will design qPCR primers for the nearest 3-5 genes of each 

target enhancer region, depending on genomic location and quantitate expression levels using RT-PCR on the 

Figure 11. Diagram representation of CRISPR 
qPCR enhancer validation workflow. We will 
apply 2gRNA’s per region to ensure that we 
obtain efficient disruption to the region in a 96 
well plate format. Cells will be harvested and 
regulated genes identified with qPCR. 

 



 

Roche LightCycler 480 instrument, using manufacturer’s recommended reagents. The genes to test with each 
enhancer will be chosen through a combination of two methods, 1) genes that are predicted to be influenced by 
a given gene (as predicted in Aim 1) and 2) through proximity of gene to nearby enhancer.  Using this method, 
we can test 96 gRNA pairs a month and their putative corresponding genes.  

While testing on ENCODE cell lines should give us general insight on how candidate enhancer sufficiency 
as determined by STARR-seq relates to necessity as determined by CRISPR-Cas9 mutational targeting, it will 
not tell us whether the specific candidate enhancers identified in our models of CAD and PDAC are necessary 
in the context of the disease-relevant cell types.  Thus a similar approach will be taken for the PDAC organoids 
and the human coronary artery smooth muscle cells.  Unfortunately we will not have the advantage of stably 
transfected Cas9 in these models.  However we will deliver the Cas9 and gRNAs at more modest throughput 
using the same transfection and lentiviral transduction approaches outlined in Aim 2 for these cell types.  Rather 
per month, we expect to be able to process 20-30 enhancers and 10-15 transcription factors per year in PDAC 
and CAD models.  Combining the human Starr-seq data procured in Aim 2 for each cell type with Fun-seq and 
LARVA annotation data (Aim 1), will enable us to pick out and target the most disease relevant enhancers to 
test using this method.  

 
3.1.2 Preliminary data for high throughput enhancer 
validation: The White lab has created stably expressing 
Cas9 cell lines in MCF-7, MDA-MB-231, MCF10A, and A549 
cell lines (Figure 12A). We have begun testing enhancers 
using this method in ENCODE MCF7 cells (Figure 12B). We 
will continue this process with the Tier 1 and Tier 2 ENCODE 
cell lines (Table 3), as well as with our PDAC organoid and 
CAD smooth muscle cell models.  

Figure 12B shows two candidate enhancer regions 

from MCF-7 cells that displayed ER binding, estrogen 
responsiveness, Cap-STARR-seq activity, and mutations 
from breast cancer patients based on FunSeq analysis. 
Results show that by creating CRISPR-mediated mutations 
at these regions (indicated by the red arrows), nearby gene 
expression levels are affected (Fig. 12b). We observed that 
mutations in one candidate enhancer led to down regulation 
of one nearby gene and up-regulation of another.  In the 
second candidate enhancer mutation, all three nearby genes 
that were assayed by qRT-PCR are affected.  These results 
illustrate the importance of interrogating multiple nearby 
genes in their endogenous context instead of only 
experimenting with the target enhancer region exogenously 
(i.e., traditional luciferase assays). While these data were as 
gathered in a relatively low throughput manner, the approach 

is readily scalable. 
 
Timeline: We will assay approximately 500 

candidate enhancers in ENCODE cell lines in years 1 and 
2.  In each year of the grant we will assay 20-30 candidate 
enhancers in each biological model (PDAC organoids and 
CAD smooth muscle cells), as well as 10-15 transcription 
factors. 

 
 
 
 
 
 

Figure 12. a) Western blot showing stable exogenous 
expression of Cas9 in multiple cell line backgrounds, 
including ENCODE tier 2 cell line MCF7 and A549. B) 
Two gRNAs (as indicated by the red arrow) were 
designed to candidate enhancer regions that overlap 
the active enhancers identified in STARR-seq as well 
as predicted functionally relevant genetic variation 
from FunSeq analysis. gRNAs were transfected into 
MCF7-Cas9 cells for 72 hours and RNA subsequently 
harvested for qPCR analysis. Nearby genes are 
observed to be down regulated as compared to 
control, indicating our enhancer validation pipeline is 
working. 



 

3.2.1.CRISPR-Drop-seq (CD-seq): Once targets are positively validated, we will use CRISPR technology to 
remove regulatory sites and measure the effect using a modified version of the Drop-seq method that has 
recently been developed in the White lab. In Drop-seq, single cells are encapsulated within nanoliter droplets 
and a uniquely barcoded is associated with the cell’s RNA. Thousands of barcoded transcriptomes are then 
sequenced simultaneously, and single cell gene expression profiles are constructed. We have combined this 
method with transcription factor knock-down, and propose to combine it also with our CRISPR constructs to 
determine the downstream effects of the enhancer in the context of its native chromatin environment.  

In CRISPR-Drop-seq (CD-seq), we will use modified beads that capture mRNA (through a poly-dT 
oligonucleotide) and the expressed gRNAs through a second oligonucleotide complementary to the common 
portion of each gRNA (Figure 13). Using this method, we will be able to see specific gRNA effects in single cells 
through use of RNA-seq, creating a high throughput validation of the functional effect of mutating candidate 
enhancer elements.  

The overall workflow for CD-seq is similar to Drop-seq. A microfluidic device is used to encapsulate cells 
within nanoliter-sized droplets along with barcoded beads. The device will co-flow two aqueous solutions across 
an oil channel to form a water-in-oil emulsion. One flow contains a cell suspension; the other contains barcoded 
beads suspended in lysis buffer. The flows is precisely controlled using syringe pumps, such that laminar flow 
prevents mixing of the two aqueous solutions prior to droplet formation. A flow rate of ~4000 uL/hr will be used 
for the aqueous flows, and ~15,000 uL/hr will be used for the oil flow, resulting in the formation of droplets with 
a diameter of ~100 um. Droplet diameter will be measured for a given set of flow rates and cell/bead 
concentrations will be determined based on droplet size, with higher cell/bead concentrations used for smaller 
droplets and vice-versa. Overall, the number of droplets generated will be much larger than the number of beads 
or cells injected, so that a droplet will generally contain zero or one cell/bead. Immediately after droplet formation, 
the two aqueous flows will mix, resulting in cell lysis and release of mRNA, which will then captured by 
hybridization to the primers on the bead surface. Droplets generated by flowing in 1 mL each of cell and bead 
solutions are collected together. The droplets are broken by the addition of perflourooctanol that disrupts the oil-
water interface, into a large volume of aqueous solution, which quenches further hybridization. The beads are 
then be collected by centrifugation, washed and reverse-transcribed. Next, the beads are treated with 
exonuclease I to remove any primers that did not capture an RNA molecule, washed, counted, aliquoted into 
PCR tubes and PCR amplified. The PCR reactions are purified and pooled, and the amplified cDNA quantified. 
Finally, the cDNA is fragmented 
and amplified using primers that 
allow amplification of only the 3’ 
ends, then processed into RNA-seq 
libraries and sequenced. 

CD-seq can be performed 
by mutating one candidate 
enhancer or one transcription factor 
at a time.  Although our initial 
results are encouraging (see 
Preliminary results below), we will 
validate this method in year 1 by 
choosing 5-10 of the same 
candidate enhancers and 
transcription factors as we will 
assay in Aim 3.1.  While we expect 
to get insights into cell 
heterogeneity and to address the 
question of whether results in cell 
populations are reflective of results 
in single cells, the most exciting 
prospect for the technique is its 
application to pooled gRNAs that 
get decoded along with the 
captured polyA RNA from each cell.  

Figure 13. Bead comparison of Drop-Seq (left) and CRISPR-Drop-
seq (right). The primary difference in these techniques is the beads. 
In CD-seq, the oligo coated beads have been enhanced to collect 
gDNA and mRNA. 



 

Since Drop-seq allows us to individually sequence the transcriptomes of thousands of cells at a time, we 
plan to design a library of gRNAs that target our regions of interest based on the CRISPR validation assays and 
the computational analyses discussed in Aim 1. We will introduce this pooled library into our cells at a multiplicity 
of infection that ensures that only 1 (or zero) gRNA will enter each cell, and then we will use our CD-seq approach 
as described above. This will allow us to construct single cell expression profiles of each of the mutated (or 
normal) cells individually, and consequently, to determine the effect each gRNA mutation will have on 
transcriptome-wide RNA expression.  We will run the CD-seq pipeline in a given cell line multiple times (to get 
100,000s of cells) to ensure reproducibility of the data. Consequently, we will be able to identify and correlate 
target genes with their respective enhancer regions more robustly than what current methods such as single 
validations using qPCR or RNA-seq, would provide.  More intriguingly, if the pooled gRNA version of CD-seq 
using the modified bead chemistry shown in Figure 13 (which we are obtaining through a collaboration with the 
oligo bead source company) is successful, it will open up the possibility of assaying thousands of enhancer 
mutations in a single experiment that can be run in a few hours by one investigator.  
 While we will rely on the high throughput candidate enhancer validation described in Aim 3.1 for the bulk 
of the work proposed in the Center, we feel that this will be well complemented by the CD-seq method, 
particularly due to its potential for developing into an ultra high throughput, low cost method for target element 
mutation that could be useful to other Centers in the consortium as well. 
  
3.2.2.CRISPR-DROP-seq (CD-seq) preliminary results:   

Figure 14 shows proof of concept of knocking down a transcription factor and our ability to measure 
its effects at a single transcriptome level. 
Here the transcription factor KLF4 is 
knocked down in MCF7 cells, followed by 
expression profiling using both 
conventional RNA-seq as well as Drop-
Seq. (A) shows the correlation between 
fold changes of a subset of genes 
calculated from RNA-seq (y-axis) or Drop-
seq (x-axis). (B) is a heatmap showing 
single cell expression levels of the same 
genes for 100 individual MCF7 knockdown 
and control cells.  These results 
demonstrate that CD-seq can recapitulate 
traditional assays using pooled cells from 
culture. 
 

Timeline: We will assay 5-10 candidate 
enhancers and 5-10 transcription factors (TFs) 
in ENCODE cell lines in year 1 to optimize the 
assay.  If results prove to be complementary on 
a “one at a time” basis, we will continue to assay 
5-10 candidate enhancers and TFs per year, 
switching to our PDAC and CAD models in year 
2 and future years.  Also in year 1 and 2 we test 
the gRNA pool approach with the modified bead 
chemistry. If this proves fruitful we will increase 
our focus on this assay in year 3-4, and 
decrease the focus on the high throughput 
assays in Aim 3.1. 
 
 
 

 
 

Figure 14. Drop-seq in cells with KLF4 transcription factor knock-
down (A) shows the correlation between fold changes of a subset 
of genes calculated from RNA-seq (y-axis) or Drop-seq (x-axis). 
(B) is a heatmap showing single cell expression levels of the 
same genes for 100 individual MCF7 knockdown and control 
cells. 

 



 

Aim 4:  Testing selected human enhancers in vivo 
Enhancers are known to specify temporal and cell-specific patterns of gene expression, in developmental, 
physiological and pathophysiological contexts. Thus, to investigate the authenticity of enhancers identified in the 
previous Aims in an in vivo setting, it is essential to evaluate their functional activity in the context of such model 
situations. The primary goals of these studies are to employ in vivo transgenic mouse methodology for validation 
of enhancer regions identified in the previous Aims, to determine if identified enhancers overlap with known 
disease variation, and to investigate if risk allelic variation in these enhancers alters the cellular or disease 
contextual expression. Transgene reporter studies have been widely used to evaluate transcriptional elements 
for their developmental and cell-specific direction of gene expression, and we anticipate that bona fide enhancers 
identified through these studies will promote reporter transgene expression in the proposed transgenic 
models(53, 101). However, in only a few cases have transgenic reporter genes been used to model allelic single 
base-pair differences in TF binding sites identified through investigation of mechanisms of complex disease 
associations(56). Nonetheless, this latter type of study is not dissimilar from published studies where mutations 
in transcriptional elements have been employed to identify precise base-pair sequences that constitute the active 
transcriptional element(102). The primary approach to investigate activity of identified enhancers will be the use 
of embryonic development as the expression model, while for enhancers that are identified at disease variation, 
we will also employ adult mouse models to investigate pancreatic cell-specific expression, and adult vascular 
cell expression as well as disease cell-specific expression in a moderate throughput atherosclerosis mouse.  
Despite the phenomenal progress in identifying genetic loci that harbor disease associated genes, for complex 
diseases such as cancers and cardiovascular disorders, there has been limited progress toward deciphering the 
genetic and molecular mechanisms by which causal variation regulates causal gene function. The majority of 
disease-associated variation has been found to reside outside of structural genes and presumed to regulate 
gene expression rather than encoded protein structure(81-83). Thus far, single nucleotide polymorphisms appear 
to be the type of variation that contribute the majority of risk(103), and in a small number of disease loci causal 
variants have been identified and their mechanism of effect studied. In these cases, the causal SNP has been 
shown to reside in enhancer regions and alter transcription factor binding and causal gene transcription(55-59, 
104-107). Currently, greater than 65 CAD variants have been replicated and another 200 variants associated at 
an FDR <0.05(108), and pancreatic disease associated variation is currently being identified through genome 
wide association and whole genome sequencing of patient samples(109-113). Each of these disease variants 
are expected to reside in enhancer regions that mediate critical disease associated pathways.  
 
4.1 Transgenic mouse developmental model: Embryogenesis is a highly stereotyped and complex cellular 
process that relies on numerous enhancer regions to activate expression of genes that are downstream of 
lineage determining signaling pathways. We thus anticipate that many of the enhancers identified through this 
work will promote cell-specific gene expression in the embryo. Interestingly, developmental and tissue-specific 
enhancer regions have been noted to harbor disease-associated causal variation, for CAD(47), type 2 diabetes 
mellitus(114) and various forms of cancer(56, 58).  

These mouse models will be generated in the Nobrega lab, which has tested over 300 candidate 
enhancer sequences using mouse and zebrafish in vivo reporter assays(53, 56, 115, 116). This lab has 
employed an array of differential applications including (i) testing human candidate enhancer sequences in 
transient transgenic mice at various embryonic and post-natal stages; (ii) utilizing ZFN, TALEN and, lately, 
CRISPR/Cas9 technologies to engineer enhancer deletions or enhancer editing, altering specific nucleotides 
within target enhancers; (iii) utilizing Bacterial Artificial Chromosomes (BACs) to generate humanized transgenic 
mice for in vivo reporter assays of gene regulatory landscapes, and (iv) engineering enhancer deletions or 
modifications in human BACs. We propose to capitalize on these applications of in vivo enhancer assaying in 
mice and test selected regions (20 per year) to validate enhancers identified by mapping approaches in Aims 2 
and 3.  

For these studies, we will employ a plasmid based "transient transgenic" approach whereby foster 
mothers will be sacrificed and transgenic embryos resulting from microinjected oocytes harvested at an early 
(E10.5) and mid-gestational (E13.5) developmental periods. The wholemount Xgal staining approach will be 
used as well as standard microscopy of sectioned tissues Xgal stained as a wholemount or stained on slides 
after sectioning. For pancreas development, at E10.5 the focus will be on the developing ventral pancreatic buds, 
which derive from the ventral foregut endoderm, at E13.5 the focus will be on epithelial cells that undergo a 
differentiation process and commit to the major pancreatic lineages.  



 

 Evaluation of SMC enhancers will be conducted in collaboration with the Quertermous lab, which has 
extensive experience evaluating transgene reporter expression in the developing vasculature(117-120), and 
specifically the use of this model as an assay for transcriptional regulatory elements(118, 119). At E10.5, 
development of the embryonic vascular plexus in the yolk sac and development of major vascular structures will 
be investigated, and at E13.5 embryonic expression in organ microvascular beds will be evaluated. Reporter 
gene expression will be scored for temporal and cell-specific patterns of expression. We can combine 
assessment of transgene expression with evaluation of cell-specific expression as determined by co-staining 
with antibodies to lineage-specific markers. 
 
4.2. Transgenic mouse atherosclerosis CAD model: One great promise of the work described in the 
preceding Aims for HCASMC is that enhancers will be identified that are perturbed by allelic variation that is 
causal for atherosclerotic coronary artery disease. SMC enhancers identified in Aims 2 and 3 that validate in the 
embryonic model and meet one of the following criteria will be further evaluated in a mouse model of 
atherosclerosis: (i) identified HCASMC enhancer region colocalizes with CAD causal variation as identified with 
ATAC-seq, histone modification, and in vitro functional studies, (ii) identified HCASMC enhancer region 
colocalizes in CAD locus at a mapped TCF21 binding site, and is thus likely part of the TCF21 directed CAD 
transcriptional network(95), (iii) enhancer function is specific for HCASMC grown under phenotypically 
modulated, disease-related, conditions. The gold standard for atherosclerosis research in the mouse is the 
hyperlipidemic model generated by deletion of the ApoE or the LDLR genes, and this lab has extensive 
experience employing these models to investigate the genetic role of human genes(121-124). However, for such 
studies the knockout alleles have to be combined with the reporter gene in the same mouse, requiring prolonged 
mating. For these studies, we will significantly increase the throughput for enhancer validation by generating 
adult transgenic animals and then initiating hypercholesterolemia by injecting adeno-associated virus (AAV) 
encoding the pathological human D374Y hypercholesterolemia gain-of-function mutant form of PCSK9 
(PCSK9(DY). AAV delivery to the liver of this mutant form of PCSK9 has been shown to produce sustained 
hypercholesterolemia and atherosclerosis comparable to the ApoE and LDLR knockout models (125).  
 These studies will be performed in the Nobrega lab, in collaboration with Snyder and Quertermous labs 

at Stanford. The transgenic constructs will be 
human BAC clones that have been recombineered 
to represent the risk and protective alleles at the at the disease associated variant(s) under study. This approach 
has been employed in the Nobrega lab to investigate the rs6801957 as a candidate causal SNP associated with 
ventricular arrhythmias as identified by GWAS. This SNP is within SCN10A, which had been postulated to be a 
gene mediating functional abnormalities in cardiac conduction. Utilizing 3D genomic interactions, epigenetic 
marks, and human BAC engineering, we demonstrated that (i) rs6801957 is indeed within a cardiac conduction 
enhancer, (ii) that this SNP leads to strong allele-specific enhancer activity, (iii) this enhancer regulates SCN5A, 
not SCN10A expression, and (iv) a humanized transgenic mouse harboring a 200KB human BAC recapitulates 
the allele-specific expression properties of this enhancer, underscoring the power of mouse in vivo 
experimentation for validation of genomic predictions (Fig. 15). Further, with a similar approach the Quertermous 
lab has validated that the protective and risk CAD enhancers at the SMAD3 locus(49, 50) have different 

A  rs6801957 (risk) B   rs6801957 (non-risk) 

C   WT BAC (rs6801957 risk) D (rs6801957 non-risk) 

Fig. 15. Mouse reporter assays identify allele-specific 
enhancer properties of rs6801957, a GWAS SNP 
associated with cardiac conduction system defects. 
Transient reporter assays show that the risk allele of 
rs6801957 defines a strong ventricular conduction 
system of SCN5A (A), and that the non-risk allele lacks 
enhancer activity (B). (C) A human BAC containing the 
SCN5A locus and regulatory landscape, including 
rs6801957 is converted into an enhancer-trapping 
system, resulting in myocardial and conduction system 
expression mimicking SCN5A endogenous expression. 
(D) Conversion of rs6801957 risk allele into non-risk by 
recombineering results in loss of conduction system 
enhancer activity, demonstrating, in vivo, the allele-
specific properties of this SNP in regulating SCN5A 
expression.   



 

embryonic expression patterns (Fig. 16). 
With this model, we will simultaneously 
utilize risk and protective human enhancer 
sequences to verify that the protective and 
risk alleles promote different cell-type 
specific and temporal patterns of 
expression. Transgenic mice will be 
developed as below, and will evaluate at 
least 4 enhancer allele pairs, with 5 lines 
generated with recombineered BAC 
constructs for each of the two alleles, as 
described below. We will evaluate and 
compare cell-specific expression of the 
lacZ reporter by Xgal assay done as 
wholemount and followed by tissue 
sectioning or performed on slides, as well 
as immunohistochemistry with the β-gal 
antibody to allow comparison to other 
cellular markers. As above, we can 
combine assessment of transgene 
expression with evaluation of cell-specific 
expression as determined by co-staining 
with antibodies to lineage-specific 
markers. Also, quantitation of reporter 
gene expression will be evaluated with 
qRT-PCR methods as we have done 
previously(122).  
 
4.3. Transgenic mouse pancreatic 
enhancers 
For pancreatic cancer-related enhancers, 
we will be primarily interested in the cell-
specific expression in adult pancreatic 
tissues. These studies will be non-
overlapping and complementary to the 
organoid model described in Aim 2, and 
they will provide in vivo correlation to the 
organoid culture model. We will test at 
least 4 enhancers per year, primarily 

focusing on those enhancers validated in Aims 2 and 3 and that also co-localize with pancreatic cancer 
mutational variation from whole genome sequencing (see Aim 1 Preliminary results). Both normal and mutated 
alleles will be modeled with BAC constructs, and at least 5 lines evaluated per construct, testing at least 4 
enhancer pairs per year.  

The pancreas as an organ is less well organized in mouse compared to humans, but pancreatic tissues 
can be readily identified in histology sections. The primary type of human pancreatic cancer is ductal 
adenocancarcinoma, and there is not a good model system for generating such cancers in mouse that would 
allow reasonable throughput. We will thus focus on identifying enhancers that drive reporter gene expression in 
ductal epithelial cells, and we will look for differences in cell-specific patterns of expression for the presumptive 
disease mutant alleles. With these studies we will specifically address whether STARR-seq and CRISPR-seq in 
organoids for the same enhancer predict relevant in vivo expression in disease-related cell types. Also, we 
anticipate validating pancreatic enhancers that are associated with disease mutational variation, testing to 
determine whether expression affected by normal and mutant alleles of enhancer candidates tested in Aims 2 
and 3 will also show differences in vivo using the mouse transgenic model. 

Fig. 16. In vivo assessment of risk C vs. protective T enhancer alleles 
at the SMAD3 locus for SNP rs17293632 in E15.5 mouse embryos. 
Blue arrows depict LacZ positive X-gal staining in (A) midgut loops for 
the T allele, (B) cells of neural tube roof plate for the C-allele, and 
cells of the ventricular zone of neural tube and dorsal root ganglion 
for the T-allele, (C) vascular cells of coronary vein in pericardium for 
the C-allele, and (D) neural cells of mantle layer for the C-allele and 
mesenchymal cells around medulla oblongata for the T-allele. Non-
transgenic littermate control embryos show negative X-gal staining in 
matched regions (right).  



 

4.4. Transgenic model generation: Mouse models will be generated in the Nobrega lab, employing 
methodology developed to study enhancers, including those enhancers that regulate embryonic development 
and complex human disease phenotypes (53, 56, 101, 116).  
 We will employ a plasmid based transgenic approach for the developmental model. Each candidate 
enhancer sequence will be cloned into an hsp68LacZ vector and transgenic mice generated and assayed for 
lacZ expression in E10.5 and E13.5 embryos . For each transgenic embryonic reporter construct, we will test 20 
enhancers per year, transfer 200 injected fertilized oocytes to 8-10 female mice, which will be used to assay for 
lacZ expression in transient transgenics. We require at least 3 consistent expression patterns in transient 
transgenic embryos per candidate sequence tested to call it an enhancer. We routinely get 10-15 transgenics 
per round of injections at the Nobrega lab. For detailed studies of disease disease-associated enhancer variation, 
we will employ a BAC-based transient transgenic assay. We will utilize a modified RED/ET homologous 
recombination in E. coli protocol to recombineer sequences within BACs, including LacZ reporter genes and/or 
modifications of enahncers within the BACs, such as enhancer deletions and allelic substitutions (Fig. 15, 16). 
For this approach, modified BAC DNA is extracted using Nucleobond AX Kit (Macherey-Nagel) and used for 
pronuclear injections of CD1 embryos in accordance with standard protocols approved by the University of 
Chicago.  
 Reporter gene expression patterns for both the developmental and atherosclerosis CAD models will be 
evaluated jointly by the Nobrega and Snyder / Quertermous labs at Stanford.  
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