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What is a transcriptional enhancer?
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There are various categories of noncoding regulatory elements.

Maston, Evans, Green, Ann Rev Hum Genet, 2006



The core promoter is required for basal transcription
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The pre-initiation complex (PIC) forms on the core promoter.
There are various different kinds of core promoters (and not all of them are
known/characterized).

Maston, Evans, Green, Ann Rev Hum Genet, 2006



How do you test the activity of an enhancer? - easy assay

Plasmids with region to be tested for activity and luciferase/GFP gene can
be used to test regions for enhancer activity



How do you test the activity of an enhancer? - harder assay
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Integrate the gene + probable enhancer into the genome and transcription
has to take place in genomic environment before it is tested.

Note that this can be done either in vivo or in culture.

) Suzuki and Suzuki, Viral Gene Therapy, 2011



How do you test the activity of an enhancer? - Transgenic
assay

ChIP-seq from tissues Comparative Analysis

Mouse Egg Microinjection E11.5 Reporter Staining

In Len’s assay the tested region is inserted into host DNA within the mouse
egg to ensure that the mouse embryo has this region as it grows - you get

a single assay to test for all tissues at a particular timepoint.
6 The VISTA enhancer browser



Artitacts from assays

Transfection Transduction
(plasmid) (integration)
Native Context No No
Chromatin Context No Typically present
Copy Number Artifact  Yes Can be avoided
In vivo Depends Depends
Integration bias No Yes
Core promoter Vos Probably

dependence

Transgenic
(Len)

No

Typically present

Can be avoided

Yes
Yes

Probably

————————————————————————————————————————-
Difficulty of assay increases

Confidence of assay increases 7



A number of massively parallel assays have been developed

in the last 5 years for testing enhancer activity

Technique

Plasmid/Chromatin

Length of element
tested

Elements

In-vitro transcription
(Shendure, Nat.
Biotech, 2009)

In-vitro (100K)

200 bp / 3-4 promoters

Effect of variants

MPRA (Tarjei, Nature
Biotech, 2012)

Transfection/ human
cells (40K) - RNAseq

87 bp / 2 enhancers

Effect of variants
(indels/subs)

MPFD (Shendure, Nat.
Methods, 2012)

Transfection/mouse
(100K)

1kb /3-4 enhancers

Effect of variants

eFS (Bulyk, Nat.
Methods, 2013)

Transduction/fly
1 clone per cell (500)

1 kb/ ChlP-seq of TF

Finding enhancers

STARR-Seq (Stark,
Science, 2013)

Transfection/fly (whole
genome - fly)

600 bp/whole genome

Finding enhancers

CRE-Seq (Cohen,
Genome Res, 2014)

Transfection/human
(2000 x 2)

132 bp/chromHMM and
Segway

Accuracy of predictions

FIREWAChH (Dailey,
Nature Methods, 2014)

Transduction/mouse
1 clone per cell (80K)

100-300bp/DNase

Finding enhancers

SIF-Seq (Pennacchio,
Nature Methods, 2014)

Transduction/mouse
1 clone per cell (500kb)

1-2 kKb/specific regions
of genome

Finding enhancers




MPRAS

None of these assays have worked on the whole genome for
mammalian cells so far (published studies).

Transduction > Transfection (chromatin context)



IMPACT-Seq - Immensely Parallel Assay using Cellular
Transduction - A new massively parallel assay for identifying

regulatory regions in the genome.

Minimal promoter + GFP
.-’FJ_:E':'. GFP gene

— :=:

l Transduce into hESC
using HIV vector

. (3 pools)
AP, a =
~ | N -
= | - -~ -
~ -
v} ,‘:,' ‘e A F""_ "( _‘—A 5" [} [} [ L] L]
™ e, S ultiplicity of infection = 3-5
N » - g —
5 - - VA% -
Sk, & ~ 4iiy <117,
- e L N i =
w3\ - ] A ;'1?!'1 - -
; 5v. s " ‘v
o ] L -~ - IS
a » - ¢

Fluorescéhce Activated
Cell-Sorting l Targeted

v % % sequencing
In collaboration with | | >

Richard Sutton Pool1  Pool2  Pool3




ImMPACT-Seq - identifying regulatory regions in the genome

Pool 1 Pool 2

Goal - to show that
most of these peaks
are real regulatory
regions!

25-33% of peaks within a pool are consistent with peaks
across all three pools.
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Subsample regions of
genome that are positive

Non-repetitive regions of genome

27 million fragments
2.5 kb +/- 250 bp length

Generate random fragments
Infect cells
Splitin to 3 pools
Error in FACS sorting = 15%
FACS sorting
PCR amplification
Error in sequencing = 1%

Simulate Reads
Identify common peaks

Simulate what we
think Is happening
IN the experiment



ImMPACT-Seq simulations can be used to identity what genome
we expect to be positive in assay
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About 0.6-0.7% of genome could be expected to come as positive in the assay.
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ImMPACT-Seq simulations can also be used to calculate the
expected precision and recall in the assay
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The FDR is expected to be <10% according to these simulations.
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IMPACT-Seq identifies regulatory elements that are close to a
number of active genes
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Fewer enhancers come out as positives in this assay might be due to :
a) Enhancers are weak promoters and may be more prone to be mistaken as

negatives in FACS sorting.
b) All enhancers might not function as promoters during this testing.
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IMPACT-Seq promoters and enhancers are closer to active
genes

| 1
P-value = 5.7e-24

log(Gene expression) (TPM)

promoters enhancers

Enhancers may not be regulating closest gene in a majority of cases.
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Sequence determinants for regulatory regions

E- Value
De novo Motifs (DREME) Motif Matches

2 SP/KLF family (SP1, SP2, KLF4, KLF5)
£ Ccc CCCC 1.4e-197 E2F family (E2F1, E2F3, E2F4, E2F6)
. EGR family (EGR1, EGR2)
GC box

SP/KLF family (SP1, SP2)

3-9e-111 ZNF263/MZF-1 family

1.9e-107 NRF1

E2F family (E2F1, E2F3, E2F4, E2F6)
SP/KLF family (KLF4, KLF5)

STAT (STAT1, STAT3)

ETS family (ELK1, ELK4, SPIB, GABPA)

AP2 family (TFAP2A, TFAP2C)
EBF1
Zfx

Helix-loop-helix family

(TCF3, TCF12, Myod1, Myog, Atoh1, NHLH1)
RFX5

CTCF

Known transcription factor binding motifs are enriched in
the identified regulatory regions.
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A larger number of activators are enriched in the regulatory
regions
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A lot more ENCODE2 ChlP-Seq peaks occur on promoters as
compared to enhancers
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Enhancers may be more heterogeneous and ENCODE2 ChIP-Seq datase
might have focused on the TRFs associated with promoters.
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The regulatory regions display significant
overlap with histone peaks
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No single histone mark is able to identify regulatory

regions in the genome
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No single histone mark is able to identify regulatory
regions in the genome
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Data types used to predict active enhancers -
Evolutionary Constraints and Motif Content

I(Egt;:;r;csis\é\l/ul\iter) - H|gh denSity Of TF
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Input multiple PWMs
(heterotypic cluster)

Evolutionary
conservation of TF
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Approximately 30-40% of noncoding sites under high
evolutionary pressure tested positive for enhancer activity.

Problems with this Approach:

Cannot predict tissue specificity.
A number of conserved elements serve alternate functions.
All enhancers may not be under very high evolutionary pressure.

Siggia, Curr Opin Genet Devel, 2005.

23 Pennachio, et al., Nature, 2006.



Data types used to predict active enhancers -
Epigenetic datasets (Open chromatin and Histone Modification)

H3K27ac ChlIP-seq (normalized enrichment)
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Approximately 67% of “dynamic” H3K27ac peaks tested
positive for enhancer activity.

Problems with this Approach:

No single histone modification or combination of histone modifications have been

associated with all enhancers. Nord, et al., Cell. 2013.
Rajagopal, et al., PLoS CB, 2012.

24 Ernst and Kellis, Nature Methods, 2012.



Data types used to predict active enhancers -

TRF binding signals

< = e p300

TRF binding peaks

Large cluster of TF binding (ChIP-Seq) Related approach: p300/Cbp binding peaks

Approximately 58-82% of p300 peaks tested positive for
enhancer activity.

Problems with this Approach:
A large number of experiments required.

Difficult to distinguish between functional and passive TF binding.
Yip, et al., Genome Biology, 2012.
25 Visel, et al., Nature, 2009.



Data types used to predict active enhancers -
Bidirectional nonpolyadenylated CAGE peaks (eRNA)

bi-directional CAGE
peaks are present
near some enhancers

ribed ENCODE
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Approximately 75% of predicted enhancers in the vicinity of
bidirectional CAGE peaks tested positive for enhancer activity.

Problems with this Approach:

Not sure if all active enhancers can be found using this approach.
May not be able to distinguish from random transcription.

26 FANTOM consortium, Nature, 2014.



STARR-seq is a massively parallel NGS assay that utilizes
transduction to identify enhancers on a genome-wide scale

arbitrary source of
input DNA

~ | STARR-seq .-
"\ library
-

clone library transfect cells Isolate HNA sequence/analyze

STARR-seq was developed in flies and translating it to whole genome for
mammalian cells has been challenging.

Stark, Science, 2013

2f Muerdter et al, Genomics, 2015



Both active and poised enhancers can come positive in this
assay

STARR-seq H3K27ac H3K4me1 H3K27me3
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Stark, Science, 2013



Can we use these epigenetic underpinnings to predict
enhancers in a tissue-specific manner?

29



MPRASs can be used to learn the signal shape in different epigenetic

marks at active regulatory regions of the genome
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We can roughly split the chromatin marks by their metaprotiles
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There is variability in the histone modification profiles
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The distance between the two maxima can vary between 300-1100 bp.
On average, the two profiles are pretty symmetric.
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Signal processing approach for predicting active
regulatory regions

1

0 4 8 12 16 20

33 A Sethi,.., and Gerstein, In Preparation.



The histone marks can be used to predict occurrence of
regulatory regions

A) B)
Receiver Operating Characteristic Precision-Recall Curve AUROC | AUPR
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The Matched filter for each histone mark lead to accurate
prediction of enhancer regions.
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Good separation for each feature
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H3K4me1 and H3K4me3 alone displays two Gaussians among positives
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H3K9ac

Gaussians can fit most matched filter scores for most features
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AUROC/AUPR - Comparison to peaks

Receiver Operating Characteristic
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Feature

H3K27ac |0.92 (0.83)] 0.72 (0.63
H3K4me1 |0.80 (0.72)] 0.46 (0.39

( (0.63)

( (0.39) The matched filters do better
H3K4me2 |0.87 (0.75)] 0.41 (0.34)

( (0.28)

( (0.39)

( (0.67)

than individual peaks
(except for DHS).

H3K4me3 |0.73
H3K9ac ]0.89 (0.77)] 0.52 (0.39

DHS 0.86 (0.77)] 0.58 (0.67

0.64)] 0.32 (0.28
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The matched filter scores can be combined to make even
more accurate models.

Receiver Operating Characteristic 10 Precision-Recall Curve AUROC | AUPR
1.0 P ' L, > ey,

’ = Random
0 8l'/ Forest

Linear
SVM
- Ridge
Regression

o

.6

Precision

O
]
©
nd
)
=
=
/0]
@)
al
)
>
e
|_

Gaussian

04 06 08 0. . 04 06 _ _ Naive Bayes

False Positive Rate Recall

Nalve Bayes does not work that well.
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The core promoter used in the assay can influence the
enhancers that come up active in the assay.

STARR-seq construct

PN

ORF
~..  Enhancer

~

T

b

CG33937 ==

CGB3936 msmmimimsinsoe e -

" ORF | AAAAA
hkCP P = +
TCT
or

N P S
TATA box MTE DPE

Inr

1,822
4,134 (32%) 3,586

hkCP S2
STARR-seq

dCP S2
STARR-seq

d

Fold change
<2x hkCP and dCP

8 2Xx—4x hkCP = 2x—4x dCP
8 >4x hkCP s >4x dCP

N

dCP S2 STARR-seq
enrichment (log,)

hkCP S2 STARR-seq
enrichment (log,)

39

CG18473 mm
CG8129 e

FDSB5D =Ml --r-sreeee e e

#CG34117
Or85fmHi mm CGO356
CG8135 =+
CG8132 =
#RplL34b

hkCP S2 STARR-seq

dCP S2 STARR-seq

hkCP S2 STARR-seq

| S — —|

Enr. rep1 (log,)
dCP S2 STARR-seq

Enr. rep1 (log,)

_ _ =

e Luciferase construct =Por P

Enhancer
candidate

B hkCP luciferase M dCP luciferase

1004 51/24 10/12 6/7 6/7

N b OO ®
O O O o

Per cent positive
per tested




1.0

o o
o 00

=
O

True Positive Rate
()

O.%

1.0

O
o

©
N

True Positive Rate

© o
oo N

20

©
o

.0 0.2

Combining across different core promoters

Receiver Operating Characteristic

- —

0.2 0.4 0.6 0.8 1.0

False Positive Rate

.0

Receiver Operating Characteristic

YT Y A YO 3y
e —— Qe e —

¥

0.4 0.6 08 1.0

False Positive Rate

B) C)
Precision-Recall Curve Feature | AUROC | AUPR
1.0 _l"“"‘-‘,,_."k
ﬁ‘wf;“—‘ ‘ — H3k27ac| 095 | 0.89
0.8 ]
- — H3K4me1 0.70 0.56
206
g H3K4me?2 0.90 0.73
£ 04 H3k4me3 | 0.82 0.71
0.2 — H3K9ac 0.92 0.82
0.0 DHS 0.88 0.79
0.0 0.2 0.4 0.6 0.8 1.0
Recall
- Precision-Recall Curve Model | AUROC | AUPR
1.07% = das . Random
X 0.96 0.91
08 Iljorest
- inear
506 SUM 0.96 0.91
2 |
® 54 . Ridge
x Regression 0.95 0.90
0.2 Gaussian
: 0.95 0.89
0.0 Naive Bayes
0.0 0.2 04 0.6 0.8 1.0
Recall




41

Feature AUROC AUPR
H3K27ac 0.95 0.90
H3K4mef1 0.70 0.59
H3K4me2 0.91 0.79
H3K4me3 0.84 0.76

H3K9ac 0.92 0.85
H4K12ac 0.92 0.86

H3 0.80 0.70
H1 0.88 0.81
H2BK5ac 0.94 0.90

H4K8ac 0.88 0.79

H4K5ac 0.87 0.79
H4K16ac 0.89 0.72
H3K18ac 0.90 0.84
H3K9me1 0.71 0.61

H3K79me2 0.79 0.58
H4K27me?2 0.81 0.68
H2Av 0.66 0.57
H3K27me3 0.83 0.64
H3K23ac 0.66 0.46
H3K79me3 0.70 0.51
H3K27me1 0.64 0.43
H4 0.67 0.49
H3K36me1 0.54 0.41
H3K9me3 0.59 0.42
H3K9me2 0.60 0.41
H3K36me3 0.57 0.38
H4K20me1 0.47 0.31
H3K79me1 0.47 0.30

Acetylations tend to
be the strongest
marks for active

regulatory regions

Combining all the marks
can lead to slightly
higher accuracy
(AUROC=0.97 and
AUPR=0.93)
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Are there real ditfferences between proximal and distal
regulatory elements”

5420
< +/- 1kb V \>+/- 1kb TSS
3576 1844

proximal distal
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The chromatin marks are better for proximal regulatory

elements

Proximal Regulatory Regions

Feature/Model |AUROC | AUPR

1.0 1.0|
o WA PP — H3K27ac 0.96 0.71
©0.8 L — H3K4me1 0.59 0.16

O 8 V e

' ' T 9 H3K4me2 0.92 0.49
_02) 0.6 _5 0.6 H3K4me3 0.93 0.64
= e ’ — H3K9ac 0.95 0.69
5 0.4 ® 04 DHS 0.89 0.59
) - Random Forest 0.97 0.78
Ig 0.2 0.2 \ Linear SVM 0.97 0.78
0.0 — - . Ridge Regression 0.97 0.78
00 02 04 06 08 10 OQ4 45 94 06 08 10 Naive Bayes 0.97 0.79

False Positive Rate
Distal Regulatory Regions

Recall

1.0 1.0 1’}'/1":"\.‘
= 0.8 UL
Q] )
0.8 _

(@)

Sos S 06
2 3
s 0.4 s 04
(]
- 0.2
= 0.2

0.0 0.

00 02 04 06 08 1.0 % 02 04 06

False Positive Rate Recall

Feature/Model |AUROC | AUPR

— H3K27ac 0.92 0.55

— H3K4me1 0.90 0.36

H3K4me?2 0.85 0.15

H3K4me3 0.63 0.06

— H3K9ac 0.87 0.19

DHS 0.83 0.28

Random Forest 0.95 0.66

Linear SVM 0.94 0.66

- . Ridge Regression 0.94 0.65

0.8 1?0 Naive Bayes 0.92 0.54

Same machine learning models with all features - AUPR goes to 0.73
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Marks and differences between promoters and enhancers

Promoters
H3K4me H3K4me3 H2 Ay

Enhancers contain unimodal distributions on H3K4me1, H3K4me3, and H2Av.
Promoters might still contain a few elements that are more “enhancer-like”.
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How conserved are these metaprofiles?
Can we use these machine learning models across tissues
and species?
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Ditferent cell-lines features histograms

H3K27ac H3K27ac

50
Matched FiltenScore Matched Filter Score

Notice the difference in distribution of scores
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Matched filters can be used to predict enhancers across
tissues and cell-lines

BG3-based models on S2 (proximal regulatory regions)
1.0 =

Feature/Model

— H3K27ac

— H3K4me1
H3K4me2
H3K4me3

— H3K9ac
Random Forest

True Positive Rate
Precision

o o

0 02 0.4 0.6 08 1.0

False Positive Rate

0.4 0.6
Recall

BG3-based models on S2 (distal regulatory regions)

1.0

Linear SVM
- Ridge Regression
Naive Bayes

Feature/Model

— H3K27ac
— H3K4me1
H3K4me2
H3K4me3

O

True Positive Rate
Precision

o O

04 0.6
Recall

0 02 0.4 0.6 0.8

False Positive Rate

Histone enrichment profiles are conserved across regulatory elements from different cell-lines

and tissues.

— H3K9ac
Random Forest

Linear SVM
- Ridge Regression
Naive Bayes




FIREWAChH study design - massively parallel enhancer assay

—nhancer candidates chosen based on open
DNA in cell-line (murine ESC).

ntegrated into virus particles close to a
minimal promoter and GFP.

Integrated into genome randomly with 1
clone per cell (H1-hESC).

One potential enhancer of length 100-300 bp
per cell.

FACS to sort cells expressing GFP.

Small population of cells show positive
enhancer activity.

Amplified positive enhancer seqguences with
PCR using primers recognizing the flanking
seguences.

Tested enhancer activity using traditional
assays.
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Conservation of histone modification profile across species

S2-based models on mESC14 (proximal regulatory regions)

PR Plot

Feature/Model

— H3K27ac
— H3K4me1

H3K4me3
— H3K9ac
DHS
Random Forest
Linear SVM
- Ridge Regression
Naive Bayes

Precision

o
~

o
~

I
)

True Positive Rate

o o
o N

.0 0.2 04 0.6 0.8 1.0 O _ os 06
False Positive Rate Recall

S2-based models on mESC14 (distal regulatory regions)

10 Feature/Model

— H3K27ac
— H3K4me1

H3K4me3
— H3K9ac

DHS

Random Forest

Linear SVM

- Ridge Regression
0 0.2 0.4 0.6 0.8 1.0 Naive Bayes
False Positive Rate

True Positive Rate
© o o
AN (@)) oo

© o
co N

The models from fly work in mouse though there is reduction in AUPR -
especially for enhancers!




Why does mouse have lower AUPR than fly with these
models?

Mammalian genomes may have more types (or more complex regulation) of core
promoters than fly (we know from fly that AUPR goes up when you include
enhancers from multiple core promoters).

These assays have low dynamic range and many enhancers are labeled as false
positives even though they may be true positives (bigger problem in mammals
which have larger genomes and more negatives).

A larger proportion of enhancers in mammals might not display functionality in non-
native context.

These histone marks may have evolved new functional roles in mammals.
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Applying matched filter for whole genome prediction

43463 predictions
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|[deally, | would follow this up with some experimental
validation.
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Gene expression - regulatory regions
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——P-value = 1.57e-118
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Predicted regulatory regions intersect with a number of
ENCODE2 ChlP-Seq peaks

Repressors

955

|dentification of promoter/enhancer-associated TRFs.
Enhancers seem to be much more heterogeneous



Matched Filter v SuttonSeq
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ImMPACT-seq
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because it

ImMPACT-seq
T-seq peaks

of ImMPAC
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Enhancers found using IMPACT-seq are also diverse in terms of TRF binding.

EZH2 and SUZ12 are repressors that are found in a number

also finds poised enhancers.




My attempt at trying to understand TF co-binding

Promoters Enhancers
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Contains very few binding sites - mostly the

HOT regions.




Matched Filter v IMPACT-seq - The battle of the ChlP-Seo
peaks

Matched Filter Predictions IMPACT-seq

Number of TF ChlP-seq peaks
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Overall, the number of ChlP-Seq peaks per prediction is slightly higher
than that identified in the experiment.
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Conclusions

Our collaborators developed a new method to identify regulatory
regions.

We showed that these regions could function as regulatory regions
based on their properties.

We developed a new method to predict regulatory activators that
utilizes information in the shape of chromatin data.

The enhancers coincided with TFBS and we were able to identify a few
promoter-associated TFs.

The enhancers tended to occur closer to active genes (maybe add 3d
context to this sentence).
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