
 1 

DREISS: Using state-space models to infer the dynamics of gene 

expression driven by external and internal regulatory networks 
Daifeng Wang1,2, Fei He4, Sergei Maslov4, Mark Gerstein1,2,3* 
1Program in Computational Biology and Bioinformatics; 2Department of Molecular Biophysics and Bio-

chemistry; 3Department of Computer Science, Yale University, New Haven, CT, USA. 4Biological, En-

vironmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA. 

*Correspondence to: mark@gersteinlab.org 
 
ABSTRACT 

Gene expression is controlled by the combinatorial effects of regulatory factors from different biological 

subsystems such as general transcription factors, cellular growth factors and microRNAs. A subsys-

tem’s gene expression may be controlled by its internal regulatory factors, exclusively, or by external 

subsystems, or by both. It is thus useful to distinguish the degree to which a subsystem is regulated 

internally or externally – e.g., how species-specific regulatory factors affect the expression of conserved 

genes during evolution.  

     We developed a computational method (DREISS) for dynamics of gene expression driven by exter-

nal and internal regulatory programs based on state space models to help dissect the effects of differ-

ent regulatory subsystems on gene expression (dreiss.gersteinlab.org). Given a subsystem, the “state” 

and “control” in the model refer to its own (internal) and another subsystem’s (external) gene expres-

sion levels. The state at a given time is determined by the state and control at a previous time. Because 

typical time-series data do not have enough samples to estimate the model’s parameters, DREISS uses 

dimensionality reduction, and identifies canonical temporal expression trajectories (e.g., degradation, 

growth and oscillation) representing the regulatory effects coming from various subsystems.  

    To demonstrate capabilities of DREISS, we study the regulatory effects of evolutionarily conserved 

vs. divergent transcription factors across distant species. In particular, we applied DREISS to the time-

series gene expression datasets of C. elegans and D. melanogaster during their embryonic develop-

ment. We analyzed the expression dynamics of the conserved, orthologous genes (orthologs), seeing 

the degree to which these can be accounted for by orthologous (internal) versus species-specific (ex-

ternal) transcription factors (TFs). We found that between two species, the orthologs have matched in-

ternally driven dynamic expression patterns but very different externally driven patterns. This is particu-
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larly true for genes with evolutionarily ancient functions (e.g. the ribosomal proteins), in contrast to 

those with more recently evolved functions (e.g., cell-cell communication). This suggests that despite 

striking morphological differences, some fundamental embryonic-developmental processes are still con-

trolled by ancient regulatory systems. 

 

AUTHOR SUMMARY 

The dynamics of a biological system can be controlled by its own internal mechanisms and external 

perturbations. To gain intuition on this, we may draw a comparison with a mass hanging from a spring. 

The mass will move naturally by itself but its dynamics is also affected by one’s pulling it. That is, the 

dynamics of the mass is governed by the effect of the external perturbations superimposed on the in-

ternal mechanism of the spring (i.e. Hooke’s law). Similarly, given a group of genes, their temporal gene 

expression dynamics can be controlled by both transcription factors inside the group and external regu-

latory factors. Therefore, it is useful to identify the expression dynamics that are exclusively controlled 

by internal or external factors and compare them across various systems. While state-space models 

have been widely used to decouple the internal and external effects in physical systems, such as the 

mass and spring, typical biological systems do not have enough time samples to infer all the model’s 

parameters, and applications of state-space models have not very effective in these instances. Hence, 

we developed a general-purpose computational method by integrating state-space models and dimen-

sionality reduction to identify temporal gene expression patterns driven by internal and external regula-

tory networks. We applied our method to the embryonic developmental datasets in the worm and fly 

(and also in a human cancer context). We successfully identified the temporal expression dynamics of 

cross-species conserved genes that were driven by conserved and species-specific regulatory net-

works. 

1 INTRODUCTION  
Gene regulatory networks systematically control the gene expression dynamics. These networks are 

highly modular, and consist of various sub-networks. Each sub-network contains a number of regulatory 

factors representing a subsystem that drives specific gene regulatory functions [1,2]. The subsystems 

interact with one another, and work together to carry out the entire gene regulatory function. For exam-

ple, the gene expression in embryogenesis is controlled by the combinatorial effects of various regulato-

ry subsystems composed of complex evolutionary regulatory networks [3]. These regulatory subsystems 
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drive very diverse developmental programs, from the highly conserved (e.g. DNA replication) to the 

species-specific (e.g. body segmentation). As such the orthologous genes that are evolutionary con-

served genes across species can therefore be regulated by both orthologous and species-specific tran-

scription factors (TFs) [4]. The orthologous TFs form an “internal” regulatory network, while the spe-

cies-specific TFs form an “external” one. Unfortunately, existing experimental gene expression data 

cannot decouple the expression components that are driven by the different subsystems. Thus, computa-

tional methods are required to assess the contribution from each factor or subsystem from the gene ex-

pression data. In this study, we propose a novel computational method, DREISS - dynamics of gene ex-

pression driven by external and internal regulatory networks based on state space model. Using 

DREISS, we are able to identify temporal gene expression dynamic patterns for evolutionarily con-

served genes during embryonic development, as driven by conserved and species-specific regulatory 

subsystems. These results advance our current understanding of gene regulatory networks during evolu-

tion, as well as the differentiation during development. 

 

Developmental gene regulatory networks control gene expression during the developmental processes. 

These particular regulatory networks have evolved, making it difficult to understand their regulatory 

mechanisms at the system level. Hence, one typically compares developmental gene expression across 

species to infer biological activities of developmental gene regulatory networks. For example, embryo-

genesis provides a platform to study the evolution of gene expression between different species. Recent 

work has showed that significant biological insight can be gained by cross-species comparisons of the 

expression profiles during embryogenesis for worms [5], flies [6], frogs [7] and several other vertebrates 

[8]. It was found that the orthologous genes have minimal temporal expression divergence during the 

phylotypic stage, a middle phase during the embryonic development across species within the same phy-

lum. These patterns are often characterized as “hourglass” [9]. In addition, the conserved hourglass pat-

terns were observed even within a single species while comparing the developmental gene expression 

data across distant species, such as worm and fly [10]; i.e., the expression divergence among evolution-

arily conserved genes become minimal during the phylotypic stage in both worm and fly. However, 

much less is known about how the orthologous genes in each species eventually contribute to their spe-

cies-specific phenotypes due to the lack of appropriate computational approaches. Thus, we aim to use 

DREISS to discover the components of the orthologous gene expression during embryonic development 

driven by species-specific transcription factors.  
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The state-space model has been widely used in engineering [11], and also in biology for the analysis of 

gene expression dynamics [12-14]. It models the dynamical system output as a function of both the cur-

rent internal system state and the external input signal. A commonly used example in engineering is the 

vehicle cruise control system where the system state can be the vehicle’s speed. Based on the road con-

ditions, the cruise control requires various fuel amounts in order to keep the desired speed level. In biol-

ogy, we can look at the transcription factors and microRNAs as internal and respectively external regu-

latory factors of the protein-coding genes expression (See more internal-external examples in Supple-

mental Table 1). Similarly, the state-space model can be applied for studying the expression of ortholo-

gous genes at different developmental stages using information regarding their expression (internal) and 

species-specific regulatory factors (external) at the current known developmental stage. Unlike earlier 

studies that calculate the expression correlation between individual genes, the state-space model predicts 

the temporal causal relationships at the system level; i.e., the state at a time is determined by the state 

and external input at the previous time. The earlier work applied the state-space model to study the gene 

expression dynamics focusing on small-scale systems, and did not explore the analytic dynamic charac-

teristics of the inferred state-space models. The complex and large-scale biological datasets, especially 

temporal gene expression data, are very noisy, and high dimensional (i.e., the number of genes is much 

greater than the number of time samples), thereby preventing an accurate estimation of the state-space 

model’s parameters. The dimensionality reduction techniques have thus been used to project high-

dimensional genes to low-dimensional meta-genes (i.e., the selected features representing de-noised and 

systematic expression patterns [1,15,16]) as well as the principal dynamic patterns for those meta-genes 

[17,18]. Using DREISS, we are able to apply the dimensionality reduction to the gene expression data, 

and develop an effective state-space model for their meta-genes, and then identify a group of canonical 

temporal expression trajectories representing the dynamic patterns driven by the effective conserved and 

species-specific meta-gene regulatory networks according to the model’s analytic characteristics. These 

dynamic patterns reveal temporal gene expression components that are controlled by conserved or spe-

cies-specific GRNs. 

 

DREISS is a general-purpose tool and can be used to study the gene regulatory effects from any differ-

ent subsystems for a given group of genes. As an illustration, we applied DREISS to the gene expression 

data during embryonic development for two model organisms, worm (Caenorhabditis elegans) and fly 
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(Drosophila melanogaster). In both species, we were able to identify the expression patterns of worm-

fly orthologs driven by the conserved regulatory network consisting of the worm-fly orthologous TFs 

(i.e., the conserved regulatory subsystems between two species), as well as the worm/fly-specific regula-

tory network consisting of non-orthologous TFs (i.e., the species-specific regulatory subsystem). Our 

results reveal that, in addition to executing conserved developmental functions between worm and fly, 

their orthologous genes are also regulated by species-specific TFs to involve in species-specific devel-

opmental processes. In summary, DRIESS provides a framework to analyze both distantly and closely 

related species allowing for a better understanding of the gene regulatory mechanisms during develop-

ment.  

2 METHODS 
DREISS consists of five major steps as detailed in Figure 1:  

Step A: DREISS models temporal gene expression dynamics using state-space models in control theory. 

In this step, we need to define the internal and external groups of genes and input their time-series gene 

expression data that we are interested to study. We assume that the time-series gene expression data fits 

a state-space module. In the state-space model, the “state” refers to the expressions for a large group of 

genes of interest, such as the worm-fly orthologous genes investigated here. The “control” refers to any 

other group of genes that contribute to the gene expression of the “state”, such as the species-specific 

TFs contributed to control orthologous gene expression.  

Step B: Due to the limited number of temporal samples in gene expression experiments, we do not have 

enough data to accurately estimate the parameters of the state-space models that capture interactions 

among hundreds of genes. Therefore, DREISS projects high-dimensional gene expression space to low-

er-dimensional meta-gene expression spaces using dimensionality reduction techniques.  

Step C: DREISS derives the effective state-space models for meta-genes so that model parameters can 

be estimated.  

Step D: DREISS identifies the meta-gene expression dynamic patterns; i.e., canonical temporal expres-

sion trajectories driven by “state” (internal) and by “control” (external) based on the analytic solutions of 

the estimated models.  

Step E: Finally, DREISS calculates the gene coefficients over canonical temporal expression trajectories 

based on linear transformations between genes and meta-genes. DREISS also allows us to compare the 
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dynamic expression patterns of multiple datasets with samples taken at different times. We describe each 

DREISS step in detail as follows. 

2.1 State-space models for temporal gene expression dynamics 

A gene regulatory network is made up of various subsystems [1,2]. These subsystems work together to 

execute regulatory functions. Given a group of N1 genes in a subsystem, defined as the internal gene set, 

Ω, their gene expression levels are not only controlled by internal interactions among Ω, but also affect-

ed by the regulatory factors from other subsystems outside Ω. We define an external gene set, Ψ consist-

ing of those external regulatory factors. For example, we consider the worm-fly orthologous genes as 

internal set Ω. The worm-fly orthologous TFs from internal set Ω are the internal regulatory factors, and 

non-orthologous TFs such as worm- or fly- specific TFs are the external regulatory factors. Both the in-

ternal and external regulatory factors control gene expressions in dynamic ways (i.e., their regulatory 

signals at the current time will affect gene expressions at subsequent times). Thus, the regulatory mech-

anisms for the gene expressions form a control system. In this study, we used a state-space model (de-

fined by linear first-order difference equations, Figure 2A) to formulate temporal gene expression dy-

namics for internal set Ω (comprising N1 genes) with external regulation parameters from external set Ψ 

(comprising N2 genes) at time points 1, 2, … , T as follows: 

Xt+1 = AXt +BUt     (1) 

, where the vector Xt ∈ℜN1×1  , the “state”, includes N1 gene expression levels at time t in Ω, and the 

vector Ut ∈ℜN2×1  , the “input or control”, includes N2 gene expression levels at time t in Ψ. The system 

matrix A ∈ℜN1×N1  captures internal causal interactions among genes in Ω (i.e., the ith, jth element of A, 

Aij describes the contribution from the jth gene expression at time t to the ith gene expression at the next 

time t+1), which instantiates a gene regulatory network. The control matrix B ∈ℜN1×N2  captures external 

causal regulations from the genes in Ψ to genes in Ω (i.e., the ith, jth element of B, Bij describes the con-

tribution from the jth gene expression in Ψ at time t to the ith gene expression in Ω at the next time t+1). 

ℜ represents the real number domain. According to the state space model (1), the gene expression dy-

namics in Ω is determined by the system matrix A and the control matrix B.  

2.2 Dimensionality reduction from genes to meta-genes 

The temporal gene expression experiments normally have limited time samples (for example, there may 

only be a dozen time points), which are far less than the time samples needed to estimate the large ma-
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trices A and B when internal and external groups, Ω and Ψ are composed of hundreds or thousands of 

genes. One way to deal with lack of time samples is dimensionality reduction. Thus, we project high di-

mensional temporal gene expressions to much lower dimensional meta-gene expression levels using a 

dimensionality reduction technique (Figure 2B). Those meta-gene expression levels should capture orig-

inal gene expression patterns, such as the ones having the greatest degree of co-variation. We calculate 

the meta-gene expression levels as follows: 

!! =!!
∗!!;!! =!!

∗!! (2) 

, where !Xt ∈ℜM1×1 , the “meta-gene state” at time t, includes M1 (<< N1 and <T) meta-gene expression 

levels; i.e., the first M1 elements of the tth row of the matrix whose columns are right-singular vectors of 

the matrix X1X2...XT[ ]  in Ω by the singular value decomposition (SVD) [19]; the vector !Ut ∈ℜM2×1  , 

the “meta-gene input or control” at time t, includes M2 (<< N2 and <T) meta-gene expression levels; i.e., 

the first M2 elements of the tth row of the matrix whose columns are right-singular vectors from SVD of 

the matrix U1U2...UT[ ]  in Ψ; WX ∈ℜN1×M1 is the linear projection matrix of SVD from M1 meta-gene 

expression space to N1 gene expression space in Ω, WU ∈ℜN2×M2  is the linear projection matrix of SVD 

from M2 meta-gene expression space to N2 gene expression space in Ψ, and (.)* is a pseudo-inverse op-

eration; i.e., W*W=I, where I is the identity matrix.  

2.3 Estimation of effective state-space model for meta-gene expression dynamics 

Next, we obtain the effective state-space model for meta-genes using linear projections WX and WU be-

tween genes and meta-genes as follows (Figure 2C). By replacing (1) using (2), we obtain that 

WX
!Xt+1 = AWX

!Xt +BWU
!Ut  .   (3) 

After multiplying the pseudo-inverse of WX, WX
* ∈ℜM1×N1  s.t. WX

*WX = I  where I is an identity matrix, at 

both sides of (3), we have that 
!Xt+1 =WX

*AWX
!A

"#$ %$
!Xt +WX

*BWU
!B

"#$ %$
!Ut ⇒ !Xt+1 = !A !Xt + !B !Ut     (4) 

, where the effective meta-gene system matrix !A =WX
*AWX ∈ℜM1×M1  captures internal causal interac-

tions among meta-genes in Ω (i.e., an element of !A , !Aij  describes the contribution from the jth meta-

gene expression at time t to ith meta-gene expression at time t+1), and the effective control matrix 
!B =WX

*BWU ∈ℜM1×M2  captures external causal regulations from meta-genes of Ψ to meta-genes of Ω 



 

8!

(i.e., the ith, jth element of !B , !Bij describes the contribution from the jth meta-gene expression in Ψ at 

time t to ith meta-gene expression in Ω at time t+1). Equation (4) describes the effective state space mod-

el for the meta-genes of Ω, whose expression dynamics is determined by !A and !B . Because the meta-

gene dimension, M1 (M2) is less than T, and much less than N1 (N2), we can estimate !A and !B  as follows. 

 
We rewrite Equation (4) as a matrix product on the right side: 

!Xt+1 = !A !Xt + !B !Ut = !A !B!
"#

$
%&

!Xt

!Ut

!

"

#
#

$

%

&
&

.                           (5) 

By applying Equation (5) to time points, 2,3, … , T, we then obtain that 

!X2 !X3 " !XT

!

"
#

$

%
&

Ζ
! "#### $####

= !A !B!
"#

$
%&

!X1 !X2 " !XT−1

!U1
!U2 " !UT−1

"

#

$
$
$
$

%

&

'
'
'
'

ϒ
! "##### $#####

           (6) 

, where Ζ ∈ℜM1×(T−1)   and  ϒ ∈ℜ(M1+M2 )×(T−1) . 

Because of dimension reduction, has more columns than rows so that it has right pseudo-inverse. Thus, 

the effective internal system matrix !A  and external control matrix !B can be estimated by: 

!A !B!
"#

$
%&
= Ζϒ*

                    (7) 

, where ϒ* ∈ℜ(T−1)×(M1+M2 )  is the right pseudo-inverse of ϒ ; i.e.

ϒϒ* = I,  with M1 < N1,M2 < N2,M1 +M2 < T, t =1, 2,...,T.  It is worth noting that if we do not reduce the 

dimensionality, and obtain Equation (6) from Equation (4), then will have much more rows than col-

umns so that it doesn’t have right pseudo-inverse; i.e.,  there doesn’t exist a matrix ϒ*  such that ϒϒ
*  is a 

full-rank identify matrix. In addition, the condition of M1+M2<T also makes ϒϒ*  is a full-rank identify 

matrix. 

2.4 Identification of internally and externally driven principal dynamic expression 

patterns of meta-genes (canonical temporal expression trajectories) 

The analytic solution to a general first-order linear matrix difference equation [20], Qt+1=CQt is  

ϒ

ϒ
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Qt=CtQ0=(HEH-1) t Q0=HEtH-1Q0=HEtS, where the columns of the matrix H are eigenvectors of C, the 

diagonal elements of the diagonal matrix E are eigenvalues of C such that CH=HE, and the vector  

S= H-1Q0. Then, if we rewrite Qt by a linear combination of the time exponential of eigenvalues of C, we 

have that !! = !!!! = !!!!!!! = !!!!!!!
!!!

!!
!!! , where mc is the total number of eigenvalues of C, αi 

is the ith eigenvalue of C, si is the ith element of S, Hi is the ith eigenvector of C (i.e., the ith column of H), 

and Ki=siHi is the coefficient vector of Qt over the tth time exponential of αi. 

 

From Equation (4), the internally driven components of meta-gene states at two adjacent time points 

have !!!!!"# = !!!!"# ∈ ℜ!!×!. According to the above analytic solution, the components of meta-gene 

expressions in Ω driven by effective internal regulations are linear combinations of M1 dynamic patterns 

determined by the eigenvalues of the effective system matrix !A  as follows: 

!!!"# = !!!!!!!
!!! ; i.e., the internally driven component of ith meta-gene’s expression across all time 

points,  !!!"#(!) !!!"#(!) … !!!"#(!) = !! ! !!! !!! … !!!
!!"!!"#"

!!
!!!                (8) 

, where !!!and !! ∈ ℂ!!×! are the pth eigenvalue of !!and its coefficient vector from the analytic solu-

tion, which determines the pth dynamic pattern driven by effective internal regulations, defined as the pth 

internal principal dynamic pattern (iPDP) = !!! !!!! … !!!! , in which !!!  represents the tth power of !!, 

and Ξ(i) represents ith element of the vector Ξ. ℂ represents the complex number domain. If an eigenval-

ue λ is complex when !!is asymmetric, then its conjugate ! is also an eigenvalue, so we sum its iPDP 

and its conjugate eigenvalue, !’s iPDP, as a unified iPDP with real elements equal to 

!!!+!!! !!!!+!!! … !!!!+!!! .  

 

The internal principal dynamic patterns (iPDPs) represent canonical temporal expression trajectories, 

which can be either increasing, or damped oscillation and so on depending on iPDP’s eigenvalues (Table 

1). The iPDPs can be ordered by sorting their eigenvalues. 

Table 1. Classification of canonical temporal expression trajectories for iPDP eigenvalue types 
PDP  

eigenvalue 

Real Complex (radius) 

>1 =1 <1 & >0 <0 & > -1 = -1 <-1 >1 =1 <1 

Canonical 

temporal 

expression 

Increas

creas-

ing (I) 

Flat 

(F) 

De-

creasing 

(D) 

Vibrating 

early (VE) 

 

Vibrat-

ing (V) 

 

Vibrating 

late (VL) 

 

Under-

damped 

oscillation 

Oscillation 

(O) 

Damped 

oscillation 

(DO) 
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trajectory 

(initial)  
 

 

(UO) 

  
 

 

The components of meta-gene expressions in Ω driven by effective external regulations from Ψ, i.e., 

!!!!!"# = !!! ∈ ℜ!!×! (externally driven components of meta-gene states at two adjacent time points) 

are as follows: the externally driven component of ith internal meta-gene’s expression across time points,  

!!!"#(!) !!!"#(!) … !!!"#(!) = !!,! !!(!) !!(!) … !!!!(!)
!!"!!"#"

!!
!!!                (9) 

, where !!!"# ! !and !! ! !are ith and qth elements of !!!"#!and !!, respectively with t=1,2,…, T, the 

vector !!(!) !!(!) … !!!!(!)  is defined as qth external principal dynamic pattern (ePDP), and 

!!,! !is the element of !!at ith row and qth column, which is also the coefficient of the externally driven 

component of ith internal meta-gene’s expression over qth ePDP. 

 

2.5 Identification of gene coefficients of principal expression dynamic patterns 

Because genes and meta-genes have linear relationships in terms of their expression levels as described 

in Equation (2), the components of gene expression levels in Ω driven by internal regulations,!!!!"# ∈
ℜ!!×! can be also expressed as linear combinations of M1 iPDPs: 

!!!"# =!!!!!"# = !!! !!!!
!!

!!
!!! = !!! !!!!

!!!  ; i.e., 

 the internally driven component of ith gene’s expression across all time points,  

!!!"#(!) !!!"#(!) … !!!"#(!) = !! ! !!! !!! … !!!
!!"!!"#"

!!
!!!                (10) 

, where !! =!!!! ∈ ℂ!!×! represents the gene coefficient vector for pth iPDP. Similarly, the gene ex-

pression components driven by external regulations from Ψ, !!!"# ∈ ℜ!!×! can be also expressed as lin-

ear combinations of M2 ePDPs: 

!!!"# =!!!!!"# =!!!
!

!! = !!!  ; i.e., 

the externally driven component of ith gene’s expression across all time points,  

!!!"#(!) !!!"#(!) … !!!"#(!) = !!,! !!(!) !!(!) … !!!!(!)
!!"!!"#"

!!
!!!                (11) 
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, where !!!"# !  is ith element of !!!"# with t=1,2,…, T, and !!,! !is the element of ! =!!!!at ith row 

and qth column, which is also the coefficient of the externally driven component of ith gene’s expression 

over qth ePDP. 

3 RESULTS 
Gene expression data during embryogenesis provide important information about the dynamics of ge-

nomic functions throughout the developmental process, from the conserved functions such as DNA rep-

lication to the species-specific functions such as body segmentation, but hardly reveal any data regarding 

the evolutionary gene regulatory subsystems that drive those developmental functions [3]. Thus, in order 

to understand the relationships between those subsystems and their driving genomic functions, we apply 

DREISS to worm and fly gene expression datasets during embryogenesis in modENCODE and we are 

able to identify various developmental genomic functions of worm-fly orthologous gene pairs driven by 

two different evolutionary regulatory subsystems, conserved (worm-fly orthologous TFs) and non-

conserved (worm/fly specific TFs). As model organisms for developmental biology, both worm and fly 

have been used previously to study embryogenesis.  

3.1 Applications to worm and fly embryonic developmental data in modENCODE: 

orthologous genes, transcription factors and gene expression datasets 

DREISS enables us to compare expression dynamic patterns between two or more temporal gene ex-

pression datasets even though they have different numbers of samples, as well as differences in the times 

at which those samples were collected. For example, we can apply DREISS to two different datasets of 

the same group of genes, and identify both the common (similar) and the specific (different) dynamic 

patterns driven by internal regulations captured by the eigenvalues of the effective system matrices be-

tween the two datasets. 

 

In this paper, we apply DREISS to 3,153 one-to-one orthologous genes between worm (Caenorhabditis 

elegans) and fly (Drosophila melanogaster) as internal group, Ω to study their expression dynamics dur-

ing embryonic development [10]. We refer to species-specific TFs as external regulations; i.e., external 

group Ψ. We found that worm-fly orthologs have similar internal dynamic patterns, which may be main-

ly driven by conserved TFs, but have very different external dynamic patterns driven by species-specific 

TFs between worm and fly embryonic developmental stages. The data is summarized as follows.  
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We define internal group Ω as 3,153 one-to-one orthologous genes between worm and fly during em-

bryonic development, and external group Ψ as all the species-specific TFs (509 worm-specific TFs, 442 

fly-specific TFs) [21,22]. We used their temporal gene expression levels (as measured by the RPKM 

values in RNA-seq) during embryonic development from the modENCODE project [10]. The worm 

embryonic development dataset includes T=25 time stages at 0, 0.5, 1, 1.5, … , 12 hours, and the fly da-

taset includes T=12 time stages at 0, 2, 4, … , 22 hours, but t=1,2,..,25 for worm and t=1,2,…,12 for fly 

are used in this paper, representing the relative time points for the entire embryonic development pro-

cesses. Because M1+ M2<T in Equation (7), we choose M1= M2=5 meta-genes for fly (T=12), and find 

that five meta-genes of Ω and five meta-genes of Ψ capture ~98% of the co-variation of orthologous 

gene expressions and fly-specific TF gene expressions, respectively. In order to compare worm and fly, 

we also choose M1=M2=5 meta-genes for worm, which capture ~98% of the co-variation of orthologous 

gene expressions and worm-specific TF gene expressions. 

3.2 Meta-genes of worm-fly orthologous genes have similar internal, yet different 

external principal dynamic patterns during embryonic development 

We find that the meta-gene canonical temporal expression trajectories driven by conserved regulatory 

networks (i.e., internal principal dynamic patterns, iPDPs) include four major patterns in both the worm 

and fly embryonic developmental process by order of eigenvalues: 1) a late highly varied pattern; 2) an 

early fast decaying pattern; 3) a slowly increasing pattern; and 4) an oscillating pattern (Figure 3A); i.e., 

the pattern of canonical trajectories (VL, D, I, O) in Table 1. In contrast to the observed iPDP similari-

ties, we find that worm and fly have very different external principal dynamic patterns (ePDPs) (Figure 

3B); i.e., the expression dynamic patterns driven by species-specific TFs. The patterns driven by the 

worm-specific regulatory network; i.e., worm ePDPs, include a varied pattern that decreases until the 

middle stage and then increases , an increasing pattern, a varied pattern with a peak entering middle 

stage, a pattern that varies early and then increases during the embryonic development, and a cosine-like 

oscillating pattern with roughly two periods during the embryonic development. The fly ePDPs, howev-

er, have a varied pattern with low expression at the early stage, a sine-like oscillating pattern with rough-

ly one period during the embryonic development, an increasing pattern, another sine-lie oscillating pat-

tern with roughly two periods during the embryonic development, and a varied pattern that is like 

damped oscillation. In addition, we checked the sensitivity of iPDPs to small perturbations to inter-
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nal/external regulatory networks by the leave-one-out method; i.e., we removed one gene in the inter-

nal/external group, ran DREISS, and obtained the ordered iPDP eigenvalues for the remaining genes. 

We repeated the leave-one-out method for all genes, and finally found the ranges in which iPDP eigen-

values vary shown as error bars in Figure S1. We can see that the iPDP eigenvalues almost stay at the 

same values (small error bars) for both worm and fly, which implies that the principal dynamic patterns 

of worm-fly orthologous genes driven by their conserved regulatory network are robust to small chang-

es. 

 

The above results suggest that the conserved regulatory networks from orthologous meta-genes between 

worm and fly have similar effects to orthologous meta-genes, given their similar iPDPs (i.e., both have 

four patterns, as described above). The species-specific regulatory networks from species-specific meta-

genes (i.e., worm-specific or fly specific TFs) have effects that differ from the orthologous meta-genes 

for their different ePDPs. 

3.3 Orthologous genes have correlated coefficients between worm and fly for their 

matched internal principal dynamic patterns 

In both worm and fly, we observe the similar four types of internally driven canonical temporal expres-

sion trajectories; i.e., four matched internal principal dynamic patterns (iPDPs) (Figure 3A). Thus, we 

are interested in seeing how individual orthologous genes relate to those dynamic patterns. We find that 

the worm-fly orthologous genes have correlated coefficients over each of the four iPDPs. Based on 

Equation (10), we can obtain the coefficients of orthologous genes for each iPDP. We find that their co-

efficients are significantly correlated between worm and fly iPDPs with a similar pattern (Figure 4): 

r=0.33 (p<2.2e-16) for the highly varied pattern at late embryonic development stages (first iPDP), 

r=0.66 (p<2.2e-16) for the fast decaying pattern at early embryonic development stages (second iPDP), 

r=0.67 (p<2.2e-16) for the slowly increasing pattern during embryonic development (third iPDP), and 

r=0.73 (p<2.2e-16) for the oscillation pattern during embryonic development (forth iPDP), where r rep-

resents Spearman correlation of iPDP coefficients of orthologous genes between worm and fly. This im-

plies that, not only do the orthologous meta-genes have similar internal (conserved) regulatory effects 

(i.e., similar iPDPs), but the worm-fly orthologous genes also have similar internally-driven expression 

dynamics as resulted from their significantly correlated coefficients for iPDPs. The ePDPs between 

worm and fly generally do not show a high degree of matching similarity, but the worm ePDP No. 2, 
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and the fly ePDPs No. 3 are roughly representing the growing patterns. We find that orthologous gene 

correlation coefficients between these ePDP patterns are very small (Spearman correlation r=-0.22 of the 

orthologous gene coefficients of worm ePDP No.2 and fly ePDP No. 3). 

3.4 Ribosomal genes have significantly larger coefficients for the internal than ex-

ternal principal dynamic patterns, but signaling genes exhibit the opposite 

trend 

The ribosome produces proteins, which is an ancient process and conserved across worm and fly, organ-

isms separated by almost a billion years of evolution. The ribosomal genes are highly expressed during 

embryogenesis, since intensive cell division and migration require a large amount of proteins to be syn-

thesized. We collected 195 ribosome-related genes based on the GO annotations. We ranked the coeffi-

cients of orthologous genes for each iPDP and ePDP in ascending order, and compared the rank values 

of iPDP and ePDP coefficients of ribosomal genes. We found that their average ranks of iPDP coeffi-

cients are significantly larger than ePDP ones in both worm (t-test p<2.2e-16) and fly (t-test p<2.6e-13) 

as shown in Figure 5. This means that the ribosomal gene expression is significantly more influenced by 

the conserved regulatory network than by the species-specific regulatory network, which is consistent 

with ribosomal genes having conserved functions during embryonic development.  

 

The orthologous genes related to signal transduction for cell-cell communication (a significantly more 

recent evolutionary adaptation relative to the ribosome) exhibit the opposite trend. We found that 320 

signaling genes from GO annotations have significantly larger average rank values of ePDP coefficients 

than iPDP ones in both worm (t-test p<5.6e-11) and fly (t-test p<8.3e-4), as shown in Figure 5. This re-

sult implies that the signaling gene expression is significantly more driven by the species-specific regu-

latory network than by the conserved regulatory network, which is consistent with the signaling genes 

being commonly associated with species-specific functions, such as body plan establishment and cell 

differentiation.  

3.5 DNA replication and Proteasome machinery are enriched in orthologous genes 

with high coefficients for the dynamic patterns with fast growing canonical tra-

jectories 
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We next turn to the biological meaning of individual canonical temporal expression trajectory for iPDPs 

and ePDPs. For the fast-decaying pattern (2nd iPDP), we find that the DNA replication is significantly 

enriched in Top 300 (~10%) orthologous genes that have the most negative coefficients for this pattern, 

in both worm (p<1.6e-8) and fly (p<4.5e-6). The GO enrichment analysis was performed using DAVID 

[23]. The very negative coefficients for the fast decaying pattern mean high positive coefficients for a 

fast-growing pattern (vertically flipped 2nd iPDPs of worm and fly represent a fast-growing pattern), 

showing a drastic increase at the beginning of embryogenesis, then remain flat during the late embryo-

genesis (red curves in Figure 6). Most of the cell division of embryogenesis in both worm and fly hap-

pens approximately within the first 300 minutes. Then, the cell elongation and migration start to domi-

nate the development [24,25]. The mRNA abundance of the genes involved in DNA replication may 

change accordingly. This is well reflected by the second iPDP. Interestingly, the original expression pat-

terns of those top orthologous genes actually do not have fast-growing patterns (black curves in Figure 

6), probably because of the combined effects of both conserved and species-specific GRN. Maternal 

mRNAs, which are pre-loaded before fertilization, may also mask the fast growing pattern of DNA rep-

lication genes. This pattern could only be observed after we separated the effect of two types of TFs us-

ing DREISS. In addtion, we did not find any enrichment of DNA replication in top genes of other iPDPs 

and ePDPs (p>0.05). Therefore, the fast-growing iPDP patterns identified by our method reveal con-

served regulation on the elementary cellular process of both species (i.e. DNA replication), which should 

mainly be controlled by the conserved regulatory network.  

 

Besides a fast growing pattern driven by conserved worm-fly orthologous TFs, we also identified a fast 

growing pattern driven by non-conserved TFs for the two species. The Top 300 orthologous genes 

(~10%) with the fast-growing worm ePDP (ePDP No.2) (i.e., driven by species-specific regulatory net-

works) are enriched in ‘proteasome’ (p<9.8e-16).. Protein degradation is not only a key process in apop-

tosis, but also throughout the entire course of development [26,27]. For example, eliminating proteins 

that are no longer needed is a vital process during embryo development; e.g., the maternal proteins need 

to be cleaned as the embryogenesis proceeds). Previous reports also showed that different species usual-

ly have different maternal mRNA in the oocyte, which indicates that species-specific strategies might be 

utilized to regulate the protein degradation process [28]. In this study, after separating the effect of con-

served and non-conserved regulatory networks, we observed that the protein degradation is significantly 

enriched in the genes majorly driven by species-specific TFs in worms. In contrast, the Top 300 ortholo-
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gous genes with fast growing fly ePDP3 are enriched in ‘mitotic cell cycle’ (p<3.5e-29), ‘translation’ 

(p<1e-30) and ‘mitochondrion’ (p<7.7e-20). Those enriched function related to energy generation is 

probably indicative of the large energy requirement during fly embryogenesis [30], which did not pro-

vide the evolutionary conservation of this energy-related gene regulation. Our result reveals that the fly 

genes associated with respiration are more up-regulated by fly-specific TFs relative to conserved TFs, 

and that this up-regulation evolved after the separation of worm and fly. 

 

Besides the fast-growing pattern driven by species-specific TFs, we also observed some other interesting 

patterns. For example, worm ePDP3 displays a dramatic peak about 5 hours after fertilization. Among 

the Top 300 worm orthologous genes of this pattern, genes involved in synaptic transmission (p<5.6e-9) 

and cell-cell signaling (p<1e-7) are over-represented, suggesting that they are transiently activated in this 

stage of embryogenesis by worm-specific TFs. This observation indicates the gene regulatory network 

for these genes have evolved after the speciation.  

3.6 Human-specific transcription factors respond to hormonal stimulation during 

breast cancer cell cycle 

We applied DREISS to another example (also see supplement) about cancer. We are also interested to 

identify the gene expression dynamic patterns driven by conserved and human-specific regulatory net-

works during breast cancer cell cycle. Thus, we applied DREISS to a time-series gene expression data 

for human estrogen-responsive breast cancer cell line (ZR-75.1) before and after hormonal stimulation, 

which has 12 time points covering a complete mitotic cell cycle (0-32 hours) of hormonal stimulated 

cells [33]. The internal group, Ω is defined as a set of cross-species conserved human genes (i.e., 1132 

worm-fly-human orthologs including 150 orthologous TFs), and the external group, Ψ consists of 1870 

human-specific TFs. As shown in Supplemental Figure 2, the internally driven principal dynamic pat-

terns (iPDPs) of conserved human genes include an oscillation trajectory whose period is roughly equal 

to a full cell cycle (iPDP No. 4), but the externally driven patterns (ePDPs No. 2-4) oscillates more fre-

quently than internal one, which suggests that though the evolutionarily conserved TFs regulate the 

normal cell cycle, the human specific TFs potentially drive the abnormal cycling behaviors of conserved 

gene expression responding to the hormonal stimulation. 

4 DISCUSSION 
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In this paper, we presented a novel computational method, DREISS, which decomposes time-series ex-

pression data of a group of genes into the components driven by the regulatory network inside the group 

(internal regulatory subsystem), and the components driven by the external regulatory network consist-

ing of regulators outside the group (external regulatory subsystem). DREISS is a general-purpose tool 

that can be used to study the gene regulatory effects of any interested biological subsystems such as pro-

tein-coding transcription factors, micro-RNAs, epigenetic factors and so on. As an illustration, we ap-

plied DREISS to the time-series gene expression datasets for worm and fly embryonic developments 

from the modENCODE project [10], and compared the worm-fly orthologous gene expression dynamic 

patterns driven by the conserved regulatory network (i.e., regulation effects from orthologous TFs), with 

the patterns driven by the species-specific regulatory networks (i.e., regulation effects from worm or fly 

specific TFs). We found that the conserved TFs drive similar genomic functions, but non-conserved TFs 

drive species-specific functions of orthologous genes between worm and fly, implying that, in addition 

to having ancient conserved functions, orthologous genes have been regulated by evolutionarily younger 

GRNs to execute species-specific functions during the evolution. This work can be easily extended to 

study the regulatory effects from orthologous TFs and species-specific TFs to species-specific genes. 

For example, one can find the expression dynamic patterns of worm/fly specific genes driven by specific 

TFs, and identify the genes with strong patterns associated with worm/fly specific functions, such as 

body formations. To the best of our knowledge, DREISS is the first method to reveal how the evolution 

of GRNs affects gene expression during embryogenesis. 

 

We emphasize that DREISS is a general-purpose method (a free downloadable R tool available from 

github.com/gersteinlab/dreiss). Users can define the internal group (Ω) and external group (Ψ) according 

to their interests. For example, if users want to identify the protein-coding expression patterns driven by 

miRNAs, they can define miRNAs as an external group and protein-coding genes as an internal group. 

Additionally, DREISS can be applied to more than two datasets, such as comparing worm, fly and hu-

man embryonic stem cell developmental data, and finding their conserved and specific developmental 

expression patterns. The expression patterns driven by human-specific regulatory factors will potentially 

help us understand human-specific developmental processes along with the associated human genes.  

 

Due to the limited time samples in gene expression datasets, DREISS uses the simple linear state space 

model (i.e. the first order linear invariant difference equation) to model the temporal gene expression 
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dynamics, and identify principal temporal dynamic patterns. This model assumes that the gene regulato-

ry networks controlling temporal gene expression dynamics does not change across the entire biological 

process such as (A, B) in Equation (1). Thus, based on the analytic analysis, the principal dynamic pat-

terns (PDPs) must follow a small set of canonical temporal trajectories (Table 1). With the rapidly in-

creasing gene expression data, we can extend DREISS to more advanced models such as switched and 

hybrid system models, non-linear models [34], which will allow us to study the gene regulatory net-

works are time varying, and potentially find the more temporal gene expression patterns capturing the 

more complex gene regulatory activities.  

FIGURE CAPTIONS 
Figure 1 DREISS workflow. 1: DREISS models temporal gene expression dynamics using state-space models in 

control theory. The “state” refers to the expressions for a large group of genes of interest, such as the worm-fly 

orthologous genes investigated here. The “control” refers to any other group of genes that contribute to gene ex-

pressions of the “state”, such as the species-specific TF studied here. 2: it then projects high-dimensional gene 

expression space to lower-dimensional meta-gene expression spaces using dimensionality reduction techniques.  

3: it derives the effective state-space models for meta-genes so that model parameters can be estimated. 4: it then 

identifies the meta-gene expression dynamic patterns; i.e., canonical temporal expression trajectories driven by 

“state” (internal) and by “control” (external) based on the analytic solutions to estimated models. 5: it finally cal-

culates the coefficients of genes for the dynamic patterns of linear transformations between genes and meta-genes.  

 

Figure 2 State space model for genes and the effective model for meta-genes. A) linear state space model for a 

given subsystem’s gene expression; i.e., linear first-order difference equations in Equation (1), is used to formu-

late temporal gene expression dynamics for a given subsystem, the internal group Ω (comprising N1 genes) with 

external regulations from the external group Ψ (comprising N2 genes) at time points 1, 2, … , T. The vector 

 , the “state”, includes N1 gene expression levels at time t in Ω, and the vector  , the “input 

or control”, includes N2 gene expression levels at time t in Ψ. The system matrix  captures internal 

causal interactions among genes in Ω (i.e., the ith, jth element of A, Aij describes the contribution from the jth gene 

expression at time t to the ith gene expression at the next time t+1). The control matrix  captures ex-

ternal causal regulations from the genes in Ψ to genes in!Ω (i.e., the ith, jth element of B, Bij describes the contribu-

tion from the jth gene expression in Ψ at time t to the ith gene expression in Ω at the next time t+1). B) Meta-gene 

expression levels. The meta-gene expression levels are obtained by !! = !!
∗!!;!! = !!

∗!!, where , 

the “meta-gene state”, includes M1 (<< N1 and <T) meta-gene expression levels; i.e., the first M1 elements of the tth 

Xt ∈ℜN1×1 Ut ∈ℜN2×1

A ∈ℜN1×N1

B ∈ℜN1×N2
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row of the matrix whose columns are right-singular vectors of the matrix  in Ω by the singular value 

decomposition (SVD) [19]; the vector  , the “meta-gene input or control”, includes M2 (<< N2 and 

<T) meta-gene expression levels (i.e., the first M2 elements of the tth row of the matrix whose columns are right-

singular vectors of the matrix SVD of matrix  at time t in Ψ; is the linear projection 

matrix of SVD from M1 meta-gene expression space to N1 gene expression space in X,  is the linear 

projection matrix of SVD from M2 meta-gene expression space to N2 gene expression space in Ψ), and (.)* is a 

pseudo-inverse operation; i.e., W*W=I, where I is the identity matrix. C) Effective state space model for meta-

genes. The effective state-space model for meta-genes, Equation (4) is obtained by using linear projections WX 

and WU between genes and meta-genes from Equations (1-3). The effective meta-gene system matrix 

 captures internal causal interactions among meta-genes in Ω (i.e., the ith, jth element of  

( ) describes the contribution from the jth meta-gene expression at time t to ith meta-gene expression at next time 

t+1), and the effective control matrix  captures external causal regulations from meta-

genes in Ψ to meta-genes in Ω (i.e., the ith, jth element of , describes the contribution from the jth meta-gene 

expression in Ψ at time t to ith meta-gene expression in Ω at next time t+1). Equation (4) describes the effective 

state space model for the meta-genes in Ω, whose expression dynamics are determined by and . Because the 

meta-gene dimension, M1 (M2) is less than T, and much less than N1 (N2), we can estimate and . 

 

Figure 3 Principal dynamic patterns of orthologous genes between worm and fly during embryonic devel-

opment. A) Metagenes of orthologous genes have similar internal driven principal dynamic patterns. Meta-gene 

canonical temporal expression trajectories driven by conserved regulatory networks (i.e., internal principal dy-

namic patterns, iPDPs) include four major patterns in both worm and fly embryonic development: 1) a highly var-

ied pattern late  (iPDP with the real eigenvalue No. 1); 2) a fast decaying pattern early (iPDP with the real eigen-

value No. 2); 3) a slowly increasing pattern (iPDP with the real eigenvalue No. 3); and 4) an oscillating pattern 

(iPDP with the complex eigenvalue). B) Metagenes of orthologous genes have different external driven principal 

dynamic patterns. Worm and fly have very different external principal dynamic patterns (ePDPs); i.e., the patterns 

driven by species-specific TFs. The meta-gene dynamic patterns driven by the worm-specific regulatory network; 

i.e., worm ePDPs consist of a varied pattern that decreases until the middle stage and then increases (ePDP No.1), 

an increasing pattern (ePDP No.2), a varied pattern with a peak entering middle stage ((ePDP No.3), a pattern that 

varies early and then increases during the embryonic development (ePDP No.4), and a cosine-like oscillating pat-

tern with roughly two periods during the embryonic development (ePDP No.5). The fly ePDPs, however, have a 
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varied pattern with low expression at the early stage (ePDP No.1), a sine-like oscillating pattern with roughly one 

period during the embryonic development (ePDP No.2), an increasing pattern (ePDP No.3), another sine-lie oscil-

lating pattern with roughly two periods during the embryonic development (ePDP No.4), and a varied pattern that 

is like damped oscillation (ePDP No.5). 

 

Figure 4 Orthologous genes have correlated coefficients between worm and fly for their matched internal 

principal dynamic patterns. The worm-fly orthologous genes have correlated coefficients over each of four 

iPDPs. Their coefficients are significantly correlated between worm and fly iPDPs with a similar pattern: r=0.33 

(p<2.2e-16) for the highly varied pattern at late embryonic development (first iPDP), r=0.66 (p<2.2e-16) for the 

fast decaying pattern at early embryonic development (second iPDP), r=0.67 (p<2.2e-16) for the slowly increas-

ing pattern during embryonic development (third iPDP), and r=0.73 (p<2.2e-16) for the oscillation pattern during 

embryonic development (forth iPDP).  

 

Figure 5 Ribosomal genes have significantly larger coefficients for internal than external principal dynamic 

patterns, but signaling genes exhibit the opposite trend. The rank values in ascending order of iPDP and ePDP 

coefficients of ribosomal and signaling genes (cell-cell communication) genes are compared. The y-axis shows 

the distributions of rank values. Ribosomal genes (white boxes): their average rank values of iPDP coefficients 

are significantly larger than ePDP ones in both worm (t-test p<2.2e-16) and fly (t-test p<5.6e-11). Signaling genes 

(grey boxes): they have significantly larger average rank values of ePDP coefficients than iPDP ones in both 

worm (t-test p<2.6e-13) and fly (t-test p<8.3e-4).  

 

Figure 6 DNA replication is enriched in orthologous genes with high coefficients for the dynamic patterns 

with fast growing canonical trajectories. For the fast-decaying pattern (2nd iPDP), we found that the DNA rep-

lication is significantly enriched in Top 300 (~10%) orthologous genes that have the most negative coefficients 

for this pattern, in both worm (p<1.6e-8) and fly (p<4.5e-6). The very negative coefficients for the fast decaying 

pattern means high positive coefficients for a fast-growing pattern, showing a drastic increase at the beginning of 

embryogenesis, then remain flat during the late embryogenesis (red curves). The original expression patterns of 

those top orthologous genes actually do not have fast-growing patterns (black curves). 

 

Figure S1 Principal dynamic patterns and their eigenvalues. Internal principal dynamic patterns (iPDPs) of 

orthologs during worm and fly embryonic development. Barplots show the eigenvalues of iPDPs. The error bar 

for each eigenvalue tells the its variation range. We left one gene out, and calculated eigenvalues for the remain-

ing genes thus obtaining the eigenvalue variations. The curves show the canonical temporal expression trajecto-

ries of iPDPs. 
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Figure S2 Internally and externally principal dynamic patterns of cross-species conserved gene expression 

during human breast cancer cell cycle after hormonal stimulation. The horizontal axis represents 12 time 

points from 0 to 32 hours during a complete mitotic breast cancer cell cycle (E-TABM-631, ArrayExpress). The 

vertical axis represents the normalized PDP expression with the vector norm equal to one. The internal group is 

defined as a set of cross-species conserved human genes (i.e., 1132 worm-fly-human orthologs; including 150 

orthologous TFs), and the external group consists of 1870 human-specific TFs. 

 

Table S1 Examples of internal and external regulatory networks.  
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Besides the 36 shared genes in the fast-growing pattern driven by species-specific TFs, 

we also observed some other interesting results. Among the Top 300 worm orthologous 

genes with fast-growing ePDPs, genes involved in calcium ion binding (p<2e-6), GTP 

binding (p<7e-3) and neuron differentiation (p<0.05) are over-represented, suggesting 

that they are activated in the early stage of embryogenesis by worm-specific TFs.  
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Proteins involved in calcium ion binding or GTP binding usually play a role in cell signal 

transduction [29]. In fact, the genes involved in Wnt signaling and MAPK signaling ex-

hibits a two-fold change.  

 

In contrast, the Top 300 fly genes with a fast-growing ePDP show no enrichment in sig-

naling transduction or cell differentiation. Instead, functions associated with respiration, 

such as oxidative phosphorylation, are enriched (p<5e-10). The enrichment of energy 

generation in the Top 300 fly genes with a fast-growing ePDP 
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real eigenvalue No. 1 and 2), a fast increasing pattern at late embryonic development (real eigen-

value No. 3),  
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cell-cell communication) are compared: 
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6e-4). The boxplots show the iPDP and ePDP coefficients of ribosomal related genes in fly. 
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