

Interpretable, integrative deep learning models for regulatory genomics and epigenomics

Anshul Kundaje

 $\Gamma A N F O R D$ Genetics

Avanti Shrikumar Nathan Boley Johnny Israeli Peyton Greenside Chuan Sheng Foo

Predicting in-vivo TF ChIP-seq binding events at chromatin accessible sites

Output: Bound (+1) vs. not bound (0)

Nanog

Binary classification problem

- **Positive set:** 1Kb sequences overlapping reproducible target TF ChIP-seq peaks in specific cell type
- **Negative set:** 1Kb sequences overlapping **all chromatin accessible sites** that do not overlap target TF ChIP-seq peaks

Input: Raw DNA sequence

Convolutional neural network (CNN) learning from raw DNA sequence

CNN for learning from 1D genomic signal profiles (e.g. Dnase-seq, MNase-seq, ATAC-seq)

Scan DNase profile using filter

THE CHROMPUTER

Integrating **multiple inputs** (1D profiles, sequence) to simultaneously **predict multiple outputs**

1D DNase-seq / ATAC-seq profile

Raw DNA sequence

Model performance: cross cell-type prediction (held-out cell type + chromosome)

Area under Precision-Recall Curve

- Prediction task is highly unbalanced (5-10x more negatives than positives)
- **auROC is highly misleading for unbalanced data!**

Model performance: cross cell-type prediction (held-out cell type + chromosome)

Recall at 10% FDR

- Why does DeepBind do so poorly in this setting?
	- Trains on dinucleotide shuffled negatives (not representative of relevant genomic background)
	- **Negative set matters**

Model interpretation

- Q's we will try to answer:
	- **Motif discovery:** Primary motifs and cofactor motifs?
	- **Learn sequence grammars:** homotypic/heterotypic co-binding events, density and spacing of motifs
	- **Heterogeneity:** Are there different subsets of TF binding events with distinct sequence grammars?
	- From low resolution (~100-500 bp) peaks to **highresolution point binding events**

DeepLIFT: Predictive power of features in Deep Neural Networks

DeepLIFT: Predictive power of features in Deep Neural Networks

- Decomposition of contribution of each input to immediate outputs
	- ReLU networks: **piece-wise linear**
	- Recursively apply (with chain rule) to get contribution of any input to any output
	- Can be **computed efficiently** with a single backpropagation (unlike in-silico mutagenesis)
	- **Less susceptible to buffering effects** than in-silico mutagenesis
- Technical details:
	- $-$ Importance of any input to any output = gradient $*$ input
	- Expands on classical sensitivity analysis proposed in Simonyan et al. 2014

Current motif discovery approaches produce multiple partially redundant motifs (e.g. Nanog)

Motif discovery using DeepLIFT

Each PWM like 'filter' in convolutional layers gets a deepLIFT score

Insight: filter contributions are resolved at the nucleotide level

TT CAT, CHI GGS

<u>clab.</u>

Insight: filter contributions are resolved at the nucleotide level

Insight: filter contributions are resolved at the nucleotide level

4 main non-redundant agglomerated DeepLIFT motifs

4 main non-redundant agglomerated DeepLIFT motifs

$A_{g\epsilon}$ Zic3 Is Required for Maintenance of Pluripotency in Embryonic Stem Cells^{ID}

Heterogeneity

At least 3 distinct classes on Nanog sites

Sequence grammar involving Nanog and Zic3

Sequence grammar involving Nanog and Zic3

DeepLIFT motifs are more predictive than classical PWMs even in simple logistic regression models

High resolution point binding events and sequence grammars at a CTCF double peak

Nuc. level importance (height of letter) shows coordination of multiple point binding events

Deep learning sequence determinants of contextspecific chromatin accessibility across hematopoietic cell types

Multi-task deep CNN model of context-specific chromatin accessibility

Output: Accessible (+1) vs. not accessible (0)

Input: Raw DNA sequence

ATAC-seq

…and much, much more

YY1 & GATA

ATAC-seq generates variable length fragments reflecting different aspects of chromatin architecture

ATAC-seq peaks identify chromatin accessible regulatory elements

Position-aware 2D fragment length distributions (V-plots)

Aggregate plot for all ATAC-seq peaks in CTCF state

V-plots were first introduced by Henikoff et al. 2011, PNAS

Position-aware 2D fragment length distributions (V-plots)

Plot at single CTCF site – sparse and noisy

V-plots were first introduced by Henikoff et al. 2011, PNAS

Can we predict chromatin states/histone marks at ATAC-peaks?

Chromatin architecture can predict **chromatin state** in held out chromosome (same cell type GM12878)

High cross cell-type chromatin state prediction

- Learn model on **DNase and MNase only**
- **Learn on GM12878, predict on K562 (and vice versa)**
- **Requires local normalization** to make signal comparable

Predicting individual histone marks from ATAC/DNase/MNase/Sequence

What architecture properties of the ATAC-seq Vplots predict different chromatin states?

CTCF state: centered binding, symmetric phased nucleosomes

Enhancer state: localized signal, heterogeneity

Promoter state: broad regions of accessible chromatin

what is the change in classification probability relative to an unbiased classifier if we ***only*** consider the contributions from each pixel

Top scoring MNase filters and activating input patterns for CTCF state

Top scoring MNase filters and activating input patterns for promoter state

Summary

- **Chromputer:** Powerful multi-input, multi-output integrative deep learning framework for regulatory genomics
	- Beware of negative set/background selection
	- Beware of performance measures (most prediction tasks are highly unbalanced)
- **DeepLIFT:** efficient method for scoring importance of raw input and intermediate induced features in deep neural networks
	- DNNs learn distributed representations. Caution in overinterpreting individual filters
	- Propagate and integrate multiple filter effects on raw input of individual examples.
	- Cluster 'important' local patterns across examples to learn non-redundant global patterns
- Extensive evidence of **differential usage of sequence grammars** at regulatory elements in different contexts (To be validated with experiments!)

Acknowledgements

Kundaje Lab members

Avanti Shrikumar

Peyton Greenside

Nicholas Sinnott-Armstrong

Johnny Israeli

Rahul Mohan

Irene Kaplow

Nathan Boley

Funding

U01HG007919-02 (GGR) U41-HG007000-04S1 **ENCODE** R01ES02500902

Chuan Sheng Foo

Conflict of Interest: Deep Genomics (SAB), Epinomics (SAB)

DeepLIFT scores

In-silico mutagenesis scores

DeepLIFT scores

In-silico mutagenesis scores arbitrarily scores left motif stronger than right motif

