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regions of the genome in an apparently random
fashion (28). Thus, at best, methods based on mu-
tation frequency can only prioritize genes for fur-
ther analysis but cannot unambiguously identify
driver genes that are mutated at relatively low
frequencies.

Further complicating matters, there are two
distinct meanings of the term “driver gene”
that are used in the cancer literature. The driver-
versus-passenger concept was originally used to
distinguish mutations that caused a selective
growth advantage from those that did not (29).
According to this definition, a gene that does not
harbor driver gene mutations cannot be a driver
gene. But many genes that contain few or no
driver gene mutations have been labeled driver
genes in the literature. These include genes that
are overexpressed, underexpressed, or epigenet-
ically altered in tumors, or those that enhance
or inhibit some aspect of tumorigenicity when
their expression is experimentally manipulated.
Though a subset of these genes may indeed
play an important role in the neoplastic pro-
cess, it is confusing to lump them all together
as driver genes.

To reconcile the two connotations of driver
genes, we suggest that genes suspected of increas-
ing the selective growth advantage of tumor cells
be categorized as either “Mut-driver genes” or
“Epi-driver genes.” Mut-driver genes contain a
sufficient number or type of driver gene muta-
tions to unambiguously distinguish them from
other genes. Epi-driver genes are expressed aber-

rantly in tumors but not frequently mutated; they
are altered through changes in DNA methyla-
tion or chromatin modification that persist as the
tumor cell divides.

A Ratiometric Method to Identify and
Classify Mut-Driver Genes
If mutation frequency, corrected for mutation
context, gene length, and other parameters, can-
not reliably identify modestly mutated driver
genes, what can? In our experience, the best
way to identify Mut-driver genes is through
their pattern of mutation rather than through
their mutation frequency. The patterns of mu-
tations in well-studied oncogenes and tumor
suppressor genes are highly characteristic and
nonrandom. Oncogenes are recurrently mu-
tated at the same amino acid positions, where-
as tumor suppressor genes are mutated through
protein-truncating alterations throughout their
length (Fig. 4 and table S2A).

On the basis of these mutation patterns rather
than frequencies, we can determine which of the
18,306 mutated genes containing a total of
404,863 subtle mutations that have been recorded
in the Catalogue of Somatic Mutations in Cancer
(COSMIC) database (30) are Mut-driver genes
and whether they are likely to function as onco-
genes or tumor suppressor genes. To be classified
as an oncogene, we simply require that >20% of
the recorded mutations in the gene are at re-
current positions and are missense (see legend to
table S2A). To be classified as a tumor suppres-

sor gene, we analogously require that >20% of
the recorded mutations in the gene are inac-
tivating. This “20/20 rule” is lenient in that all
well-documented cancer genes far surpass these
criteria (table S2A).

The following examples illustrate the value
of the 20/20 rule. When IDH1 mutations were
first identified in brain tumors, their role in tu-
morigenesis was unknown (2, 31). Initial func-
tional studies suggested that IDH1 was a tumor
suppressor gene and that mutations inactivated
this gene (32). However, nearly all of the muta-
tions in IDH1 were at the identical amino acid,
codon 132 (Fig. 4). As assessed by the 20/20
rule, this distribution unambiguously indicated
that IDH1 was an oncogene rather than a tumor
suppressor gene, and this conclusion was even-
tually supported by biochemical experiments
(33, 34). Another example is provided by muta-
tions in NOTCH1. In this case, some functional
studies suggested that NOTCH1 was an onco-
gene, whereas others suggested it was a tumor
suppressor gene (35, 36). The situation could be
clarified through the application of the 20/20
rule to NOTCH1 mutations in cancers. In “liq-
uid tumors” such as lymphomas and leuke-
mias, the mutations were often recurrent and did
not truncate the predicted protein (37). In squa-
mous cell carcinomas, the mutations were not
recurrent and were usually inactivating (38–40).
Thus, the genetic data clearly indicated that
NOTCH1 functions differently in different tumor
types. The idea that the same gene can function
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Fig. 4. Distribution of mutations in two oncogenes (PIK3CA and IDH1)
and two tumor suppressor genes (RB1 andVHL). The distribution of missense
mutations (red arrowheads) and truncating mutations (blue arrowheads) in rep-
resentative oncogenes and tumor suppressor genes are shown. The data were

collected from genome-wide studies annotated in the COSMIC database (release
version 61). For PIK3CA and IDH1, mutations obtained from the COSMIC database
were randomized by the Excel RAND function, and the first 50 are shown. For RB1
and VHL, all mutations recorded in COSMIC are plotted. aa, amino acids.
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Asymmetric	  Unit	  vs.	  Biological	  Assembly	  
Ex	  PDB:	  3GFT	  
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