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deformed as a result of the normal mode fluctuations (Figure 1A, top-right) receive a high score (termed 
the binding leverage for that site), whereas shallow sites with few interacting residues (Figure 1A, bottom-
left) or sites that undergo minimal change over the course of a mode fluctuation (Figure 1A, bottom-right) 
receive low binding leverage scores. Specifically, the binding leverage score for a given site is calculated as 
 

 
 
Here, the outer sum is taken over the 10 modes, and the pair of inner sums are taken over all pairs of 
residues (i,j) such that the line connecting the pair lies within 3.0 Angstroms of any atom within the 
simulated ligand. The value ∆dij(m) for each residue pair (i,j) represents the change in the distance between 
residues i and j when this distance is calculated using mode m. Thus, one may think of binding leverage as 
qualitatively predicting the extent to which a surface pocket is deformed when the protein undergoes 
conformational transitions. 
 
3.1-a-iii  Defining & Applying Thresholds to Select High-Confidence Surface-Critical Sites 

As discussed in the main text, without applying thresholds to the list of ranked surface sites that 
remain after running the binding leverage calculations, a very large number of sites would occupy the 
protein surface (Figure S2A). Thus, it is necessary to trim and process this list. To do so, we borrow from 
principles in energy gap theory (Bryngelson et al., 1995). Details regarding the calculations for establishing 
a threshold on the number of sites are given here. 

For each of the N candidate binding sites in what we call “pre-processed ranked list of sites” 
(produced by the procedure outlined above), we calculate the value ∂BL(j)/∆BL. Here, j is the jth site to 
appear in the pre-processed ranked list of sites, with this list of sites being ranked in descending order of 
each site’s binding leverage score (see above). ∂BL(j) is defined as the difference in the binding leverage 
scores of the jth site and the (j-1)th site in the ranked list. Because the list of sites is organized in descending 
order of binding leverage scores, ∂BL(j) ≥ 0. ∆BL is a constant defined as: 
 

∆BL  =  maxbinding_leverage_score  –  minbinding_leverage_score 
 
∆BL is thus the difference in the binding scores associated with the very top site and very bottom site in this 
ranked. Qualitatively, a large value for ∂BL(j)/∆BL indicates that there is a large drop in binding 
leverage scores in going from site j to site (j-1) within the pre-processed ranked list. 

We then consider those sites with the highest ∂BL/∆BL values – specifically, we consider the top 
5.5% of sites in terms of ∂BL/∆BL. Thus, we are considering site j if there is a very large gap in binding 
leverage scores between sites j and (j-1). The lowest-occurring site within this considered list of high 
∂BL/∆BL values demarcates a threshold beyond which we reject all lower sites within the pre-processed 
ranked list, leaving only what we call the “processed ranked list of sites”. 

We then go up from to bottom through the top of this processed ranked list of sites, and for each 
site, we determine the Jaccard similarity with all sites above. If the Jaccard similarity with any site above 
exceeds 0.7, then the lower site is removed from the processed ranked list. The final list obtained after 
performing these Jaccard similarity filters is taken to represent the set of surface-critical sites on a structure. 

In counting the final number of truly distinct surface-critical sites for any given structure, we 
remove redundant sites within the set of surface-critical sites obtained in the process above, as some of the 
sites within this set may still exhibit considerable mutual overlap. A site i within the list of surface-critical 
sites is said to be redundant if it is assigned a redundancy score that exceeds 0.4, where 

 
redundancy_score(i)  =  | {Rsite_i!}!!� {Rsites>i} |  /  Nres_i 

 
Here, {Rsite_i} is the set of residues in site i, {Rsites>i} is the union of residues in all accepted sites above site 
i in the list of sites, Nres_i is the number of residues in site i, and the |…| notation in the denominator of this 
ratio is meant to designate the number of residues in the indicated intersection. If this redundancy score is 
less than 0.4, then site i is considered to be truly distinct from all other sits, and it is included in the list of 
distinct sites. If the redundancy score exceeds 0.4, then the site overlaps with another site on the surface, 
and it is thus rejected from the set of accepted distinct sites. Finally, the total number of sites in the 
accepted set of sites is taken as the number of distinct sites for a structure. 

�� ij
 i     j

¨dbinding leverage  =  2

��������������ij(m)
 i     j

¨dbinding leverage  =  2

m=1

  10

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

1.  Iden'fy	  pockets	  on	  the	  protein	  surface	  by	  running	  MC	  simula'ons	  in	  which	  a	  ligand	  
walks	  along	  the	  proteins	  surface	  (A)	  

	  

2.  Score	  each	  pocket	  by	  the	  degree	  to	  which	  it	  perturbs	  large-‐scale	  mo'ons.	  Shallow	  sites	  
(C)	  or	  sites	  at	  which	  the	  ligand	  does	  not	  interfere	  with	  mo'on	  (D)	  earn	  low	  scores,	  
whereas	  deeper	  pockets	  at	  which	  occlusion	  ‘blocks’	  mo'on	  earn	  high	  scores	  (B).	  

	  

3.  Threshold	  the	  list	  or	  sites	  to	  iden'fy	  the	  set	  predicted	  allosteric	  sites	  at	  the	  surface.	  

(A)	  

(C)	  

(B)	  

(D)	  
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PDB:	  3PFK	  

   SITE 1   101_A   10_A   10_B   99_A   98_A . . .

   SITE 2    10_A   55_B   56_B   18_A   27_B . . .

   SITE 3    34_B   37_A   42_B  108_A   97_A . . .

     .         .       .      .      .      .
     .         .       .      .      .      .
     .         .       .      .      .      .
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where 

Covij  =  ⟨ri ! rj⟩$

Here, ri and rj designate the vectors associated with residues i and j (respectively) under a 

particular mode. The brackets in the term ⟨ri ! rj⟩ indicate that the mean value for the dot product 

ri ! rj (over the 10 lowest-frequency non-trivial modes) is taken. 

An example may help to clarify this. If two interacting residues exhibit a high degree of 

correlated motion, then the motion of one may tell us about the motion of the other, suggesting a 

strong flow of energy or information between the two residues, resulting in a low value for Dij: a 

strong correlation (or a strong anti-correlation) between nodes i and j result in a value for ∣Cij∣ that 

is close to 1. This gives a low value for Dij (−log(∣Cij∣) ≈ 0). Thus, given a strong correlated 

motion, this effective distance Dij between residues i and j is very short. This small Dij means that 

any path involving this pair of residues is likewise shorter as a result, thereby more likely placing 

this pair of residues within a shortest path, and more likely rendering this pair a bottleneck pair. 

In sum, this edge-weighting scheme is such that a high correlation in motion results in a short 

effective distance, thereby more likely rendering this a bottleneck pair of residues.  

In the opposite scenario, for interacting residues with poor correlation values (Cij ≈ 0), a 

large effective distance Dij results, thereby making it more difficult for the pair of residues to lie 

within shortest paths or within the same community. 

Once all connections between interacting pairs of residues are appropriately weighted and 

the communities are assigned using the Girvan-Newman (GN) algorithm (Girvan et al., 2002) 

with these effective distances, a residue is deemed to be critical for allosteric signal transmission 

(i.e., an interior-critical residue) if it is involved in the highest-betweenness edge connecting two 

distinct communities. A given edge’s betweenness is taken to be the number of shortest paths 

involving that edge, where a path length is the sum of its associated effective edge distances (see 

above). The shortest distance between each NC2 pair of nodes in the network of N residues is 

calculated using the Floyd–Warshall algorithm (Cormen et al, 2009). 

! 24!

 
 

Figure 2.6: Community partitioning for canonical systems. Different network communities are colored 
differently. Residues shown as spheres are interior-critical residues, and they are colored based on 
community membership, and black lines connecting pairs of critical residues represent the highest-
betweenness edges between the corresponding communities.  
 

2.3-a-i  Network Formalism and Weighting Scheme 

The network representing interacting residues is first constructed. An edge between 

residues i and j is drawn if any heavy atom within residue i is located within 4.5 Angstroms of 

any heavy atom within residue j, and the trivial cases of pairs of residues that are adjacent in 

sequence are excluded (i.e., residues that are adjacent in sequence are not considered to be in 

contact within the network). 

Network edges are then weighted on the basis of correlated motions of the interacting 

residues, with these motions provided by the same ANMs that are used in identifying surface-

critical residues. However, as with surface-critical residues, it is also possible to model the 

motions for identifying interior-critical residues using pairs of crystallographic structures in 

distinct conformations (Section 3.4). The edge weighting scheme is performed as follows: an 

“effective distance” Dij for an edge between interacting residues i and j is set to Dij = −log(∣Cij∣), 

where Cij designates the correlated motions between residue i and j: 

Cij  =  Covij  /  √(⟨ri
2⟩⟨rj

2⟩) 
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Figure

PDB:	  4AKE	  

res 1: 11  LYS A
res 2: 25  GLU A
res 3: 136 ASP A
res 4: 204 ASN A
       .
       .
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STRESS	  Server	  Architecture	  
stress.molmovdb.org	  

A

7

Auto-scalable
back-end

EC2Thin front end
EC2

RESTful
storage

EC2

EC2

S3

S3
Queue

5	  



STRESS	  Server	  Architecture:	  Highlights	  
stress.molmovdb.org	  

Users	  submit	  a	  PDB,	  and	  the	  output	  is	  the	  set	  of	  predicted	  allosteric	  residues.	  
	  

Running	  'mes	  are	  minimized	  by	  using	  a	  scalable	  server	  architecture	  that	  runs	  on	  the	  
Amazon	  cloud.	  A	  light	  front-‐end	  server	  handles	  incoming	  requests,	  and	  powerful	  back-‐
end	  servers	  perform	  the	  algorithmic	  calcula'ons.	  	  
	  

Amazon's	  Elas'c	  Beanstalk	  enables	  dynamic	  scalability.	  Auto	  Scaling	  adjusts	  the	  
number	  of	  back-‐end	  servers	  as	  needed.	  
	  

Elas'c	  Load	  Balancer	  automa'cally	  distributes	  incoming	  network	  traffic,	  ensuring	  that	  
it	  can	  handle	  varying	  levels	  of	  demand.	  
	  

Input	  and	  output	  files	  are	  stored	  remotely	  in	  an	  S3	  bucket,	  which	  is	  accessible	  to	  each	  
server	  via	  RESTful	  conven'ons.	  
	  

By	  op'mizing	  for	  speed	  (with	  op'miza'ons	  introduced	  through	  changes	  in	  the	  
workflow,	  data	  structures,	  numerical	  arithme'c,	  etc.),	  a	  typical	  case	  takes	  ~30	  minutes	  
on	  a	  E5-‐2660	  v3	  (2.60GHz)	  core.	  
	  

Source	  code	  is	  available	  through	  Github:	  	  github.com/gersteinlab/STRESS	  
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