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deformed as a result of the normal mode fluctuations (Figure 1A, top-right) receive a high score (termed 
the binding leverage for that site), whereas shallow sites with few interacting residues (Figure 1A, bottom-
left) or sites that undergo minimal change over the course of a mode fluctuation (Figure 1A, bottom-right) 
receive low binding leverage scores. Specifically, the binding leverage score for a given site is calculated as 
 

 
 
Here, the outer sum is taken over the 10 modes, and the pair of inner sums are taken over all pairs of 
residues (i,j) such that the line connecting the pair lies within 3.0 Angstroms of any atom within the 
simulated ligand. The value ∆dij(m) for each residue pair (i,j) represents the change in the distance between 
residues i and j when this distance is calculated using mode m. Thus, one may think of binding leverage as 
qualitatively predicting the extent to which a surface pocket is deformed when the protein undergoes 
conformational transitions. 
 
3.1-a-iii  Defining & Applying Thresholds to Select High-Confidence Surface-Critical Sites 

As discussed in the main text, without applying thresholds to the list of ranked surface sites that 
remain after running the binding leverage calculations, a very large number of sites would occupy the 
protein surface (Figure S2A). Thus, it is necessary to trim and process this list. To do so, we borrow from 
principles in energy gap theory (Bryngelson et al., 1995). Details regarding the calculations for establishing 
a threshold on the number of sites are given here. 

For each of the N candidate binding sites in what we call “pre-processed ranked list of sites” 
(produced by the procedure outlined above), we calculate the value ∂BL(j)/∆BL. Here, j is the jth site to 
appear in the pre-processed ranked list of sites, with this list of sites being ranked in descending order of 
each site’s binding leverage score (see above). ∂BL(j) is defined as the difference in the binding leverage 
scores of the jth site and the (j-1)th site in the ranked list. Because the list of sites is organized in descending 
order of binding leverage scores, ∂BL(j) ≥ 0. ∆BL is a constant defined as: 
 

∆BL  =  maxbinding_leverage_score  –  minbinding_leverage_score 
 
∆BL is thus the difference in the binding scores associated with the very top site and very bottom site in this 
ranked. Qualitatively, a large value for ∂BL(j)/∆BL indicates that there is a large drop in binding 
leverage scores in going from site j to site (j-1) within the pre-processed ranked list. 

We then consider those sites with the highest ∂BL/∆BL values – specifically, we consider the top 
5.5% of sites in terms of ∂BL/∆BL. Thus, we are considering site j if there is a very large gap in binding 
leverage scores between sites j and (j-1). The lowest-occurring site within this considered list of high 
∂BL/∆BL values demarcates a threshold beyond which we reject all lower sites within the pre-processed 
ranked list, leaving only what we call the “processed ranked list of sites”. 

We then go up from to bottom through the top of this processed ranked list of sites, and for each 
site, we determine the Jaccard similarity with all sites above. If the Jaccard similarity with any site above 
exceeds 0.7, then the lower site is removed from the processed ranked list. The final list obtained after 
performing these Jaccard similarity filters is taken to represent the set of surface-critical sites on a structure. 

In counting the final number of truly distinct surface-critical sites for any given structure, we 
remove redundant sites within the set of surface-critical sites obtained in the process above, as some of the 
sites within this set may still exhibit considerable mutual overlap. A site i within the list of surface-critical 
sites is said to be redundant if it is assigned a redundancy score that exceeds 0.4, where 

 
redundancy_score(i)  =  | {Rsite_i!}!!� {Rsites>i} |  /  Nres_i 

 
Here, {Rsite_i} is the set of residues in site i, {Rsites>i} is the union of residues in all accepted sites above site 
i in the list of sites, Nres_i is the number of residues in site i, and the |…| notation in the denominator of this 
ratio is meant to designate the number of residues in the indicated intersection. If this redundancy score is 
less than 0.4, then site i is considered to be truly distinct from all other sits, and it is included in the list of 
distinct sites. If the redundancy score exceeds 0.4, then the site overlaps with another site on the surface, 
and it is thus rejected from the set of accepted distinct sites. Finally, the total number of sites in the 
accepted set of sites is taken as the number of distinct sites for a structure. 
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where 

Covij  =  ⟨ri ! rj⟩$

Here, ri and rj designate the vectors associated with residues i and j (respectively) under a 

particular mode. The brackets in the term ⟨ri ! rj⟩ indicate that the mean value for the dot product 

ri ! rj (over the 10 lowest-frequency non-trivial modes) is taken. 

An example may help to clarify this. If two interacting residues exhibit a high degree of 

correlated motion, then the motion of one may tell us about the motion of the other, suggesting a 

strong flow of energy or information between the two residues, resulting in a low value for Dij: a 

strong correlation (or a strong anti-correlation) between nodes i and j result in a value for ∣Cij∣ that 

is close to 1. This gives a low value for Dij (−log(∣Cij∣) ≈ 0). Thus, given a strong correlated 

motion, this effective distance Dij between residues i and j is very short. This small Dij means that 

any path involving this pair of residues is likewise shorter as a result, thereby more likely placing 

this pair of residues within a shortest path, and more likely rendering this pair a bottleneck pair. 

In sum, this edge-weighting scheme is such that a high correlation in motion results in a short 

effective distance, thereby more likely rendering this a bottleneck pair of residues.  

In the opposite scenario, for interacting residues with poor correlation values (Cij ≈ 0), a 

large effective distance Dij results, thereby making it more difficult for the pair of residues to lie 

within shortest paths or within the same community. 

Once all connections between interacting pairs of residues are appropriately weighted and 

the communities are assigned using the Girvan-Newman (GN) algorithm (Girvan et al., 2002) 

with these effective distances, a residue is deemed to be critical for allosteric signal transmission 

(i.e., an interior-critical residue) if it is involved in the highest-betweenness edge connecting two 

distinct communities. A given edge’s betweenness is taken to be the number of shortest paths 

involving that edge, where a path length is the sum of its associated effective edge distances (see 

above). The shortest distance between each NC2 pair of nodes in the network of N residues is 

calculated using the Floyd–Warshall algorithm (Cormen et al, 2009). 
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Figure 2.6: Community partitioning for canonical systems. Different network communities are colored 
differently. Residues shown as spheres are interior-critical residues, and they are colored based on 
community membership, and black lines connecting pairs of critical residues represent the highest-
betweenness edges between the corresponding communities.  
 

2.3-a-i  Network Formalism and Weighting Scheme 

The network representing interacting residues is first constructed. An edge between 

residues i and j is drawn if any heavy atom within residue i is located within 4.5 Angstroms of 

any heavy atom within residue j, and the trivial cases of pairs of residues that are adjacent in 

sequence are excluded (i.e., residues that are adjacent in sequence are not considered to be in 

contact within the network). 

Network edges are then weighted on the basis of correlated motions of the interacting 

residues, with these motions provided by the same ANMs that are used in identifying surface-

critical residues. However, as with surface-critical residues, it is also possible to model the 

motions for identifying interior-critical residues using pairs of crystallographic structures in 

distinct conformations (Section 3.4). The edge weighting scheme is performed as follows: an 

“effective distance” Dij for an edge between interacting residues i and j is set to Dij = −log(∣Cij∣), 

where Cij designates the correlated motions between residue i and j: 

Cij  =  Covij  /  √(⟨ri
2⟩⟨rj

2⟩) 
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STRESS	
  Server	
  Architecture:	
  Highlights	
  
stress.molmovdb.org	
  

Users	
  submit	
  a	
  PDB,	
  and	
  the	
  output	
  is	
  the	
  set	
  of	
  predicted	
  allosteric	
  residues.	
  
	
  

Running	
  'mes	
  are	
  minimized	
  by	
  using	
  a	
  scalable	
  server	
  architecture	
  that	
  runs	
  on	
  the	
  
Amazon	
  cloud.	
  A	
  light	
  front-­‐end	
  server	
  handles	
  incoming	
  requests,	
  and	
  powerful	
  back-­‐
end	
  servers	
  perform	
  the	
  algorithmic	
  calcula'ons.	
  	
  
	
  

Amazon's	
  Elas'c	
  Beanstalk	
  enables	
  dynamic	
  scalability.	
  Auto	
  Scaling	
  adjusts	
  the	
  
number	
  of	
  back-­‐end	
  servers	
  as	
  needed.	
  
	
  

Elas'c	
  Load	
  Balancer	
  automa'cally	
  distributes	
  incoming	
  network	
  traffic,	
  ensuring	
  that	
  
it	
  can	
  handle	
  varying	
  levels	
  of	
  demand.	
  
	
  

Input	
  and	
  output	
  files	
  are	
  stored	
  remotely	
  in	
  an	
  S3	
  bucket,	
  which	
  is	
  accessible	
  to	
  each	
  
server	
  via	
  RESTful	
  conven'ons.	
  
	
  

By	
  op'mizing	
  for	
  speed	
  (with	
  op'miza'ons	
  introduced	
  through	
  changes	
  in	
  the	
  
workflow,	
  data	
  structures,	
  numerical	
  arithme'c,	
  etc.),	
  a	
  typical	
  case	
  takes	
  ~30	
  minutes	
  
on	
  a	
  E5-­‐2660	
  v3	
  (2.60GHz)	
  core.	
  
	
  

Source	
  code	
  is	
  available	
  through	
  Github:	
  	
  github.com/gersteinlab/STRESS	
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