Basic Objective and Idea Behind the Formalism
For Predicting Allosteric Sites on the Surface

(A) :"""’:/ ““."&/ .“‘.,:/ (B)
N’ u
(C) e e (D)

binding leverage = Y.(2°2" Ady)

|ldentify pockets on the protein surface by running MC simulations in which a ligand
walks along the proteins surface (A)

. Score each pocket by the degree to which it perturbs large-scale motions. Shallow sites
(C) or sites at which the ligand does not interfere with motion (D) earn low scores,
whereas deeper pockets at which occlusion ‘blocks” motion earn high scores (B).

. Threshold the list or sites to identify the set predicted allosteric sites at the surface.
1

STRESS Output for Predicted

Allosteric Sites on the Surface
stress.molmovdb.org

&

Output
SITE1 101 A 10 A 10 B 99 A 98 A . . .
SITE 2 10 A 55B 56 B 18A 27 B . ..
SITE 3 34 B 37 A 42 B 108 A 97 A . . .

PDB: 3PFK

Basic Objective and Idea Behind the Formalism
For Predicting Allosteric Residues within the Interior

weight edges using
motion vectors

I- ,-\
identify

critical residues

COV,'J' = (l’i i l‘j)
C; = Cov; | N({(ri" X))
D;=—log(1Cyl)

STRESS Output for Predicted

Allosteric Residues within the Interior
stress.molmovdb.org

11 LYS A
25 GLU A
136 ASP A
204 ASN A

PDB: 4AKE .

0a®
)

STRESS Server Architecture

stress.molmovdb.org

Thin front end

EC2

[]

STRESS A comp jonally-eficient

Home

Submit a new job:

Enter PDB ID (ex: 3D3D):

Select which modules to run:

Surface-critical
 Interior-critical

Documentation

Or upload PDB File:
se File | No file chosen

oooooooo

Retrieve job results:

Job id:

Citing

k for identifying potential allosteric residues at the protein surface and within the interior

EC2

EC2

EC2

Auto-scalable
back-end

\/

RESTful
storage

STRESS Server Architecture: Highlights
stress.molmovdb.org

Users submit a PDB, and the output is the set of predicted allosteric residues.

Running times are minimized by using a scalable server architecture that runs on the
Amazon cloud. A light front-end server handles incoming requests, and powerful back-
end servers perform the algorithmic calculations.

Amazon's Elastic Beanstalk enables dynamic scalability. Auto Scaling adjusts the
number of back-end servers as needed.

Elastic Load Balancer automatically distributes incoming network traffic, ensuring that
it can handle varying levels of demand.

Input and output files are stored remotely in an S3 bucket, which is accessible to each
server via RESTful conventions.

By optimizing for speed (with optimizations introduced through changes in the
workflow, data structures, numerical arithmetic, etc.), a typical case takes ~30 minutes
on a E5-2660 v3 (2.60GHz) core.

Source code is available through Github: github.com/gersteinlab/STRESS

