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ABSTRACT 
High throughput sequencing of genomes for patients with genetic 
diseases has opened up the possibility of finding the precise causes 
of these diseases, paving the way for more effective drug develop-
ment for these illnesses in the future. However, the analysis of this 
data has not kept pace with the data’s production rate. Fast and 
efficient analysis is necessary to meaningfully interpret this data and 
derive actionable results. Here, we introduce the Mutations Over-
burdening Annotations Tool (MOAT), a new computational tool de-
signed to identify functional annotations with a high mutation burden 
relative to the surrounding genome. Such annotations may be poten-
tial driver elements in genetic disease. We release an implementa-
tion that offers users two forms of mutation burden analysis through 
empirical permutations, as well as serial and parallel versions of 
each form. We also demonstrate MOAT’s capability for finding 
known noncoding drivers in cancer variant data. 
Availability: MOAT is available at moat.gersteinlab.org 

2 INTRODUCTION  
High throughput sequencing of genetic disease cohorts has enabled 
the identification of the molecular causes of these illnesses. This 
data can be utilized to find the somatic single nucleotide variants 
(SNVs) in each patient. However, due to the relatively high num-
ber of neutral variants in such patients’ genomes, it is not immedi-
ately apparent which variants are directly connected to the disease 
phenotype. A common strategy for addressing this issue is to look 
for genomic elements with a high accumulation of variants. By 
modeling the factors that influence the stochastic mutation rate, the 
elements that are more mutated than expected under the back-
ground model can be determined. 

One means of detecting deviation from the expected background 
mutation rate is to look for elements that have a high variant densi-
ty compared to the immediately surrounding genome. It is well 
known that the background mutation rate is highly heterogeneous 
across the whole genome due to the confounding effect from nu-
merous genomic features. Our Mutations Overburdening Annota-
tions Tool (MOAT) is designed to automatically overcome such 
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confounding effect in a non-parametric way and compute the sig-
nificance of the mutation burden of any element. 

MOAT offers users two types of permutation algorithm to empir-
ically assess the background mutation rate: MOAT-a (annotation 
centric) and MOAT-v (variant-centric). In the following sections, 
we will describe the implementation of MOAT for parallel com-
puter systems, which enables highly efficient data size scalability. 
This scalability is important for guaranteeing a reasonable running 
time given the high computational intensity of the permutation 
step.  

3 METHODS 
MOAT takes two input files: the annotation file (afile) and the 
variant file (vfile). 

3.1 MOAT-a: Annotation-centric Permutation 
The parallel version of MOAT’s annotation-centric permutation 
algorithm, MOAT-a, is a C++ program that uses NVIDIA’s CUDA 
language (Nickolls, et al., 2008) to instantiate parallel graphics 
processing unit (GPU) threads, and divides the computational 
workload across these threads. MOAT-a’s steps are illustrated in 
Fig. 1. MOAT-a iterates through the annotations, computing the 
intersecting variant count per annotation. It then defined an ex-
tended region with a user-defined distance centered at the current 
input annotation, and randomly moves the annotation within this 
extended region. MOAT-a will find the variant counts from the 
vfile that intersect each of the random bins, which are compared to 
the input annotation’s variant count. The input annotation’s p-
value is defined as the fraction of bins with a variant count equal to 
or greater than the input annotation’s variant count.  

MOAT-a’s operations are well suited for massively parallel 
computing. Therefore, we adapted MOAT-a into a CUDA pro-
gram, which enables the parallelization of the computational work-
load on graphics processing units (GPUs). GPUs are optimal for 
programs with high computational intensity and low memory re-
quirements. For our purposes, the variant and annotation data are 
copied to the GPU’s memory, and the stream processors are em-
ployed to perform thousands of permutation calculations in paral-
lel. 

New version� 3/11/2016 8:31 PM
Deleted: <#>CATEGORY
New version� 3/11/2016 8:31 PM
Deleted: Annotations
New version� 3/11/2016 8:31 PM
Formatted ... [1]

New version� 3/11/2016 8:31 PM
Deleted: ,*,…2 , Jing Zhang2…hang1,2 and ... [2]

New version� 3/11/2016 8:31 PM
Deleted: 1Department of XXXXXXX, Ad-
dress XXXX etc.
New version� 3/11/2016 8:31 PM
Deleted: XXXXXXX, Address XXXX etc.
New version� 3/11/2016 8:31 PM
Deleted: disease patient genomes…is-... [3]

New version� 3/11/2016 8:31 PM
Deleted: […]

Lucas Lochovsky� 1/23/2016 4:16 PM
Comment [1]: Need to add this 

New version� 3/11/2016 8:31 PM
Deleted: background 

New version� 3/11/2016 8:31 PM
Deleted: Although…t is well known that the ... [4]

New version� 3/11/2016 8:31 PM
Formatted ... [5]

New version� 3/11/2016 8:31 PM
Deleted: MOAT simulates the background 
distribution of somatic mutations in the human 
genome by creating permutations of the input 
variant set. In other words, given the number 
of samples and variants in the input file, how 
would those variants be distributed under the 
assumption that they arose solely due to back-
ground mutation processes? To answer this 
question, MOAT calculates new positions for 
each variant in the input set, accounting for 
mutability factors in the local genome context. ... [6]

New version� 3/11/2016 8:31 PM
Moved down [1]:  (Gabriel, et al., 2004). 

New version� 3/11/2016 8:31 PM
Formatted ... [7]

New version� 3/11/2016 8:31 PM
Deleted: Additionally, we evaluate MOAT ... [8]

New version� 3/11/2016 8:31 PM
Deleted: based

New version� 3/11/2016 8:31 PM
Formatted: ParaNoInd

New version� 3/11/2016 8:31 PM
Deleted: based…entric permutation algo-... [9]

New version� 3/11/2016 8:31 PM
Deleted: acceleration…arallelization of ... [10]



K.Takahashi et al. 

2 

3.2 MOAT-v: Variant-centric Permutation 
MOAT-v’s variant-centric permutation algorithm creates permuted 
datasets by assigning new coordinates to each variant within a 
local genome region to account for the covariate effects from 
known genomic features. These regions are fixed-width bins of a 
user-defined length, with the exception of mappability blacklist 
regions that include ENCODE consensus excludable regions, as 
well as centromeres and telomeres. 

As with MOAT-a, MOAT-v takes variants and annotations as 
inputs (Fig. 2a). MOAT-v will generate a permuted dataset by 
subdividing the genome into bins of a user-defined size, and as-
signing each bin’s variants new positions within the same bin. 
These new positions are chosen such that the trinucleotide context 
of the original variant is preserved (Fig. 2b). For example, if 
MOAT-v is given an input variant that has a reference base G, and 
is surrounded by a T and a C (i.e. the variant’s trinucleotide con-
text is TGC), then MOAT-v gathers up every position in the same 
bin where TGC occurs in the reference, and selects one of these 
with uniform probability. The selected position is the input vari-
ant’s coordinates in the permuted dataset. 

This process continues until n permutations have been generated. 
At this point, MOAT-v will calculate n intersecting permuted vari-
ant counts for each of the input annotations. A p-value for each 
annotation is determined based on the fraction of the n intersecting 
permuted variant counts that are equal to or greater than the inter-
secting variant count derived from the original vfile variants. 

Initial prototypes of the parallel version of MOAT-v used the 
Nvidia CUDA framework, but the necessity of loading the refer-
ence genome sequence to preserve trinucleotide context in the 
permutation step resulted in prohibitive memory requirements with 
respect to the available GPU video RAM. As a result, MOAT-v 
was instead written to parallelize its workflow across multi-core 
CPUs using the OpenMPI framework (Gabriel, et al., 2004). Under 
this arrangement, the work of generating a single permutation is 
split by chromosome, and each chromosome is assigned one of the 
available CPU cores. Since each chromosome’s reference sequence 
is held in a separate FASTA file, each core will load a separate 
file, ensuring no resource contention. When one core finishes a 
chromosome, it is assigned the next unprocessed chromosome. 
After all chromosomes are processed, the permuted variants are 

gathered and work begins on the next permutation, or, if all the 
permutations are complete, p-values are calculated. 

4 RESULTS 
4.1 MOAT-a 

Table 1. Speed benchmark of MOAT-a (CPU and GPU versions) with 
respect to the number of input annotations. Each time trial involved using 
MOAT-a to generate 1000 permuted variant datasets. For large datasets, the 
GPU version substantially outperforms the CPU version. 

Annotation 
set 

Number of 
annotations 

CPU version run-
ning time 

GPU version 
running time 

Fold 
speedup of 
GPU ver-
sion 

DRM ~14,000 1hr23min 1hr22min 1.01x 
TSS ~130,000 1hr55min 1hr26min 1.34x 
DHS ~3,000,000 13hr46min 2hr12min 6.26x 
 
We demonstrate the magnitude of the CUDA speedup by evaluat-
ing the running time of MOAT-a on datasets of various sizes, using 
both the CPU and GPU versions to calculate the output. We took a 
dataset of pan-cancer whole genome variant calls that includes 507 
cancer genomes of various types from (Alexandrov, et al., 2013), 
and 100 stomach cancer genomes from (Wang, et al., 2014), total-
ing ~8 million variants. We used 3 different annotation sets for our 
evaluation, representing 3 different input sizes to demonstrate 
MOAT-a’s scalability. These include the Distal Regulatory Mod-
ule (DRM) annotations from (Yip, et al., 2012), transcription start 
site (TSS) annotations derived by taking the 100bp regions up-
stream of each GENCODE gene start (Harrow, et al., 2012), and 

d_max	 d_min	 d_min	 d_max	annota+on	

permuted	annota+ons	

Figure 1 For each input annotation, MOAT-a finds the number of intersect-
ing vfile variants (red). The annotation’s coordinates are then shuffled to a 
new location within the local genome context bounded by user-defined 
parameters d_min and d_max, producing n permutations (blue). Each per-
mutation’s intersecting variant count is computed 

Figure 2 (a) In MOAT-v, the variant locations are permuted within the 
local genome context. The whole genome is divided into bins of a user-
defined size, and variants are moved to new coordinates within the same 
bin, preserving the local mutation context. As with MOAT-a, n permuta-
tions are produced. (b) To reflect the influence of nucleotide identity on 
mutation likelihood, MOAT-v ensures that variants are moved to locations 
with the same trinucleotide context. 
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the Dnase I hypersensitive (DHS) sites from the ENCODE project 
(Thurman, et al., 2012). These annotation sets represent 3 different 
orders of magnitude in size: the DRM set spans ~14,000 annota-
tions, the TSS set spans ~130,000 annotations, and the DHS set 
spans ~3 million annotations. We tested MOAT-a’s running time 
on these 3 annotation sets with the number of random bins n = 
1000. the results of which are shown in Table 1. It is clear that 
when scaling up to very large datasets, the CPU version’s runtime 
increases considerably, while the GPU version runtime rises very 
gradually. MOAT-a’s running time is not affected by the number 
of variants (data not shown). 

Due to the relative lack of verified noncoding regulatory ele-
ments associated with cancer, it is difficult to assess the accuracy 
of MOAT’s predictions. Nevertheless, we demonstrate MOAT’s 
usefulness for finding elevated mutation burdens in genomic ele-
ments by identifying highly mutated GENCODE transcription start 
sites, promoters, and distal regulatory modules, using the afore-
mentioned pancancer variant dataset. TERT, which has well-
documented cancer-associated promoter mutations (Vinagre, et al., 
2013), was found to have two TSSes with significant mutation 
burden (both had BH-corrected p-values of zero). Other well-
known cancer-associated TSS sites, including TP53 , LMO3, and 
AGAP5, also had significant mutation burdens (all had BH-
corrected p-values of zero). After applying Bcnjamini-Hochberg 
(BH) false discovery rate correction (Benjamini and Hochberg, 
1995) to all p-values, there were 5037 promoters, 1148 TSSes, and 
305 DRMs with significant mutation burdens. These may be used 
as a shortlist for investigating and validating individual variants’ 
associations with cancer. 

4.2 MOAT-v 
Using the same set of cancer variants used in the MOAT-a tests, 
parallel MOAT-v’s running time was evaluated across multiple 
CPU configurations to demonstrate the performance gains of the 
OpenMPI implementation. MOAT-v in OpenMPI is set up to run 
one master process on one of the available CPU cores, and use the 
rest for worker processes. Hence, the program must be run with 3 
cores to get two cores to process the work simultaneously, 4 cores 
to get three cores to process the work simultaneously, etc. Table 2 
represents the running time improvement relative to the number of 
workers added. This improvement scales close to linear with the 
number of workers, indicating that the load balancing between 
each CPU core is very evenly divided, enabling significant time 
savings when MOAT-v is run in parallel. 

Table 2. Speed benchmark of MOAT-v with respect to the number of CPU 
cores assigned worker processes. Each time trial involved using MOAT-v 
to generate one permuted variant dataset using ~8 million input variants, 
and 1,000,000-bp bins. 

# of worker CPU cores Running time Fold speedup 

1 3hr44min 1.00x 
2 1hr54min 1.97x 
4 1hr4min 3.50x 
8 40min 5.60x 
 

MOAT-v was used on the same variant and annotation sets used 
to demonstrate MOAT-a’s usefulness for finding elevated cancer 
mutation burdens. MOAT-v produced comparable results—the 
same known cancer-associated TSSes flagged as significant in 
MOAT-a were also flagged in MOAT-v. After applying BH cor-
rection to all p-values, there were 1394 promoters, 451 TSSes, and 
109 DRMs with significant mutation burdens. Hence, MOAT-v 
appears to be the more conservative algorithm. 

5 DISCUSSION 
Finding the genetic basis of disease enables the development of 
highly targeted therapies that promise to be far more effective than 
previous therapies. The current wave of next generation sequenc-
ing of thousands of genomes has provided the data necessary to 
find the precise phenomena responsible for the functional disrup-
tion that gives rise to disease phenotypes. Identification of genomic 
elements with a high mutation burden is useful for narrowing down 
the exact site of functional disruption. We introduce Mutations 
Overburdening Annotations Tool (MOAT), a new software tool to 
facilitate such analyses. We demonstrate the usefulness of this tool 
for flagging putative noncoding cancer drivers, and provide 
CUDA- and OpenMPI-accelerated versions that dramatically in-
crease the speed of mutation burden analysis. Given the demand 
for efficient, meaningful analysis of genome sequence data that is 
now being produced at very high rate, we consider MOAT’s provi-
sion of such analysis for genetic disease drivers quite timely. 
 
Funding: This work was supported by the National Institutes of 
Health [5U41HG007000-04]. 
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