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a future in which biologists will utilize genetic variation
within human population(s) to help interpret their struc-
tural data [9,10]. Population genetic analysis within hu-
man proteins has already been used to identify novel
species-specific functional constraints within a protein
family [11]. In addition, a number of fundamental insights
about biological pathways can be garnered by analyzing
newly discovered loci associated with a disease [12].

In this review article, we initially explain how genomic
information is used to identify disease associated variants
as well as variants that are harmful to protein function
even within healthy individuals. We later describe how
structural information is utilized to understand the harm-
ful effects of different variants. Finally, we discuss the
need to integrate sequence and structural data with a
holistic system or network perspective before predicting
phenotypic effects of the variants.

Classical sequence comparison
Typically, structural biologists identify functionally con-
strained regions within a protein family by comparing
homologous sequences from different species (Figure 2a)
[13,14]. They focus on changes that take place over longer
evolutionary timescales by comparing the reference (or
dominant) sequence of each species rather than focusing
on intra-species changes. Nucleotides that do not change
across different species are conserved over millions of
years and are hence considered to be functionally impor-
tant. Due to redundancy within the genetic code, some of

the changes in the coding regions are silent as they occur
without a corresponding change in the protein sequence
(synonymous changes). With rare exceptions, all synony-
mous changes and a majority of the nonsynonymous
changes are expected to be neutral or harmful to the
protein function. A small fraction of the nonsynonymous
changes can, however, be beneficial to the fitness of the
species.

The ratio of rates of nonsynonymous to synonymous
variants (dN/dS) is commonly utilized to characterize
the selection pressure on the coding regions of the ge-
nome (Figure 2) [15]. If the dN/dS ratio for a coding
region is substantially less than 1, it indicates that a few of
these mutations are harmful or deleterious and that the
protein is under negative selection. On the other hand, a
dN/dS ratio substantially exceeding unity indicates that
evolution is promoting a change in the protein sequence
and that this protein (or protein region) is under positive
selection [11]. Proteins undergoing positive selection
may improve the fitness of an organism to different
environments.

Introduction to population sequencing
The vast amounts of genomic and exome sequences
available are providing unique opportunities to charac-
terize genetic variation within the human population
(Table 1). The exome comprises the coding sequences
of all protein-coding genes and constitutes approximately
1% of the total genomic sequence [16]. Due to the
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Current Opinion in Structural Biology

The pace of novel fold discovery has begun to saturate, while the volume of X-ray crystal structures and structurally-resolved protein–protein
interactions has continued to grow. However, the pace with which personal genomic sequencing databases are growing is considerably greater
than the pace at which structure databases are growing.

Current Opinion in Structural Biology 2015, 35:125–134 www.sciencedirect.com
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inexpensive. For these reasons, they rapidly have replaced molecular
mechanics force fields that had been used for NMA of proteins earlier
[6–10].

The robustness of NMAwith ENMs for the description of slow collec-
tive motions in proteins can seem surprising, given its simple construc-
tion. The motivation outlined above for using ENMs involved some
brave assumptions, and it was not necessarily clear beforehand that
these assumptions were valid. In particular, the harmonic approxima-
tion used for investigating dynamics of large conformational changes
and the absence of frictions such as those caused by the solvent. Yet,
early studies comparing NMA and experimental structural data, or
molecular dynamics simulations, did validate the use of NMA with
coarse-grained models. Validation against detailed molecular mechan-
ics force fields on large protein datasets has shown that even coarser
models than the one suggested by Tirion still reproduce the slow
dynamics obtained from molecular simulations (e.g. [11–14]). Further-
more, several studies have shown that in many cases, a few low-energy
normal modes account for most of the structure difference between two
conformational states [15–18]. Conformational changes can be described
by just a few low-energy normal modes intimately linked to the struc-
ture, indicating that proteins systematically make use of these low-
energy modes to achieve their function. The importance of these
modes for protein function has naturally led to the question of the
evolutionary conservation of their slow dynamics, analogous to the
conservation between structure and sequence. Fig. 1 illustrates the
relationship between the similarities in structural shape and intrinsic
domain motion described by the low energy normal modes from the
ENMs of two distantly related P-type ATPases.

Examples of comparative dynamics analysis include studying a set of
proteins that represent various functional states of a given enzymeupon
ligand-binding [19,20], evaluating the conservation of dynamics within
a homologous protein family [21–27], or within a set of proteins that
possess the same fold despite low sequence identity [28,29]. In a recent
article, CristianMicheletti comprehensively reviewed the use of dynam-
ics as an aid for sequence and structure alignments of proteins [30]. It
has been shown, when comparing structures of homologous proteins

and their intrinsic dynamics, that protein structures evolve along low-
energy modes [14,31,32]. Furthermore, a number of studies have
shown that low-energy modes are robust to sequence variations [14,
29,33–37]. The use of ENMs for comparative protein dynamics has the
potential to teach us more about a wide range of topics. To name a
few, these can include the effects of ligand or allosteric effector binding
in an active or allosteric site, changes in oligomeric state, changes in
sequence or structure through evolution, and the level of similarity in
dynamics between functionally similar enzymes.

Together with the question of the evolutionary conservation of
internal dynamics has come the need to reliably compare computed
dynamics for a set of protein structures. Due to the scarcity of experi-
mental data describing protein dynamics, molecular modelling at
large is an attractive alternative that has earlier demonstrated its predic-
tive power through numerous applications. ENMs are a model of choice
for such studies, even if computing power has admittedly becomemore
affordable than it was at the advent of ENMs and molecular dynamics
simulations on microsecond time-scales are becoming increasingly
accessible to the research community. The tractability and simplicity
of ENMs are unparalleled by molecular mechanics force fields and
ENMs defined with transferrable parameters can be easily applied to
large numbers of protein structures in automated ways. Beyond the
choice of the ENM and its parameterisation, comparing internal dynam-
ics of several protein structures comes with a set of methodological
choices, which are not obvious, but can significantly affect the outcome
of the comparative dynamics analysis. After an introduction to the
formalism of ENMs and their parameterisation, we focus on aspects
that are directly relevant for comparative analysis of multiple protein
structures, such as the similarity measures used to compare computed
dynamics, the influence of the alignment methods and ways to include
the influence of regions in the structures that are not similar in sequence
or conserved into the comparison. Next, using selected examples, we
describe how comparing protein intrinsic dynamics can be successfully
used to understand conformational changes upon ligand binding, func-
tional oligomerisation states and the overall role of intrinsic dynamics
in protein function. Finally we list some of the most commonly used
software and libraries for ENM calculations.

2. Elastic network models

2.1. Formalism

Since Tirion's contribution [3], further simplifications of the ENMs
have been made. Tirion's model was an elastic network with a node
for each atom and springs with uniform force-constants between all
pairs of nodes closer than a distance-based cut-off. Upon realising that
a good density estimate can be made even without atomic detail and
that backbone motion can be largely decoupled from side-chain move-
ment, Hinsen et al. [4] introduced a model with non-uniform distance
dependent force-constants, connecting only Cα atoms. Atilgan et al.
[5] also applied Tirion's uniform force constant model at the Cα granu-
larity. Thismodel is particularly convenient to visualise, and is illustrated
in Fig. 2. Another popular density-based model has been the early
Gaussian network model (GNM) [38]. While it obtains density esti-
mates in a way that is similar to Atilgan et al., this model does not em-
ploy a Hookean potential. The interpretation of GNMs is therefore
different from the ENMs.

Since the initial ENMs, many variants have been proposed. More
detailed descriptions of the local backbone configurations have been
investigated, such as parameters dependent on the secondary structure
of the backbone [39,40], the reintroduction of chemical bond informa-
tion or other kinds of residue specific interaction terms [41–43] as
well as the modelling of side-chain locations [44]. On the other hand,
simplifications to fewer coordinates have been proposed, both in terms
of simpler coordinate systems [45,46] and less granular representations

Fig. 1.Normalmode vectors fromelastic networkmodels of two distantly relatedproteins.
The SR Calcium ATPase 1 (PDB ID: 1WPG [126], green) and the Copper-transporting PIB-
type ATPase (PDB ID: 3RFU [127], cyan) have similar low frequency modes as illustrated
here by the third lowest energy modes of each protein (red arrows). These vectors show
the flexibility of the four domains of the proteins with respect to each other. This is an
example where two structures with similar shapes yield comparable normal mode
vectors from ENMs. The normal mode vector fields for these structures were computed
using WEBnma [110] and the images were rendered in VMD [128].

912 E. Fuglebakk et al. / Biochimica et Biophysica Acta 1850 (2015) 911–922

PDB%ID:%3RFU%
Adapted%from%Fuglebakk%et%al,%2014%
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deformed as a result of the normal mode fluctuations (Figure 1A, top-right) receive a high score (termed 
the binding leverage for that site), whereas shallow sites with few interacting residues (Figure 1A, bottom-
left) or sites that undergo minimal change over the course of a mode fluctuation (Figure 1A, bottom-right) 
receive low binding leverage scores. Specifically, the binding leverage score for a given site is calculated as 
 

 
 
Here, the outer sum is taken over the 10 modes, and the pair of inner sums are taken over all pairs of 
residues (i,j) such that the line connecting the pair lies within 3.0 Angstroms of any atom within the 
simulated ligand. The value ∆dij(m) for each residue pair (i,j) represents the change in the distance between 
residues i and j when this distance is calculated using mode m. Thus, one may think of binding leverage as 
qualitatively predicting the extent to which a surface pocket is deformed when the protein undergoes 
conformational transitions. 
 
3.1-a-iii  Defining & Applying Thresholds to Select High-Confidence Surface-Critical Sites 

As discussed in the main text, without applying thresholds to the list of ranked surface sites that 
remain after running the binding leverage calculations, a very large number of sites would occupy the 
protein surface (Figure S2A). Thus, it is necessary to trim and process this list. To do so, we borrow from 
principles in energy gap theory (Bryngelson et al., 1995). Details regarding the calculations for establishing 
a threshold on the number of sites are given here. 

For each of the N candidate binding sites in what we call “pre-processed ranked list of sites” 
(produced by the procedure outlined above), we calculate the value ∂BL(j)/∆BL. Here, j is the jth site to 
appear in the pre-processed ranked list of sites, with this list of sites being ranked in descending order of 
each site’s binding leverage score (see above). ∂BL(j) is defined as the difference in the binding leverage 
scores of the jth site and the (j-1)th site in the ranked list. Because the list of sites is organized in descending 
order of binding leverage scores, ∂BL(j) ≥ 0. ∆BL is a constant defined as: 
 

∆BL  =  maxbinding_leverage_score  –  minbinding_leverage_score 
 
∆BL is thus the difference in the binding scores associated with the very top site and very bottom site in this 
ranked. Qualitatively, a large value for ∂BL(j)/∆BL indicates that there is a large drop in binding 
leverage scores in going from site j to site (j-1) within the pre-processed ranked list. 

We then consider those sites with the highest ∂BL/∆BL values – specifically, we consider the top 
5.5% of sites in terms of ∂BL/∆BL. Thus, we are considering site j if there is a very large gap in binding 
leverage scores between sites j and (j-1). The lowest-occurring site within this considered list of high 
∂BL/∆BL values demarcates a threshold beyond which we reject all lower sites within the pre-processed 
ranked list, leaving only what we call the “processed ranked list of sites”. 

We then go up from to bottom through the top of this processed ranked list of sites, and for each 
site, we determine the Jaccard similarity with all sites above. If the Jaccard similarity with any site above 
exceeds 0.7, then the lower site is removed from the processed ranked list. The final list obtained after 
performing these Jaccard similarity filters is taken to represent the set of surface-critical sites on a structure. 

In counting the final number of truly distinct surface-critical sites for any given structure, we 
remove redundant sites within the set of surface-critical sites obtained in the process above, as some of the 
sites within this set may still exhibit considerable mutual overlap. A site i within the list of surface-critical 
sites is said to be redundant if it is assigned a redundancy score that exceeds 0.4, where 

 
redundancy_score(i)  =  | {Rsite_i!}!!� {Rsites>i} |  /  Nres_i 

 
Here, {Rsite_i} is the set of residues in site i, {Rsites>i} is the union of residues in all accepted sites above site 
i in the list of sites, Nres_i is the number of residues in site i, and the |…| notation in the denominator of this 
ratio is meant to designate the number of residues in the indicated intersection. If this redundancy score is 
less than 0.4, then site i is considered to be truly distinct from all other sits, and it is included in the list of 
distinct sites. If the redundancy score exceeds 0.4, then the site overlaps with another site on the surface, 
and it is thus rejected from the set of accepted distinct sites. Finally, the total number of sites in the 
accepted set of sites is taken as the number of distinct sites for a structure. 

�� ij
 i     j

¨dbinding leverage  =  2

��������������ij(m)
 i     j
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HOLO$ APO$
1ake%(AP5)% 4ake%
3cep%(G3P,!IDM,!PLP)% 1bks%(PLP)%
1hor%(AGP,%PO4,%[&%16G%in%pdb%1HOT])% 1cd5%
2c2b%(SAM,%[&%LLP%in%pdb%2c2g])% 1e5x%
1gz3%(ATP,!FUM,$OXL)% 1efk%(MAK)%
1atp%(ATP)% 1j3h%
1hwz%(GLU,%GTP,!NDP%[&%ADP%in%PDB%1NQT])% 1nr7%
1xtu%(CTP,!U5P)% 1xtt%(ACY,%U5P)%
1aax%(BPM%[&%892%in%PDB%1T49])% 2hnp%
7at1%(ATP,%MAL,%PCT%[&%CTP%in%PDB%1RAC],%[&%PAL%in%PDB%1D09])% 3d7s%
3ju6%(ANP,%ARG)% 3ju5%
6pfk%(PGA%[&%F6P!+!ADP!in%PDB%4PFK])% 3pfk%(PO4)%
 

 
Table S1, related to Table 1. Set of 12 canonical proteins, organized by state (apo or holo) 
These 12 proteins were chosen to constitute the canonical set for several reasons: the allosteric mechanisms 
of their natural ligands are well understood, and both the holo and apo states for each system are available 
and clearly distinguishable; in addition, these proteins have been extensively investigated in the contexts of 
both binding leverage and allostery in general. Ligands are given in parentheses (those in bold text 
designate the ligands used to define residues involved in ligand-binding interactions). 
 
 
 
 
 

 

n!
Mean!fract.!Of!ligandH!

binding!sites!captured!

6% 0.56%
5% 0.59%
4% 0.65%
3% 0.69%
2% 0.79%
1% 0.84%

 

Table S2, related to Table 1. Capturing known-ligand binding sites at varying thresholds 
Here, n designates the number of residues within a surface-critical site that overlap with known ligand-
binding residues. For the calculations reported above and in the main text, this value is taken to be n=6. 
Because each surface-critical site typically has 10 residues, and never has more than 10 residues, this 
criterion enforces that a majority of surface-critical residues within a given site overlap with known ligand-
binding residues in order to be counted as a site match. However, as this threshold (n) is relaxed to lower 
values, the fraction of captured known ligand-binding sites improves rapidly, suggesting that surface-
critical sites generally lie close to known ligand binding sites in many cases. 
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Figure 2.5: Measures of convergence on 26 proteins using different scaling factors for the number of 
steps in each MC simulation. Dark blue signifies strong convergence, and light blue signifies poor 
convergence. Convergence is quantified by running the simulation on a particular structure with a certain 
number of MC steps 5 times, and then calculating the average Jaccard similarity in the sites identified 
between all 5C2 pairs of replicate simulations. The 26 structures shown (represented by their PDB IDs in the 
middle column between the heatmaps) were chosen to constitute a diverse set with respect to size and 
topological character. Left: heatmap rendering in which each cell is colored by the absolute value of its 
convergence (i.e., mean Jaccard similarity between all 5C2 pairs of replicate simulations). Right: heatmap 
rendering in which each cell within a given row is colored relative to the strength of the convergence scores 
in other cells within the same row (i.e., relative to other scaling factors when running the simulations on the 
same structure). 
 

rotational, and angular degrees of freedom. It is only the ligand that explores these degrees of 

freedom - the protein remains static throughout this MC simulation. The potential function 

usually “pushes” the ligand to favorably occupy a pocket on the protein surface after all steps of 

the MC simulation are completed. The ligand is thus in contact with a number of residues 

(typically 10-20) at the end of the simulation. As with the approach taken by Mitternacht and 

Berezovsky, this list of residues is ordered by local closeness (LC). LC is a geometric quantity 

that provides a measure of the degree of a residue in the residue-residue contact network; see 

(Mitternacht and Berezovsky, 2011b) for further discussion of LC. The 10 residues with greatest 

LC are taken as the final “site” occupied by the ligand at the end of this MC simulation (the 

remaining residues are not considered to be part of the site). Thus, the output of this single MC 
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Figure 2.3: Summary statistics for surface-critical sites. Panel (A) shows the distribution of the number 
of surface-critical sites per complex without applying thresholds, with complexes represented in biological 
assembly files downloaded from the PDB. Without applying thresholds to the list of ranked surface-critical 
sites, the protein is often covered with an excess of identified critical sites. Distributions of the numbers of 
distinct surface-critical sites per domain and per complex are given in panels (B) and (C), respectively. 
 
 

How well does this model identify known allosteric sites on the surfaces of apo proteins 

within the canonical set of 12 proteins? Within this set, known ligand-binding residues of an apo 

structure are taken to be those within 4.5 Angstroms of the ligand in the corresponding holo 

structure (Table 2.1). Within this set, an average of 55.6% of the sites known to be directly 

involved in ligand or substrate binding are positively identified (see Table 2.2 and Figure 2.2). It 

has previously been shown that the sites in aspartate transcarbamoylase (PDB ID 3D7S) are 

especially difficult to identify (Mitternacht and Berezovsky, 2011); excluding aspartate 

transcarbamoylase results in finding an average of 61% of known biological ligand binding sites. 

Some of the sites identified do not directly overlap with known binding regions, but these 

“false positives” nevertheless exhibit some degree of overlap with binding sites (Table 2.3). In 

addition, those surface-critical sites that do not match known binding sites may nevertheless 

correspond to latent allosteric regions: even if no known biological function is assigned to such 

regions, their occlusion may nevertheless disrupt hitherto unfound large-scale motions. Such sites 

potentially may impart allosteric properties through previously uncharacterized ligands or through 

artificial ligands, such as drugs targeted to specific proteins. 
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Figure S1, related to Table 1. Canonical proteins with surface-critical and known ligand-binding 
sites.  Left panels show sites that are scored highly (i.e., surface-critical residues, in red). Right panels show 
residues (yellow) that directly contact ligands, based on the holo structure (see Table S1). PDB IDs: (A) 
3PFK; (B) 1EFK; (C) 4AKE; (D) 2HNP; (E) 1CD5; (F) 3JU5; (G) 1BKS; (H) 1XTT; (I) 1NR7; (J) 3D7S; 
(K) 1E5X; (L) 1J3H. 
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Figure S1, related to Table 1. Canonical proteins with surface-critical and known ligand-binding 
sites.  Left panels show sites that are scored highly (i.e., surface-critical residues, in red). Right panels show 
residues (yellow) that directly contact ligands, based on the holo structure (see Table S1). PDB IDs: (A) 
3PFK; (B) 1EFK; (C) 4AKE; (D) 2HNP; (E) 1CD5; (F) 3JU5; (G) 1BKS; (H) 1XTT; (I) 1NR7; (J) 3D7S; 
(K) 1E5X; (L) 1J3H. 
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Table 1.  Statistics on the surfaces of apo structures within the canonical set of proteins

Phosphofructokinase (3pfk)      51.0            20.4          0.255 (0.155)     19            3             3                              100.0
Adenylate kinase (4ake)              45.4            17.8           0.274 (0.154)     29            2             2                             100.0
G-6-P deaminase (1cd5)             58.9            10.0          0.153 (0.096)      24            2             1                             50.0
cAMP-dep. prot. kin. (1j3h)        6.6              8.0            0.25 (0.041)          2               1             1                              100.0
Trp synthase (1bks)                      34.3            9.7            0.079 (0.079)     24            4             1                              25.0
Thr synthase (1e5x)                      20.7            9.3            0.139 (0.077)     17            3              2                             66.7
Hum. malic enzyme (1efk)          5.5               8.6            0.03 (0.036)        10            10             0                             0.0
Glu dehydrogenase (1nr7)         14.9            17.5          0.187 (0.102)      45            24            6                             25.0
P-ribosyltransferase (1xtt)          29.8            19.6          0.295 (0.154)      31            5              5                             100.0
Tyr phosphatase (2hnp)             73.9            13.3          0.16 (0.134)         25            2               2                             100.0
Asp transcarbamoylase (3d7s)  26.7            13.7          0.054 (0.064)       26            9              0                             0.0
Arg kinase (3ju5)                           1.6               3.9            0 (0.013)             1               2              0                             0.0

% Surf 
(SC res)

% Surf
(LB res)

SC-LB
overlap

# SC
sites

# LB
sites

# Overlapping
sites

% LB sites
identi!ed

mean                                                    30.8            12.7          0.156 (0.092)     21.083    5.583    1.917                      55.6

Protein name
(pdb ID)
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where 

Covij  =  ⟨ri ! rj⟩$

Here, ri and rj designate the vectors associated with residues i and j (respectively) under a 

particular mode. The brackets in the term ⟨ri ! rj⟩ indicate that the mean value for the dot product 

ri ! rj (over the 10 lowest-frequency non-trivial modes) is taken. 

An example may help to clarify this. If two interacting residues exhibit a high degree of 

correlated motion, then the motion of one may tell us about the motion of the other, suggesting a 

strong flow of energy or information between the two residues, resulting in a low value for Dij: a 

strong correlation (or a strong anti-correlation) between nodes i and j result in a value for ∣Cij∣ that 

is close to 1. This gives a low value for Dij (−log(∣Cij∣) ≈ 0). Thus, given a strong correlated 

motion, this effective distance Dij between residues i and j is very short. This small Dij means that 

any path involving this pair of residues is likewise shorter as a result, thereby more likely placing 

this pair of residues within a shortest path, and more likely rendering this pair a bottleneck pair. 

In sum, this edge-weighting scheme is such that a high correlation in motion results in a short 

effective distance, thereby more likely rendering this a bottleneck pair of residues.  

In the opposite scenario, for interacting residues with poor correlation values (Cij ≈ 0), a 

large effective distance Dij results, thereby making it more difficult for the pair of residues to lie 

within shortest paths or within the same community. 

Once all connections between interacting pairs of residues are appropriately weighted and 

the communities are assigned using the Girvan-Newman (GN) algorithm (Girvan et al., 2002) 

with these effective distances, a residue is deemed to be critical for allosteric signal transmission 

(i.e., an interior-critical residue) if it is involved in the highest-betweenness edge connecting two 

distinct communities. A given edge’s betweenness is taken to be the number of shortest paths 

involving that edge, where a path length is the sum of its associated effective edge distances (see 

above). The shortest distance between each NC2 pair of nodes in the network of N residues is 

calculated using the Floyd–Warshall algorithm (Cormen et al, 2009). 

! 24!

 
 

Figure 2.6: Community partitioning for canonical systems. Different network communities are colored 
differently. Residues shown as spheres are interior-critical residues, and they are colored based on 
community membership, and black lines connecting pairs of critical residues represent the highest-
betweenness edges between the corresponding communities.  
 

2.3-a-i  Network Formalism and Weighting Scheme 

The network representing interacting residues is first constructed. An edge between 

residues i and j is drawn if any heavy atom within residue i is located within 4.5 Angstroms of 

any heavy atom within residue j, and the trivial cases of pairs of residues that are adjacent in 

sequence are excluded (i.e., residues that are adjacent in sequence are not considered to be in 

contact within the network). 

Network edges are then weighted on the basis of correlated motions of the interacting 

residues, with these motions provided by the same ANMs that are used in identifying surface-

critical residues. However, as with surface-critical residues, it is also possible to model the 

motions for identifying interior-critical residues using pairs of crystallographic structures in 

distinct conformations (Section 3.4). The edge weighting scheme is performed as follows: an 

“effective distance” Dij for an edge between interacting residues i and j is set to Dij = −log(∣Cij∣), 

where Cij designates the correlated motions between residue i and j: 

Cij  =  Covij  /  √(⟨ri
2⟩⟨rj

2⟩) 
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Degree$of$Concordance$Between$Community$Detec>on$Methods:$$GN$vs.$Infomap$

Protein$(PDB,$#$residues)$ Community$Detec>on$Method:$$GN$|$InfoMap$

Modularity$ #$Comm.$ #$Cri>cal$Residues$

%$of$GN$cri>cal$residues$which$$

match$those$in$Infomap$

(expected)$

tRNA"synthetase"(1N78,"542)" 0.71""|""0.68" 14""|""25" 47""|""109" 0.28"(0.20)"

Adenylate"kinase"(4AKE,"428)" 0.73""|""0.70" 11""|""20" 39""|""""82" 0.90"(0.19)"

Arginine"Kinase"(3JU5,"728)" 0.72""|""0.69" 12""|""28" 41""|""142" 0.22"(0.19)"

Tyrosine"Phosphatase"(2HNP,"278)" 0.59""|""0.59" ""7""|""15" 27""|""""70" 0.26"(0.25)"

Phosphoribosyltransferase"(1XTT,"846)" 0.72""|""0.68" ""9""|""32" 36""|""174" 0.22"(0.21)"

cAMPHdep."PK"(1J3H,"332)" 0.66""|""0.64" 11""|""19" 36""|""""78" 0.33"(0.23)"

Anthranilate"synthase"(1I7Q,"1418)" 0.75""|""0.69" 12""|""46" 51""|""288" 0.31"(0.20)"

Malic"enzyme"(1EFK,"2212)" 0.81""|""0.72" 17""|""70" 74""|""425" 0.18"(0.19)"

Threonine"synthase"(1E5X,"884)" 0.73""|""0.69" 13""|""36" 43""|""192" 0.28"(0.22)"

GH6HP"Deaminase"(1CD5,"1596)" 0.79""|""0.72" 18""|""54" 58""|""266" 0.16"(0.17)"

Phosphofructokinase"(3PFK,"1276)" 0.76""|""0.68" 10""|""51" 45""|""307" 0.24"(0.24)"

Tryptophan"synthase"(1BKS,"1294)" 0.77""|""0.69" 10""|""46" 41""|""284" 0.24"(0.22)"

Means/ 0.73///|///0.68/ 12.0//|//36.8/ 44.8//|//201.4/ 0.3/

Adapted"from"Clarke*,"Sethi*,"et"al"(in%press)%
30"
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Models$of$Protein$Conforma>onal$Change$

Mo>on$Vectors$from$Normal$Modes$(ANMs)$

inexpensive. For these reasons, they rapidly have replaced molecular
mechanics force fields that had been used for NMA of proteins earlier
[6–10].

The robustness of NMAwith ENMs for the description of slow collec-
tive motions in proteins can seem surprising, given its simple construc-
tion. The motivation outlined above for using ENMs involved some
brave assumptions, and it was not necessarily clear beforehand that
these assumptions were valid. In particular, the harmonic approxima-
tion used for investigating dynamics of large conformational changes
and the absence of frictions such as those caused by the solvent. Yet,
early studies comparing NMA and experimental structural data, or
molecular dynamics simulations, did validate the use of NMA with
coarse-grained models. Validation against detailed molecular mechan-
ics force fields on large protein datasets has shown that even coarser
models than the one suggested by Tirion still reproduce the slow
dynamics obtained from molecular simulations (e.g. [11–14]). Further-
more, several studies have shown that in many cases, a few low-energy
normal modes account for most of the structure difference between two
conformational states [15–18]. Conformational changes can be described
by just a few low-energy normal modes intimately linked to the struc-
ture, indicating that proteins systematically make use of these low-
energy modes to achieve their function. The importance of these
modes for protein function has naturally led to the question of the
evolutionary conservation of their slow dynamics, analogous to the
conservation between structure and sequence. Fig. 1 illustrates the
relationship between the similarities in structural shape and intrinsic
domain motion described by the low energy normal modes from the
ENMs of two distantly related P-type ATPases.

Examples of comparative dynamics analysis include studying a set of
proteins that represent various functional states of a given enzymeupon
ligand-binding [19,20], evaluating the conservation of dynamics within
a homologous protein family [21–27], or within a set of proteins that
possess the same fold despite low sequence identity [28,29]. In a recent
article, CristianMicheletti comprehensively reviewed the use of dynam-
ics as an aid for sequence and structure alignments of proteins [30]. It
has been shown, when comparing structures of homologous proteins

and their intrinsic dynamics, that protein structures evolve along low-
energy modes [14,31,32]. Furthermore, a number of studies have
shown that low-energy modes are robust to sequence variations [14,
29,33–37]. The use of ENMs for comparative protein dynamics has the
potential to teach us more about a wide range of topics. To name a
few, these can include the effects of ligand or allosteric effector binding
in an active or allosteric site, changes in oligomeric state, changes in
sequence or structure through evolution, and the level of similarity in
dynamics between functionally similar enzymes.

Together with the question of the evolutionary conservation of
internal dynamics has come the need to reliably compare computed
dynamics for a set of protein structures. Due to the scarcity of experi-
mental data describing protein dynamics, molecular modelling at
large is an attractive alternative that has earlier demonstrated its predic-
tive power through numerous applications. ENMs are a model of choice
for such studies, even if computing power has admittedly becomemore
affordable than it was at the advent of ENMs and molecular dynamics
simulations on microsecond time-scales are becoming increasingly
accessible to the research community. The tractability and simplicity
of ENMs are unparalleled by molecular mechanics force fields and
ENMs defined with transferrable parameters can be easily applied to
large numbers of protein structures in automated ways. Beyond the
choice of the ENM and its parameterisation, comparing internal dynam-
ics of several protein structures comes with a set of methodological
choices, which are not obvious, but can significantly affect the outcome
of the comparative dynamics analysis. After an introduction to the
formalism of ENMs and their parameterisation, we focus on aspects
that are directly relevant for comparative analysis of multiple protein
structures, such as the similarity measures used to compare computed
dynamics, the influence of the alignment methods and ways to include
the influence of regions in the structures that are not similar in sequence
or conserved into the comparison. Next, using selected examples, we
describe how comparing protein intrinsic dynamics can be successfully
used to understand conformational changes upon ligand binding, func-
tional oligomerisation states and the overall role of intrinsic dynamics
in protein function. Finally we list some of the most commonly used
software and libraries for ENM calculations.

2. Elastic network models

2.1. Formalism

Since Tirion's contribution [3], further simplifications of the ENMs
have been made. Tirion's model was an elastic network with a node
for each atom and springs with uniform force-constants between all
pairs of nodes closer than a distance-based cut-off. Upon realising that
a good density estimate can be made even without atomic detail and
that backbone motion can be largely decoupled from side-chain move-
ment, Hinsen et al. [4] introduced a model with non-uniform distance
dependent force-constants, connecting only Cα atoms. Atilgan et al.
[5] also applied Tirion's uniform force constant model at the Cα granu-
larity. Thismodel is particularly convenient to visualise, and is illustrated
in Fig. 2. Another popular density-based model has been the early
Gaussian network model (GNM) [38]. While it obtains density esti-
mates in a way that is similar to Atilgan et al., this model does not em-
ploy a Hookean potential. The interpretation of GNMs is therefore
different from the ENMs.

Since the initial ENMs, many variants have been proposed. More
detailed descriptions of the local backbone configurations have been
investigated, such as parameters dependent on the secondary structure
of the backbone [39,40], the reintroduction of chemical bond informa-
tion or other kinds of residue specific interaction terms [41–43] as
well as the modelling of side-chain locations [44]. On the other hand,
simplifications to fewer coordinates have been proposed, both in terms
of simpler coordinate systems [45,46] and less granular representations

Fig. 1.Normalmode vectors fromelastic networkmodels of two distantly relatedproteins.
The SR Calcium ATPase 1 (PDB ID: 1WPG [126], green) and the Copper-transporting PIB-
type ATPase (PDB ID: 3RFU [127], cyan) have similar low frequency modes as illustrated
here by the third lowest energy modes of each protein (red arrows). These vectors show
the flexibility of the four domains of the proteins with respect to each other. This is an
example where two structures with similar shapes yield comparable normal mode
vectors from ENMs. The normal mode vector fields for these structures were computed
using WEBnma [110] and the images were rendered in VMD [128].

912 E. Fuglebakk et al. / Biochimica et Biophysica Acta 1850 (2015) 911–922

•  harmonic"approximaGons"
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•  no"info"regarding"energy"barriers/crossing"events"
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Figure S3, related to Figure 6. Pipeline for identifying alternative conformations throughout the 
PDB. 
(A) Pipeline for identifying distinct conformations and critical residues: Top to bottom: BLASTClust is 
applied to the sequences corresponding to a filtered set of structures, thereby providing a large number of 
sequence-identical sets of proteins (i.e., “sequence groups”). For each sequence-identical group, a multiple 
structure alignment is performed using STAMP. The example shown here is adenylate kinase. Using the 
pairwise RMSD values in this structure alignment, the structures are clustered using the UPGMA 
algorithm, and K-means with the gap statistic (δ) is performed to identify the number of distinct 
conformations. The plot at left identifies 2 as the optimal value for K: the solid line represents δ(K) values 
at each value of K, and the dotted line represents δ(K+1) – sk+1 for each value of K (see SI Methods section 
3.2-b for details). The structures that exhibit multiple clusters (i.e., those with K > 1) are then taken to 
exhibit multiple conformations. Finally, surface-critical (bottom-left) and interior-critical (bottom-right) 
residues are identified on those proteins determined to exist as multiple conformations.  (B) Energy 
landscapes to describe distributions of different conformations. Energy landscape theory may be used to 
describe the relative populations of alternative biological states and conformations (for instance, 
active/inactive, or holo/apo). In the apo state, the landscape may take the form of the red curve, resulting in 
most proteins favoring the conformation shown in red. Once binding to ligand, the landscape becomes 
reconfigured to take the shape in the cyan curve, thereby shifting the distribution of conformations to that 
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Domain d  2.1  2.3  0.1  0.0 
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algorithm, and K-means with the gap statistic (δ) is performed to identify the number of distinct 
conformations. The plot at left identifies 2 as the optimal value for K: the solid line represents δ(K) values 
at each value of K, and the dotted line represents δ(K+1) – sk+1 for each value of K (see SI Methods section 
3.2-b for details). The structures that exhibit multiple clusters (i.e., those with K > 1) are then taken to 
exhibit multiple conformations. Finally, surface-critical (bottom-left) and interior-critical (bottom-right) 
residues are identified on those proteins determined to exist as multiple conformations.  (B) Energy 
landscapes to describe distributions of different conformations. Energy landscape theory may be used to 
describe the relative populations of alternative biological states and conformations (for instance, 
active/inactive, or holo/apo). In the apo state, the landscape may take the form of the red curve, resulting in 
most proteins favoring the conformation shown in red. Once binding to ligand, the landscape becomes 
reconfigured to take the shape in the cyan curve, thereby shifting the distribution of conformations to that 
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sequence-identical sets of proteins (i.e., “sequence groups”). For each sequence-identical group, a multiple 
structure alignment is performed using STAMP. The example shown here is adenylate kinase. Using the 
pairwise RMSD values in this structure alignment, the structures are clustered using the UPGMA 
algorithm, and K-means with the gap statistic (δ) is performed to identify the number of distinct 
conformations. The plot at left identifies 2 as the optimal value for K: the solid line represents δ(K) values 
at each value of K, and the dotted line represents δ(K+1) – sk+1 for each value of K (see SI Methods section 
3.2-b for details). The structures that exhibit multiple clusters (i.e., those with K > 1) are then taken to 
exhibit multiple conformations. Finally, surface-critical (bottom-left) and interior-critical (bottom-right) 
residues are identified on those proteins determined to exist as multiple conformations.  (B) Energy 
landscapes to describe distributions of different conformations. Energy landscape theory may be used to 
describe the relative populations of alternative biological states and conformations (for instance, 
active/inactive, or holo/apo). In the apo state, the landscape may take the form of the red curve, resulting in 
most proteins favoring the conformation shown in red. Once binding to ligand, the landscape becomes 
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inexpensive. For these reasons, they rapidly have replaced molecular
mechanics force fields that had been used for NMA of proteins earlier
[6–10].

The robustness of NMAwith ENMs for the description of slow collec-
tive motions in proteins can seem surprising, given its simple construc-
tion. The motivation outlined above for using ENMs involved some
brave assumptions, and it was not necessarily clear beforehand that
these assumptions were valid. In particular, the harmonic approxima-
tion used for investigating dynamics of large conformational changes
and the absence of frictions such as those caused by the solvent. Yet,
early studies comparing NMA and experimental structural data, or
molecular dynamics simulations, did validate the use of NMA with
coarse-grained models. Validation against detailed molecular mechan-
ics force fields on large protein datasets has shown that even coarser
models than the one suggested by Tirion still reproduce the slow
dynamics obtained from molecular simulations (e.g. [11–14]). Further-
more, several studies have shown that in many cases, a few low-energy
normal modes account for most of the structure difference between two
conformational states [15–18]. Conformational changes can be described
by just a few low-energy normal modes intimately linked to the struc-
ture, indicating that proteins systematically make use of these low-
energy modes to achieve their function. The importance of these
modes for protein function has naturally led to the question of the
evolutionary conservation of their slow dynamics, analogous to the
conservation between structure and sequence. Fig. 1 illustrates the
relationship between the similarities in structural shape and intrinsic
domain motion described by the low energy normal modes from the
ENMs of two distantly related P-type ATPases.

Examples of comparative dynamics analysis include studying a set of
proteins that represent various functional states of a given enzymeupon
ligand-binding [19,20], evaluating the conservation of dynamics within
a homologous protein family [21–27], or within a set of proteins that
possess the same fold despite low sequence identity [28,29]. In a recent
article, CristianMicheletti comprehensively reviewed the use of dynam-
ics as an aid for sequence and structure alignments of proteins [30]. It
has been shown, when comparing structures of homologous proteins

and their intrinsic dynamics, that protein structures evolve along low-
energy modes [14,31,32]. Furthermore, a number of studies have
shown that low-energy modes are robust to sequence variations [14,
29,33–37]. The use of ENMs for comparative protein dynamics has the
potential to teach us more about a wide range of topics. To name a
few, these can include the effects of ligand or allosteric effector binding
in an active or allosteric site, changes in oligomeric state, changes in
sequence or structure through evolution, and the level of similarity in
dynamics between functionally similar enzymes.

Together with the question of the evolutionary conservation of
internal dynamics has come the need to reliably compare computed
dynamics for a set of protein structures. Due to the scarcity of experi-
mental data describing protein dynamics, molecular modelling at
large is an attractive alternative that has earlier demonstrated its predic-
tive power through numerous applications. ENMs are a model of choice
for such studies, even if computing power has admittedly becomemore
affordable than it was at the advent of ENMs and molecular dynamics
simulations on microsecond time-scales are becoming increasingly
accessible to the research community. The tractability and simplicity
of ENMs are unparalleled by molecular mechanics force fields and
ENMs defined with transferrable parameters can be easily applied to
large numbers of protein structures in automated ways. Beyond the
choice of the ENM and its parameterisation, comparing internal dynam-
ics of several protein structures comes with a set of methodological
choices, which are not obvious, but can significantly affect the outcome
of the comparative dynamics analysis. After an introduction to the
formalism of ENMs and their parameterisation, we focus on aspects
that are directly relevant for comparative analysis of multiple protein
structures, such as the similarity measures used to compare computed
dynamics, the influence of the alignment methods and ways to include
the influence of regions in the structures that are not similar in sequence
or conserved into the comparison. Next, using selected examples, we
describe how comparing protein intrinsic dynamics can be successfully
used to understand conformational changes upon ligand binding, func-
tional oligomerisation states and the overall role of intrinsic dynamics
in protein function. Finally we list some of the most commonly used
software and libraries for ENM calculations.

2. Elastic network models

2.1. Formalism

Since Tirion's contribution [3], further simplifications of the ENMs
have been made. Tirion's model was an elastic network with a node
for each atom and springs with uniform force-constants between all
pairs of nodes closer than a distance-based cut-off. Upon realising that
a good density estimate can be made even without atomic detail and
that backbone motion can be largely decoupled from side-chain move-
ment, Hinsen et al. [4] introduced a model with non-uniform distance
dependent force-constants, connecting only Cα atoms. Atilgan et al.
[5] also applied Tirion's uniform force constant model at the Cα granu-
larity. Thismodel is particularly convenient to visualise, and is illustrated
in Fig. 2. Another popular density-based model has been the early
Gaussian network model (GNM) [38]. While it obtains density esti-
mates in a way that is similar to Atilgan et al., this model does not em-
ploy a Hookean potential. The interpretation of GNMs is therefore
different from the ENMs.

Since the initial ENMs, many variants have been proposed. More
detailed descriptions of the local backbone configurations have been
investigated, such as parameters dependent on the secondary structure
of the backbone [39,40], the reintroduction of chemical bond informa-
tion or other kinds of residue specific interaction terms [41–43] as
well as the modelling of side-chain locations [44]. On the other hand,
simplifications to fewer coordinates have been proposed, both in terms
of simpler coordinate systems [45,46] and less granular representations

Fig. 1.Normalmode vectors fromelastic networkmodels of two distantly relatedproteins.
The SR Calcium ATPase 1 (PDB ID: 1WPG [126], green) and the Copper-transporting PIB-
type ATPase (PDB ID: 3RFU [127], cyan) have similar low frequency modes as illustrated
here by the third lowest energy modes of each protein (red arrows). These vectors show
the flexibility of the four domains of the proteins with respect to each other. This is an
example where two structures with similar shapes yield comparable normal mode
vectors from ENMs. The normal mode vector fields for these structures were computed
using WEBnma [110] and the images were rendered in VMD [128].

912 E. Fuglebakk et al. / Biochimica et Biophysica Acta 1850 (2015) 911–922
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Figure 4.1: Multiple metrics and datasets reveal that critical residues tend to be conserved. Surface- 
and interior-critical residues (red) in phosphofructokinase (PDB 3PFK) are given in (A) and (E), 
respectively. Distributions of cross-species conservation scores, 1000 Genomes SNV DAF averages, and 
ExAC SNV MAF averages for surface- and non-critical residue sets are given in (B), (C), and (D), 
respectively. The same distributions corresponding to interior- and non-critical residue sets are given in (F), 
(G), and (H), respectively. In (B), mean inter-species conservation scores for surface-critical sets are -
0.131, whereas non-critical residue sets with the same degree of burial have a mean score of +0.059 (p < 
2.2e-16). In (F), mean inter-species conservation scores for interior-critical sets are -0.179, whereas non-
critical residue sets with the same degree of burial have a mean score of -0.102 (p=3.67e-11). In (C), means 
for surface- and non-critical sets are 9.10e-4 and 8.34e-4, respectively (p=0.309); corresponding means in 
(D) are 4.09e-04 and 2.26e-04, respectively (p=1.49e-3). In (G), means for interior- and non-critical sets are 
2.82e-4 and 3.12e-3, respectively (p=1.80e-05); corresponding means in (H) are 3.08e-05 and 3.27e-04, 
respectively (p=7.98e-09). N = 421, 32, 84, 517, 31, and 90 structures for panels B, C, D, F, G, and H, 
respectively. P-values are based on Wilcoxon-rank sum tests. 
 

 

4.3  Conservation Amongst Modern-Day Humans 

In addition to measuring inter-species conservation, fully sequenced human genomes and 

exomes may be used to investigate conservation among human populations, as many constraints 

can be species-specific and active in more recent evolutionary history. Commonly used metrics 

for quantifying intra-species conservation include minor allele frequency (MAF) and derived 
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Figure 4.1: Multiple metrics and datasets reveal that critical residues tend to be conserved. Surface- 
and interior-critical residues (red) in phosphofructokinase (PDB 3PFK) are given in (A) and (E), 
respectively. Distributions of cross-species conservation scores, 1000 Genomes SNV DAF averages, and 
ExAC SNV MAF averages for surface- and non-critical residue sets are given in (B), (C), and (D), 
respectively. The same distributions corresponding to interior- and non-critical residue sets are given in (F), 
(G), and (H), respectively. In (B), mean inter-species conservation scores for surface-critical sets are -
0.131, whereas non-critical residue sets with the same degree of burial have a mean score of +0.059 (p < 
2.2e-16). In (F), mean inter-species conservation scores for interior-critical sets are -0.179, whereas non-
critical residue sets with the same degree of burial have a mean score of -0.102 (p=3.67e-11). In (C), means 
for surface- and non-critical sets are 9.10e-4 and 8.34e-4, respectively (p=0.309); corresponding means in 
(D) are 4.09e-04 and 2.26e-04, respectively (p=1.49e-3). In (G), means for interior- and non-critical sets are 
2.82e-4 and 3.12e-3, respectively (p=1.80e-05); corresponding means in (H) are 3.08e-05 and 3.27e-04, 
respectively (p=7.98e-09). N = 421, 32, 84, 517, 31, and 90 structures for panels B, C, D, F, G, and H, 
respectively. P-values are based on Wilcoxon-rank sum tests. 
 

 

4.3  Conservation Amongst Modern-Day Humans 

In addition to measuring inter-species conservation, fully sequenced human genomes and 

exomes may be used to investigate conservation among human populations, as many constraints 

can be species-specific and active in more recent evolutionary history. Commonly used metrics 

for quantifying intra-species conservation include minor allele frequency (MAF) and derived 

Critical 
Non-critical 

DAF (1000 Genomes) MAF (ExAC)

-1
.5

    
    

    
  -

1.
0 

    
    

    
 -0

.5
    

    
    

    
0.

0 
    

    
    

  0
.5

    
    

    
    

1.
0B

ConSurf Score

   2
e-

4 
    

    
    

   5
e-

4 
    

    
 1

e-
3 

    
    

2e
-3

    
    

    
    

5e
-3

    
    

 1
e-

2C

    
    

    
    

    
    

   5
e-

5 
    

    
    

    
    

   5
e-

4 
    

    
    

    
    

   5
e-

3

DA

    
    

    
    

    
    

  -
0.

5 
    

    
    

    
    

    
  0

.0
    

    
    

    
    

    
    

0.
5

F

    
    

    
    

    
    

    
5e

-4
    

    
    

    
    

    
    

5e
-3

    
    

    
    

    
    

    
 5

e-
2G

    
    

    
    

    
    

    
5e

-0
5 

    
    

    
    

    
    

 5
e-

4 
    

    
    

    
    

    
   5

e-
3H

surface

E
interior

53"



Co
nS

ur
f S

co
re

D
AF

 (1
00

0 
G

en
om

es
)

Co
nS

ur
f S

co
re

A B C

E F G

D

H

critical 

non-critical 

M
AF

 (E
xA

C)

D
AF

 (1
00

0 
G

en
om

es
)

M
AF

 (E
xA

C)

Co
nS

ur
f S

co
re

D
AF

 (1
00

0 
G

en
om

es
)

Co
nS

ur
f S

co
re

A B C

E F G

D

H

critical 

non-critical 

M
AF

 (E
xA

C)

D
AF

 (1
00

0 
G

en
om

es
)

M
AF

 (E
xA

C)

Adapted"from"Clarke*,"Sethi*,"et"al"(in%press)%

ExAC/
IntraOspecies$conserva>on$of$predicted$allosteric$residues$

54"



Using$the/frac-on/of/rare/alleles$a$conserva>on$metric$

55"



Co
nS

ur
f S

co
re

D
AF

 (1
00

0 
G

en
om

es
)

Co
nS

ur
f S

co
re

A B C

E F G

D

H

critical 

non-critical 

M
AF

 (E
xA

C)

D
AF

 (1
00

0 
G

en
om

es
)

M
AF

 (E
xA

C)

Co
nS

ur
f S

co
re

D
AF

 (1
00

0 
G

en
om

es
)

Co
nS

ur
f S

co
re

A B C

E F G

D

H

critical 

non-critical 

M
AF

 (E
xA

C)

D
AF

 (1
00

0 
G

en
om

es
)

M
AF

 (E
xA

C)

Using$the/frac-on/of/rare/alleles$a$conserva>on$metric$

Adapted"from"Clarke*,"Sethi*,"et"al"(in%press)%
56"



Conserva>on$of$predicted$allosteric$residues$

using$alterna>ve$crystal$structures$(“ACT”)$

RM
SD

En
er

gy

Landscape in Apo State

En
er

gy

Landscape in Holo State

En
er

gy

Holo Apo

HoloApo

En
er

gy

Landscape

Ligand

57"



Co
nS

ur
f S

co
re

D
AF

 (1
00

0 
G

en
om

es
)

Co
nS

ur
f S

co
re

A B C

E F G

D

H

critical 

non-critical 

M
AF

 (E
xA

C)

D
AF

 (1
00

0 
G

en
om

es
)

M
AF

 (E
xA

C)

Co
nS

ur
f S

co
re

D
AF

 (1
00

0 
G

en
om

es
)

Co
nS

ur
f S

co
re

A B C

E F G

D

H

critical 

non-critical 

M
AF

 (E
xA

C)

D
AF

 (1
00

0 
G

en
om

es
)

M
AF

 (E
xA

C)

Co
nS

ur
f S

co
re

D
AF

 (1
00

0 
G

en
om

es
)

Co
nS

ur
f S

co
re

A B C

E F G

D

H

critical 

non-critical 

M
AF

 (E
xA

C)

D
AF

 (1
00

0 
G

en
om

es
)

M
AF

 (E
xA

C)

CrossOspecies$conserva>on$of$predicted$allosteric$residues$

Adapted"from"Clarke*,"Sethi*,"et"al"(in%press)%

p=8.26eH14" p=4.94eH13"

Surface" Interior"

! 55!

 
 

Figure 4.5: Modeling protein conformational change through a direct use of crystal structures from 
alternative conformations using absolute conformational transitions (ACT). (A) Distributions (155 
structures) of the mean conservation scores on surface-critical (red) and non-critical residues with the same 
degree of burial (blue). (B) Distributions (159 structures) of the mean conservation scores for interior-
critical (red) and non-critical residues with the same degree of burial (blue). Mean values are given in 
parentheses. Results for single-chain proteins are shown, and p-values were calculated using a Wilcoxon 
rank sum test. 
 
 

4.5  Human Disease & Variation Data in Light of Predicted 

Allosteric Sites 

Directly related to conservation is the extent to which an SNV is believed to be disease-

associated. SIFT (Ng and Henikoff, 2001) and PolyPhen (Adzhubei et al., 2010) are two tools for 

predicting SNV deleteriousness. ExAC SNVs that intersect critical residues exhibit significantly 

higher PolyPhen scores relative to non-critical residues, suggesting the potentially higher disease 

susceptibility at critical residues (Figure 4.6). However, significant disparities were not observed 

in SIFT scores (Figure 4.7). 

Using HGMD (Stenson et al., 2014) and ClinVar (Landrum et al., 2014), proteins with 

critical residues that coincide with disease-associated SNVs are identified (File S2). Several 

critical residues coincide with known disease loci for which the mechanism of pathogenicity is 

otherwise unclear (File S3). The fibroblast growth factor receptor (FGFR) is a case-in-point  
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including"changes"that"enable"applicaGons"to"large"protein"datasets"in"a"

computaGonally"tractable"manner"

"

A"combinaGon"of"both"models"as"complementary"approaches"for"predicGng"

allosteric"residues"throughout"the"enGre"protein"(surface"and"interior)"within"one"

unified"study"

"

A"newlyHintroduced"piece"of"soqware"(which"may"either"be"accessed"as"a"web"

server"or"downloaded"as"source"code)"that"makes"both"methods"more"easily"

available"to"the"scienGfic"public"

"

A"downloadable"database/atlas"of"allosteric"sites"within"many"proteins,"as"well"as"

a"dataset"of"the"culled"alternaGve"conformaGons"

"

The"applicaGon"of"these"models"to"large"datasets"produced"through"nextH

generaGon"sequencing"iniGaGves,"and"the"finding"that"the"predicted"sites"are"
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metrics"and"sources"of"data"
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Edge"‘distance’"between"residues"i"&"
j"is:"

""""""""Wij"="Hln(|Cij|)"
Cij"is"the"correlaGon"between"the"

moGons"of"residues"i"&"j."
A"large"‘distance’"(i.e.,"low"correlated"
moGon)"increases"the"shortest"path"
lengths"between"such"residues."
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an"opGmal"K"value"in"KHmeans"clustering"
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Binding$Site$Iden>fica>on:$GN$vs.$Infomap$

Protein$(PDB,$#$residues)$ Community$Detec>on$Method:$$GN$|$InfoMap$

Modularity$ #$Comm.$

#$Cri>cal$

Residues$

%$Binding$Sites$Captured$

(expected)$

tRNA"synthetase"(1N78,"542)" 0.71""|""0.68" 14""|""25" 47""|""109" 9.3*"(8.7)"""|"""23.3"(20.1)"

Adenylate"kinase"(4AKE,"428)" 0.73""|""0.70" 11""|""20" 39""|""""82" 100"(99)"""|"""100"(100)"

Arginine"Kinase"(3JU5,"728)" 0.72""|""0.69" 12""|""28" 41""|""142" 75"(41)"""|"""100"(86)"

Tyrosine"Phosphatase"(2HNP,"278)" 0.59""|""0.59" ""7""|""15" 27""|""""70" 100"(43)""|""""100"(78)"

Phosphoribosyltransferase"(1XTT,"846)" 0.72""|""0.68" ""9""|""32" 36""|""174" 50"(36)"""|"""100"(90)"

cAMPHdep."PK"(1J3H,"332)" 0.66""|""0.64" 11""|""19" 36""|""""78" 50"(54)"""|"""""50"(70)"

Anthranilate"synthase"(1I7Q,"1418)" 0.75""|""0.69" 12""|""46" 51""|""288" 25"(23)"""|"""""50"(76)"

Malic"enzyme"(1EFK,"2212)" 0.81""|""0.72" 17""|""70" 74""|""425" 25"(43)"""|"""100"(96)"

Threonine"synthase"(1E5X,"884)" 0.73""|""0.69" 13""|""36" 43""|""192" 50"(31)"""|"""""75"(69)"

GH6HP"Deaminase"(1CD5,"1596)" 0.79""|""0.72" 18""|""54" 58""|""266" 8.3"(29)"""|"""100"(76)"

Phosphofructokinase"(3PFK,"1276)" 0.76""|""0.68" 10""|""51" 45""|""307" 37.5"(29)"""|""""87.5"(92)"

Tryptophan"synthase"(1BKS,"1294)" 0.77""|""0.69" 10""|""46" 41""|""284" H"

Means/ 0.73///|///0.68/ 12.0//|//36.8/ 44.8//|//201.4/ 48.2/(39.7)///|///80.5/(77.6)/

*"used"only"residues"for"1N78"
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PDB!ID! Surf!
(SC!res)!

Surf!
(LB!res)!

SCALB!
overlap!

#!SC!
sites!

#!LB!
sites!

#!overlapping!
sites!

%!LB!sites!
identified!

3pfk% 0.51% 0.204% 0.255%(0.155)% 19% 3% 3% 1%
4ake% 0.454% 0.178% 0.274%(0.154)% 29% 2% 2% 1%
1cd5% 0.589% 0.1% 0.153%(0.096)% 24% 2% 1% 0.5%
1j3h% 0.066% 0.08% 0.25%(0.041)% 2% 1% 1% 1%
1bks% 0.343% 0.097% 0.079%(0.079)% 24% 4% 1% 0.25%
1e5x% 0.207% 0.093% 0.139%(0.077)% 17% 3% 2% 0.667%
1efk% 0.055% 0.086% 0.03%(0.036)% 10% 10% 0% 0%
1nr7% 0.149% 0.175% 0.187%(0.102)% 45% 24% 6% 0.25%
1xtt% 0.298% 0.196% 0.295%(0.154)% 31% 5% 5% 1%
2hnp% 0.739% 0.133% 0.16%(0.134)% 25% 2% 2% 1%
3d7s% 0.267% 0.137% 0.054%(0.064)% 26% 9% 0% 0%
3ju5% 0.016% 0.039% 0%(0.013)% 1% 2% 0% 0%
mean$ 0.308% 0.127% 0.156%(0.092)% 21.083% 5.583% 1.917% 0.556%

 

Table 2.2: Statistics on the surfaces of apo structures within the canonical set of proteins. For each 
apo structure within the canonical set of proteins, statistics relating surface-critical sites to known ligand-
binding sites are reported. The surface of a given structure is defined to be the set of all residues that have a 
relative solvent accessibility of at least 50%, where relative solvent accessibility is evaluated using all 
heavy atoms in both the main-chain and side-chain of a given residue. Mean values are given in the bottom 
row. NACCESS is used to calculate relative solvent accessibility (Hubbard and Thornton, 1993). Column 
1: Protein name and PDB IDs for each structure; Column 2: among these surface residues, the fraction that 
constitute surface-critical (SC) residues; Column 3: among surface residues, the fraction that constitute 
known ligand-binding (LB) residues (known ligand-binding residues are taken to be those within 4.5 
Angstroms of the ligand in the holo structure; Table 2.1); Column 4: the Jaccard similarity between the sets 
of residues represented in columns 2 and 3 (i.e., surface-critical and known-ligand binding residues), where 
values given in parentheses represent the expected Jaccard similarity, given a null model in which surface-
critical and ligand-binding residues are randomly distributed throughout the surface (for each structure, 
10,000 simulations are performed to produce random distributions, and the expected values reported here 
constitute the mean Jaccard similarity among the 10,000 simulations for each structure); Column 5: the 
number of distinct surface-critical sites identified in each structure; Column 6: the number of known ligand-
binding sites in each structure; Column 7: the number of known ligand-binding sites which are positively 
identified within the set of surface-critical sites, where a positive match occurs if a majority of the residues 
in a surface-critical site coincide with the known ligand-binding site; Column 8: The fraction of ligand-
binding sites captured is simply the ratio of the values in column 7 to those in column 6. 
 
 
 

 

n! Mean!fract.!Of!ligandA!
binding!sites!captured!

6% 0.56%
5% 0.59%
4% 0.65%
3% 0.69%
2% 0.79%
1% 0.84%

 
Table 2.3: Capturing known-ligand binding sites at varying thresholds. Here, n designates the number 
of residues within a surface-critical site that overlap with known ligand-binding residues. For the 
calculations reported above and in the main text, this value is taken to be n=6. Because each surface-critical 
site typically has 10 residues, and never has more than 10 residues, this criterion enforces that a majority of 
surface-critical residues within a given site overlap with known ligand-binding residues in order to be 
counted as a site match. However, as this threshold (n) is relaxed to lower values, the fraction of captured 
known ligand-binding sites improves rapidly, suggesting that surface-critical sites generally lie close to 
known ligand binding sites in many cases. 
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surface-critical residues within a given site overlap with known ligand-binding residues in order to be 
counted as a site match. However, as this threshold (n) is relaxed to lower values, the fraction of captured 
known ligand-binding sites improves rapidly, suggesting that surface-critical sites generally lie close to 
known ligand binding sites in many cases. 
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! 18!

 
Figure 2.5: Measures of convergence on 26 proteins using different scaling factors for the number of 
steps in each MC simulation. Dark blue signifies strong convergence, and light blue signifies poor 
convergence. Convergence is quantified by running the simulation on a particular structure with a certain 
number of MC steps 5 times, and then calculating the average Jaccard similarity in the sites identified 
between all 5C2 pairs of replicate simulations. The 26 structures shown (represented by their PDB IDs in the 
middle column between the heatmaps) were chosen to constitute a diverse set with respect to size and 
topological character. Left: heatmap rendering in which each cell is colored by the absolute value of its 
convergence (i.e., mean Jaccard similarity between all 5C2 pairs of replicate simulations). Right: heatmap 
rendering in which each cell within a given row is colored relative to the strength of the convergence scores 
in other cells within the same row (i.e., relative to other scaling factors when running the simulations on the 
same structure). 
 

rotational, and angular degrees of freedom. It is only the ligand that explores these degrees of 

freedom - the protein remains static throughout this MC simulation. The potential function 

usually “pushes” the ligand to favorably occupy a pocket on the protein surface after all steps of 

the MC simulation are completed. The ligand is thus in contact with a number of residues 

(typically 10-20) at the end of the simulation. As with the approach taken by Mitternacht and 

Berezovsky, this list of residues is ordered by local closeness (LC). LC is a geometric quantity 

that provides a measure of the degree of a residue in the residue-residue contact network; see 

(Mitternacht and Berezovsky, 2011b) for further discussion of LC. The 10 residues with greatest 

LC are taken as the final “site” occupied by the ligand at the end of this MC simulation (the 

remaining residues are not considered to be part of the site). Thus, the output of this single MC 

4H9U
4CMH
3RVV
3ORW
3FRG
3FJ7
2II0
2IHJ

2FHX
2B4J
1Y6R
1X9H
1WS5
1UGW
1SWU
1SWO
1SWK
1SVB
1NDJ
1LPO
1LD7
1ISJ
1FIH

1DSO
1BX4
1BHH

      1xMC          2xMC          5xMC        10xMC       100xMC       1xMC          2xMC          5xMC        10xMC       100xMC

Measures$of$convergence$using$different$scaling$factors$for$

the$number$of$steps$in$each$MC$simula>on$

80"



Conserva>on$of$Cri>cal$Residues:$GN$vs.$Infomap$

Protein$(PDB,$#$residues)$ Community$Detec>on$Method:$$GN$|$InfoMap$

#$Communi>es$ #$Cri>cal$Residues$ Conserva>on$of$CR$(pOval)$

tRNA"synthetase"(1N78,"542)" 14""|""25" 47""|""109" H0.57"(2.0eH05)"""|"""H0.47"(1.3eH09)"

Adenylate"kinase"(4AKE,"428)" 11""|""20" 39""|""""82" H0.70"(3.2eH10)"""|"""H0.43"(8.9eH08)"

Arginine"Kinase"(3JU5,"728)" 12""|""28" 41""|""142" O0.21$(9.0eO02)"""|"""H0.28"(4.4eH06)"

Tyrosine"Phosphatase"(2HNP,"278)" ""7""|""15" 27""|""""70" H0.49"(4.2eH03)"""|"""H0.60"(3.1eH09)"

Phosphoribosyltransferase"(1XTT,"846)" ""9""|""32" 36""|""174" H0.54"(2.1eH07)"""|"""H0.43"(5.9eH16)"

cAMPHdep."PK"(1J3H,"332)" 11""|""19" 36""|""""78" H0.63"(5.1eH07)"""|"""H0.43"(4.0eH06)"

Anthranilate"synthase"(1I7Q,"1418)" 12""|""46" 51""|""288" H0.44"(4.8eH07)"""|"""H0.45"(2.2eH16)"

Malic"enzyme"(1EFK,"2212)" 17""|""70" 74""|""425" $0.22$(8.5eO01)"""|"""H0.19"(5.6eH06)"

Threonine"synthase"(1E5X,"884)" 13""|""36" 43""|""192" H0.53"(8.5eH07)"""|"""H0.32"(2.5eH08)"

GH6HP"Deaminase"(1CD5,"1596)" 18""|""54" 58""|""266" H0.36"(4.1eH04)"""|"""O0.08$(6.0eO02)$

Phosphofructokinase"(3PFK,"1276)" 10""|""51" 45""|""307" H0.43"(1.7eH06)"""|"""H0.16"(4.2eH04)"

Tryptophan"synthase"(1BKS,"1294)" 10""|""46" 41""|""284" H0.48"(3.0eH09)"""|"""H0.40"(2.0eH15)"

Means/ 12.0//|//36.8/ 44.8//|//201.4/

Predic>ng$AllostericallyOImportant$Residues$within$the$Interior$$
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Figure S3, related to Figure 6. Pipeline for identifying alternative conformations throughout the 
PDB. 
(A) Pipeline for identifying distinct conformations and critical residues: Top to bottom: BLASTClust is 
applied to the sequences corresponding to a filtered set of structures, thereby providing a large number of 
sequence-identical sets of proteins (i.e., “sequence groups”). For each sequence-identical group, a multiple 
structure alignment is performed using STAMP. The example shown here is adenylate kinase. Using the 
pairwise RMSD values in this structure alignment, the structures are clustered using the UPGMA 
algorithm, and K-means with the gap statistic (δ) is performed to identify the number of distinct 
conformations. The plot at left identifies 2 as the optimal value for K: the solid line represents δ(K) values 
at each value of K, and the dotted line represents δ(K+1) – sk+1 for each value of K (see SI Methods section 
3.2-b for details). The structures that exhibit multiple clusters (i.e., those with K > 1) are then taken to 
exhibit multiple conformations. Finally, surface-critical (bottom-left) and interior-critical (bottom-right) 
residues are identified on those proteins determined to exist as multiple conformations.  (B) Energy 
landscapes to describe distributions of different conformations. Energy landscape theory may be used to 
describe the relative populations of alternative biological states and conformations (for instance, 
active/inactive, or holo/apo). In the apo state, the landscape may take the form of the red curve, resulting in 
most proteins favoring the conformation shown in red. Once binding to ligand, the landscape becomes 
reconfigured to take the shape in the cyan curve, thereby shifting the distribution of conformations to that 
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