3D genome and CTCF: known and unknown

Lou Shaoke

Department of Molecular Biophysics and Biochemistry

loushaoke@gmail.com

February 29, 2016

Yale

Cell

CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription

Graphical Abstract

Authors

Zhonghui Tang, Oscar Junhong Luo. Xingwang Li. Dariusz Plewczynski. Guoliang Li, Yiiun Ruan

Correspondence

vijun.ruan@jax.org

In Brief

Advanced ChIA-PET shows that CTCF/ cohesin and RNA polymerase II arrange spatial organization for coordinated transcription. Haplotype variants exhibit allelic effects on chromatin topology and transcription that link disease susceptibility.

Article

Overview of Hi-C and ChIA-PET

Hi-C

ChIA-PET

ChIA-PET vs Hi-C 3

ChIA-PET vs Hi-C 3

What is CTCF

CTCF: CCCTC-binding factor (zinc finger protein)

This gene is a member of the BORIS $+$ CTCF gene family and encodes a transcriptional regulator protein with 11 highly conserved zinc finger (ZF) domains. Depending upon the context of the site, the protein can bind a histone acetyltransferase (HAT)-containing complex and function as a transcriptional activator or bind a histone deacetylase (HDAC)-containing complex and function as a transcriptional repressor. If the protein is bound to a transcriptional insulator element, it can block communication between enhancers and upstream promoters, thereby regulating imprinted

expression...(refseq 2010)

CTCF binding peaks 5

$CTCF:$ the anchor of interaction 6.6

Loop and Gap Regions

CCD: loop clustering and remove low loop coverage region, remain regions are gaps

Gene expression with 3d interaction

Haplotype Mapping of Chromatin Interactions

Haplotype Mapping of Chromatin Interactions

Chromatin interaction and imprinting region 10

Chromatin interaction and imprinting region 10

Chromatin interaction and imprinting region 10

CTCF ChIA-PET and Allelic specific binding

Pol II ChIA-PET and allelic specific binding 12

Pol II ChIA-PET and allelic specific binding 12

Pol II ChIA-PET and allelic specific binding 12

Model and simulation 13

Model and simulation 13

Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes

Adrian L. Sanborn^{a, b,c,1}, Suhas S, P, Rao^{a, d,1}, Su-Chen Huang^a, Neva C, Durand^{a, 2}, Miriam H, Huntley^{a, 2}, Andrew I. Jewett^{a, 2}. Ivan D. Bochkov^a, Dharmarai Chinnappan^a, Ashok Cutkosky^a, Jian Li^{a, b}, Kristopher P. Geeting^a, Andreas Gnirke^e, Alexandre Melnikov^e, Doug McKenna^{a, f}, Elena K. Stamenova^{a, e}, Eric S. Lander^{e, g, h, 3}, and Erez Lieberman Aidena,b,e,3

"The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030; ^bCenter for Theoretical Biological Physics, Rice University, Houston, TX 77030: "Department of Computer Science, Stanford University, Stanford, CA 94305: "School of Medicine, Stanford University, Stanford, CA 94305: "Broad Institute of MIT and Harvard, Cambridge, MA 02139; 'Mathemaesthetics, Inc., Boulder, CO 80306; ⁹Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; and ^hDepartment of Systems Biology, Harvard Medical School, Boston, MA 02115

Contributed by Eric S. Lander, September 18, 2015 (sent for review July 27, 2015; reviewed by Frank Alber, Ido Amit, Roger D. Kornberg, Corina E. Tarnita, and Shing-Tung Yau)

Significance

When the human genome folds up inside the cell nucleus, it is spatially partitioned into numerous loops and contact domains. How these structures form is unknown. Here, we show that data from high-resolution spatial proximity maps are consistent with a model in which a complex, **including** the proteins CCCTC-binding factor (CTCF) and cohesin, mediates the formation of loops by a process of extrusion. Contact domains form as a byproduct of this process. The model accurately predicts how the genome will fold, using only information about the locations at which CTCF is bound. We demonstrate the ability to reengineer loops and do- mains in a predictable manner by creating highly targeted muta- tions, some as small as a single base pair, at CTCF sites.

Cons, Pros and problems

Loop extrusion has given a rational model that not only fit the outcome of chromatin folding, but indicate how the 3d structures are formed.

1) If this is true, where the loop extrusion enzyme start to fold? Randomly?

- 2) What happened on the gap regions?
- 3) anchor without CTCF binding motif/peak (Mo-
- tif Gain here? Will check this)
- 4) Rare cross interaction pair;

5) The arrangement of anchors of interaction pairs will affect the detection by ChIA-PET?

Cell cycle and chromatin interactions

(Natalia et. al. Science 22 Nov 2013)

Cell cycle and chromatin interactions

Organization of chromosome 21 through the cell cycle (Natalia et. al. Science 22 Nov 2013)

How this associates with FunSeq and ENGINE

Current knowledge about gene regulation and function are heavily limited into a linear chromosome basis.

Replication timing, histone modification and DNA methylation covary with TAD, even can predict topology structure of chromatin.

The refined chromatin interaction will change the way we think about FunSeq and ENGINE.

The End! QA

e.
S

ChIP-Nexus

