Some Dimensionality Reduction Techniques

Julien Clancy

February 24, 2016

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

[SVD](#page-1-0)

Dimensionality Reduction

 \triangleright Situation: dataset is very high-dimensional, want to reduce dimensionality

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \triangleright Make computationally tractable, or
- \triangleright Make easier to understand
- \triangleright "Compress" the data into fewer dimensions
- \blacktriangleright Classical method is SVD
- ▶ Data is m samples in \mathbb{R}^n , $X \in M_{m,n}(\mathbb{R})$, then

$$
X = USV^{\mathsf{T}}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \triangleright S is diagonal with decreasing positive entries, U is "orthogonal", V is orthogonal

What is it Doing?

What does SVD "do"?

- 1. Finds orthogonal directions of maximum variance; U_i , S_i .
	- \blacktriangleright Maybe these are features
- 2. $X = USV^{\dagger}$. Interpretation:

 $\mathbf{A} \equiv \mathbf{A} + \math$

 $2Q$

3. Essentially, finds which hyperplane your data lies in

What is it Doing? Continued

 \blacktriangleright As a decomposition:

$$
X_i=\sum_j \sigma_j \langle X_i,V_j\rangle \, U_j
$$

 \triangleright As a coordinate representation:

$$
X_i\mapsto \left(\sigma_j\langle X_i,V_j\rangle X_i\right)_j
$$

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

SVD Dimensionality Reduction

Dimensionality reduction: taking the first k singular values gives the k-dimensional linear embedding keeping the most variance

Just drop the lowest coordinates from the representation on the last slide

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Very Simple Example

 \blacktriangleright Toy dataset: shifted kernel functions

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Pairwise Distances

イロト イ御 トイミト イミト ニミー りんぴ

Spectrum (Singular Values)

K ロ X K 個 X K 결 X K 결 X (결) 299

10D Embedding

Accounts for 68% of the variance (but gets the most important part)

10D Embedding - Pairwise Distances

K □ ▶ K @ ▶ K 할 X K 할 X T 할 X 1 9 Q Q *

Still very good

25D Embedding

イロン イ部ン イ君ン イ君ンシ

重

 299

Accounts for 99% of the variance

25D Embedding - Pairwise Distances

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Almost perfect

Pairwise Distances

- \blacktriangleright These last slides: why care about pairwise distances?
- \triangleright That's where the "geometry" of the data is
	- \blacktriangleright Ex: clustering.
	- \triangleright Depends only on (local) distances
	- \triangleright Theme: we define local distances that have meaning but global ones are murkier

KORKA SERKER ORA

 \triangleright Driving force of the rest of the next section

[Diffusion Maps](#page-15-0)

K ロ X (日) X (日)

Nonlinear Dimensionality Reduction

- \blacktriangleright Have very high-dimensional data that (you suspect) has few "underlying parameters"
	- \blacktriangleright (Manifold embedded in \mathbb{R}^n)
- \triangleright Another way of saying it: compressible, not as complex as the space it's in

KORKA SERKER ORA

 \triangleright Not linear data, else SVD would work perfectly

Helix Data

K ロ K イロ K K モ K K モ K エ エ エ イ の Q Q C

Helix Pairwise Distances

メロメ 不優 メメ 重 メメ 差 メー 差し 2990

The Structure of the Data

What is this data? It's a circle. Moving "along" the helix gives you a circle. This "intrinsic distance" on the helix is very different from the Euclidean distance:

KORKA SERKER ORA

We want a represenation that better captures the intrinsic distance: get the circle back.

How to Get the Structure

- \triangleright Tools which can get you the circle back are in the field of geometry learning
- \triangleright Relevance to dimensionality reduction: if your data has low-dimensional geometry but is in a high-dimensional space, geometry learning should give you a low-dimensional representation

KORKA SERKER ORA

- \blacktriangleright The intrinsic representation
- \blacktriangleright Preserves local distances

Diffusion Maps

- \triangleright Diffusion maps is a geometry learning tool
- \triangleright Basic idea: aggregate local distances to get global distances
	- \triangleright Ones that reflect the *intrinsic* geometry, not the embedded geometry
- ► Data is $\{x_i\} \subset \mathbb{R}^N$, N large/capital
- First, define a notion of "similarity" of data points, call it k
	- ► Usually $k(x, y) = e^{-\|x_i x_j\|^2/\varepsilon^2}$
	- \triangleright Or, replace $\|\cdot\|$ by your own metric
- \blacktriangleright Then define a random walk/Markov chain on the dataset
	- Probability of stepping from x_i to x_j is

$$
P_{ij} = p(x_i, x_j) \propto_i k(x_i, x_j)
$$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Diffusion Maps Continued

 \blacktriangleright Use a Markov chain to define the **diffusion distance**

$$
D_t(x_i, x_j) = \sum_k \frac{1}{d_k} |P_{ik}^t - P_{kj}^t|^2 = ||p_t(x_i, \cdot) - p_t(x_j, \cdot)||_{D^{-1}}
$$

- \triangleright What does this do? Counts all paths of length t between $\mathsf{x}_{i},\mathsf{x}_{j}$, weighted by probability (scaled by the sampling density of each point)
- \blacktriangleright Hopefully local distances reflect the intrinsic geometry and we "rebuild" global geometry from those

KORKA SERKER ORA

Diffusion Distance Visualization

A is far from B and C , but B and C are very close. (Figure from Peter Jones)

K ロンス 御 > ス 할 > ス 할 > 이 할

Another Example

The points in the hemisphere are close together, as are the points in the pit, but they are mutually very far apart.

 $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

 \equiv

Why Random Walks, Why the Kernel?

Figure : Left: Euclidean distance. Right: Kernel of Euclidean distance. Note how it approximates the intrinsic distance.

- \triangleright The problem: every point on the helix is kind of close to the rod
- If Kernel solves this, exponentially kills th[e d](#page-24-0)[ist](#page-26-0)[a](#page-24-0)[nc](#page-25-0)[e](#page-26-0)

Actually Computing It

- \blacktriangleright Fancy distance, but how do you actually measure it? Summing is impractical
- ► P is the Markov matrix, $P = D^{-1}K$, similar to symmetric matrix
- $\blacktriangleright \ (\lambda_i, \psi_i)$ its eigenvalues/vectors
- \blacktriangleright The diffusion maps are

$$
x_i \mapsto (\lambda_1^t \psi_1(x_i), \ldots, \lambda_n^t \psi_n(x_i))
$$

- \blacktriangleright Theorem: This embeds the dataset in Euclidean space with the diffusion distance
- \triangleright Theorem: If you scale it right and sample a manifold well enough, this converges to the (intrinsic/Riemannian) distance on the manifold

Ex 1: Diffusion on the Helix

Diffusion actually run on the helix dataset: recovers the intrinsic coordinate

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

(Colored by the intrinsic coordinate)

Ex 2: Diffusion on the Hemisphere

Diffusion run on the hemisphere set, with two different bandwidth kernels

Ex 3: Diffusion on Images

Dataset (thanks to Roy Lederman) consisting of images of a toy bunny on a rotating platform

It's 32, 000-dimensional, but the data "is" a circle: only one parameter, the angle.

KORKA SERKER ORA

Ex 3: Diffusion on Images, Continued

What does the 2D diffusion look like? Surprise,

Again, colored by the intrinsic coordinate (known at the time of gathering the data)

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$

Ex 4: Diffusion on Images, a Little More Complex

Similar dataset, but this time two toys rotating at different speeds

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

 $\bar{\Xi}$

Ex 4: Diffusion on Images, a Little More Complex, **Continued**

The diffusion bears this out:

These are colored by the intrinsic coordinate of the bulldog and Yoda, respectively (collected at experiment time)

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{B} + \math$

How Do You Use This?

- \blacktriangleright Part of a pipeline
	- \blacktriangleright Visualization
	- \triangleright Dimensionality reduction/feature creation
	- \triangleright Denoising
	- \blacktriangleright Linearizing nonlinear problems
- \triangleright Creates global features from local parameters
- \triangleright Important point: you don't need to use the Euclidean distance in diffusion maps. Use any similarity you want (just make sure that very similar $=$ small metric, dissimilar $=$ large metric)

KORKA SERKER ORA

- \triangleright Exploratory data analysis: do this first, get an idea of what your data is, start doing other things
- \triangleright Does not replace SVD/PCA; use both when appropriate

[Random Projections](#page-34-0)

K ロ X K 메 X K B X X B X X D X O Q Q O

Good Projections

- \triangleright Projections are good for dimensionality reduction because they are easy to compute
- Good property of SVD: computes projections into k dimensions that preserve the most variance
- Bad property of SVD: very expensive: $O(dn^2 + d^2n)$ (constants are apparently something like 4 and 22, respectively) for n data points in d dimensions
- \triangleright Want a replacement that doesn't distort pairwise distances too much and is very fast

KORKA SERKER ORA

Random Projections

- \blacktriangleright Turns out, random projections do this just fine
- \triangleright Theorem (Johnson-Lindenstrauss): If you have *n* data points $\{x_i\}$ in d-dimensional space and you project them as $\{y_i\}$ onto a random subspace of dimension $O(\log n)$, with high probability

$$
(1-\varepsilon) \|x_i - x_j\|^2 \le \|y_i - y_j\|^2 \le (1+\varepsilon) \|x_i - x_j\|^2
$$

KORKAR KERKER EL VOLO

 \blacktriangleright How to do this in practice: Choose k Gaussian random vectors v_j and use $x_i \mapsto (\langle x_i,v_j\rangle)_j.$ Time is $kdn.$

High-Dimensional Geometry

- \blacktriangleright "But don't we have to orthogonalize the vectors v_i so that the inner products are actually a projection onto a random subspace?"
- \triangleright No, and actually that would amount to doing SVD. In high-dimensional space the expected angle between two vectors is 90 degrees.

(Histograms for angles in 100 and 10000 dimensions)

KORKA SERKER ORA

Sample Use Case

- Analyzing large/high-D datasets on your own computer: random projections are a lot faster
- \triangleright Ex (I ran into this a few days ago): Want to minimize $||Ax - b||_1$ s.t. $x ≥ 0$
	- \triangleright Can be rewritten in a linear program by doubling the dimensions
	- Problem: simplex algorithm has complexity $O(d^3)$ on average

4 D > 4 P + 4 B + 4 B + B + 9 Q O

- Randomly project A and b (same projection), solve the problem in 100 times fewer dimensions, average the results over a few runs
- \triangleright Slight advantage over SVD: randomized, so no adversarial scenarios. More on that later.

Faster Random Projections

- \blacktriangleright Turns out, you don't even need to consider Gaussian random vectors
- \blacktriangleright (Li, Hastie, Church, see also Achlioptas) You can choose your vectors according to the distribution

$$
\mathbb{P}(\sqrt{s}) = \frac{1}{2s}
$$

$$
\mathbb{P}(-\sqrt{s}) = \frac{1}{2s}
$$

$$
\mathbb{P}(0) = 1 - \frac{1}{s}
$$

for $s =$ \sqrt{d} (or even $\frac{d}{\log d}$ if you're feeling lucky)

 \triangleright A lot faster because the inner products that contain zeros A lot raster because the inner products that contain zero
don't have to be calculated: speed up by a factor of \sqrt{d}

 $\overline{)}$ $60000 = 245$

Random Projections Are a Powerful Idea

- \triangleright Random projections are useful but the thematic idea is what's really powerful
- \blacktriangleright Two paradigms:
	- 1. Some high-dimensional problems are very hard to solve; randomly project and use lower-dimensional solutions for massive speedups
	- 2. Some problems are adversarial; randomly project onto a suitable subset of your space and try to solve the new problem, hoping to "project out" the adversary's tricks
- \triangleright SVD defeats the purpose of the former case since computing it is so expensive
- It also is inapplicable in the latter case since it is only provides one output; can't get a consensus
	- \blacktriangleright Ensemble learning: random forests vs. decision trees

Ex. 1: Nearest Neighbors

- ► Given $X = \{x_i\} \in \mathbb{R}^N$ and a test point x want to find nearest neighbors of x in X .
- In the plane, this is easy: use a quadtree (space partition) for log *n* query time

Ex. 1: Nearest Neighbors Continued

- If $N > 2$ your quadtree is a 2^N-tree; if $N = 100$ this does not fit in a computer
- \triangleright One solution (originally Kleinberg, version here is Jones, Osipov, Rokhlin):
	- 1. Randomly project¹ data into low dimensions
	- 2. Use a quadtree-style partition to find candidates for nearest neighbors, throw them in a candidate set S
	- 3. Do this several times; check the members of S to find approximate nearest neighbors
	- 4. (Some more tricks)
- \triangleright Speed is $(n \log n)(d \log d)$

 1 They use random rotations for speed reasons, w[hic](#page-41-0)[h a](#page-43-0)[re](#page-41-0) [e](#page-42-0)[q](#page-43-0)[ui](#page-33-0)[v](#page-34-0)[ale](#page-48-0)[nt](#page-33-0) $\texttt{\texttt{m}}\rightarrow-\texttt{\texttt{m}}$. \circ are

Ex. 2: DNA Sequence Alignment

- \triangleright Want to match many small substrings, with corruptions, to a large reference string S, and find best (Hamming-minimizing) mathes
- \triangleright Naive method: scan through for each string, compare Hamming distances
- \blacktriangleright Better method (Roy Lederman):
	- 1. Generate a random permutation σ
	- 2. Permute all substrings $s_i \in S$ as $\sigma(s_i)$ and sort them lexigraphically into an array A
	- 3. Given a test string t find where $\sigma(t)$ fits in A using binary search/something faster
	- 4. If you got lucky σ moved all of t's corruptions to the end of the string, and then the "true" closest match for $\sigma(t)$ is within K steps in the sorted array
	- 5. Do this for linearly many permutations and you will get lucky at least once with very very high probability

Ex. 2: DNA Sequence Alignment Benchmarks

How well does it do?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Very fast (figure from Roy Lederman's website)

Ex. 2: DNA Sequence Alignment Benchmarks

How well does it do?

Matches many sequences (figure from Roy Lederman's website)

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z}) B $2Q$

Ex. 3: Motif Detection in DNA Sequences

- \triangleright Problem: Find "motifs" in nucleotide sequences which have been corrupted
- \blacktriangleright The (ℓ, d) -motif problem
	- \triangleright Given t nucleotide sequences of length n each
	- Each contains a copy of M corrupted in d places $(|M| = \ell)$

KORKA SERKER ORA

- \blacktriangleright Recover M
- ▶ Problem studied by Pevzner and Sze; paper by Buhler and Tompa solves very hard versions using random Hamming projections

Ex. 3: Their Approach

- \blacktriangleright Hamming projection is $P([x_1,\ldots,x_\ell]) = [x_{i_1},\ldots,x_{i_k}]$ defined on length- ℓ substrings
- \blacktriangleright Randomly choose P, "throw away" the information not in P
- If k is small enough it's likely that M and M' (a corruption) will have $P(M) = P(M')$
- Also if k is not too small it is unlikely that other substrings S will have $P(S) = P(M)$
- \triangleright At the end choose the equivalence classes of size above some threshold, look for the motif

KORKAR KERKER EL VOLO

Ex. 3: How it Works

- \blacktriangleright Minimizing the probability that $P(S) = P(M)$ if S is random
	- \rightarrow *t*(*n* − ℓ + 1) length- ℓ substrings
	- If k is s.t. $4^k > t(n \ell + 1)$ the average equivalence class contains $<$ 1 substring
- \blacktriangleright Maximizing the probability that $P(M') = P(M)$
	- \triangleright d corruptions, so ℓd non-corruptions
	- If $k < \ell d$ then there's a reasonably good chance $P(M') = P(M)$
- \triangleright Run lots of times, choose the equivalences classes larger than a threshold s
- \triangleright s, k, and the number of times you have to run it are all small and can be estimated robustly
- \triangleright To get the motif back from the large buckets, use maximum likelihood to find a distribution of corruptions