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Mutation rate has shown to correlate with various genomic features
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Summary of Encode Cancer Data

• Total of 73 human cancer cell lines were identified in Encode (Curated w/ Shirley and 
Robert) 

• We can build a covariate matrix by combining signals from various experiments, which 
can be used for mutation rate correction. 

• However, it would be challenging to combine replicates and normalize signals produced 
from different labs/protocols. 

• We need uniformly processed signals, which combine possible replicates and normalize 
across cell lines for different experiments.

Experiments
ChIP-seq 
(Histone/TFs)

DNase-seq 
(open 
chromatin)

FAIRE-seq 
(open 
chromatin)

Repli-seq 
(replication 
timing)

RNA-seq RRBS 
(methylation)

Encode 2 
Released

802 61 19 30 107 34

Encode 3 
Released

262 32 0 0 59 0

Revoked 15 0 0 0 2 0
Total 1,079 93 19 30 168 34

Last Updated: 2/16/2016
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Fold change over control

Replicate 1

Replicate 2

Combined signal

Encode 3 Data Use

http://www.encodeproject.org/experiments/ENCSR069XHI/

• For Encode 3, ChIP-seq experiments are uniformly processed using the new data processing pipeline. 

• Eventually, all of Encode 3, and retroactively, Encode 2 data will be uniformly processed under the same ChIP-seq 
processing pipeline. 

• However, currently, very limited number of Encode ChIP-seq data has been processed using this pipeline (from user’s 
perspective) and this uniform processing pipeline only applies to ChIP-seq data only.
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• For the time being, Encode 2 uniform signals (Jan 2011 freeze from EBI, 
consisting of DNase-seq, FAIRE, Histone, and TFBS) were used in the analysis. 

• http://ftp.ebi.ac.uk/pub/databases/ensembl/encode/
integration_data_jan2011/byDataType/signal/jan2011/bigwig/ 

• Human genome (hg19) was divided into 1Mb bin (rows) and the signal was 
averaged over each bin

Encode 2 Uniform Signal
H3K27me3

1Mb

chr

H3K4me1

DNase-seq

FAIRE-seq

{
{

K562

MCF-7

H3K4me3
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• 145 features (columns) across 25 cancer cell lines + 1 cancer primary cell 

• 84 ChIP-seq signals were normalized into fold change over control 

• 32 DNase-seq, 11 FAIRE-seq, 1 MNase-seq (K562) 

• 17 features including GC content and dinucleotides such as CpG percentages 

• Replication timing (Repli-seq) was omitted because the data was not available on Jan 2011 
for uniform processing

Encode 2 Uniform Signal
H3K27me3

1Mb

chr

H3K4me1

DNase-seq

FAIRE-seq

{
{

K562

MCF-7

H3K4me3
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*Primary cell

Cell line Term Description TCGA abbreviations # Features Y/N
8988T 8988T pancreatic adenocarcinoma PAAD 1 Y

A549 A549 lung cancer LUSC or LUAD 3

BE2_C BE2C neuroblastoma 1

Caco-2 Caco-2 colorectal adenocarcinoma COAD+READ 4

CLL B cell* Chronic lymphocytic leukemia cell, B-lymphocyte 1

CMK CMK acute megakaryocytic leukemia AML 1

Gliobla H54 glioblastoma GBM 4 Y

HCT-116 HCT116 colorectal carcinoma COAD+READ 2

HeLa-S3 HeLa-S3 cervical adenocarcinoma CESC 23

HepG2 HepG2 liver cancer/hepatoma/hepatocellular carcinoma LIHC 20 Y
HL-60 HL-60 acute promyelocytic leukemia 2

Huh-7 HuH-7 hepatocellular adenocarcinoma LIHC 1 Y

Huh-7.5 HuH-7.5 hepatocellular adenocarcinoma LIHC 1 Y

Jurkat Jurkat acute T cell leukemia 2

K562 K562 chronic myelogenous leukemia (CML) 30

LNCaP LNCaP clone FGC prostate adenocarcinoma PRAD 3 Y

MCF-7 MCF-7 breast cancer BRCA 10 Y

Medullo medulloblastoma medulloblastoma 2

NB4 NB4 acute promyelocytic leukemia 2

NT2-D1 NT2/D1 malignant pluripotent embryonal carcinoma 6

PANC-1 Panc1 pancreatic carcinoma PAAD 1

SK-N-MC SK-N-MC Ewing's sarcoma 1

SK-N-SH_RA SK-N-SH neuroblastoma 4

T-47D T47D mammary ductal carcinoma BRCA 1 Y

U2OS U2OS osteosarcoma 1

WERI-Rb-1 WERI-Rb-1 retinoblastoma 1
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ENCODE 2  
cancer cell lines  

(n=1,053)

ENCODE 
human cell lines 

(n=2,055*)

Cancer cell lines  
(n=1,423)

Normal cell lines  
(n=632)

ENCODE 3  
cancer cell lines  

(n=353)

Revoked (n=17)

ENCODE 2 Jan 2011  
uniform signal 

(n=1,058)

Cancer cell lines  
(n=474)

Normal cell lines 
(n=584)

51.5%**

Epigenetic signal 
(n=149)

Uniform signal 
(n=474)

Histone ChIP-seq, DNase-seq, FAIRE-seq
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69.2% 30.8%

51.2%

23.1%

7.3%

23.1%

**Includes subset of ENCODE 2 data from Jan 2011 data freeze
*Last Updated: 2/16/2016
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*For DNase-seq, FAIRE-seq, and MNase-seq, we assume the background is uniform
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H3K27me3 replicate 1

Control replicate 1

Example: Hep G2 H3K28me3 ChIP-seq

H3K27me3 replicate 2

Control replicate 2

C2

S2

C3

S3

CN

SN

1Mb

Average over bin

Normalized uniform signals

For n=1:N, En = Sn / Cn

E2 E3 EN

Fold change enrichment

C1

S1

E1
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• In addition to histone ChIP-seq data, TFBS experiments of CTCF, Pol2, c-Myc were 
included as features in the matrix 

• These TFBSs have implications for chromatin regulation and these could indirectly 
contribute to mutation rate correction. 

• CTCF provides an anchor point for positioning nucleosomes, and CTCF is 
implicated in chromatin remodeling and interactions (Fu, Y et al, 2008, Phillips, J. E., 
& Corces, V. G., 2009). 

• Myc has been shown to regulate acetylation of histones H3 and H4 at several 
chromosomal loci (Bouchard et al. 2001, Frank et al. 2001, Nikiforov et al. 2002). 

• RNA polymerase II ChIP-seq associates with open chromatin (DNase 
hypersensitivity), histone acetyltransferases (HATs, P300-CBP), active histone marks, 
etc (Orphanides, G. et al., 2000). 
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Scaling on

PCA revealed the first 3 P.C. accounts for  
approx. 68% of total variability in the data
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Coefficients (weights of rotation matrix) 
of the first P.C. shows no single feature 
is dominantly contributing to the total 
variability in the data
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