Encode Cancer Signal Matrix

Gerstein Lab Donghoon Lee

Encode Cancer Signal Matrix Donghoon Lee

Mutation rate has shown to correlate with various genomic features

Summary of Encode Cancer Data

Experiments

Last Updated: 2/16/2016

- Total of **73 human cancer cell lines** were identified in Encode (Curated w/ Shirley and Robert)
- We can build a covariate matrix by combining signals from various experiments, which can be used for mutation rate correction.
- However, it would be challenging to combine replicates and normalize signals produced from different labs/protocols.
- We need uniformly processed signals, which combine possible replicates and normalize across cell lines for different experiments.

Encode 3 Data Use

<http://www.encodeproject.org/experiments/ENCSR069XHI/>

- For Encode 3, ChIP-seq experiments are uniformly processed using the new data processing pipeline.
- Eventually, all of Encode 3, and retroactively, Encode 2 data will be uniformly processed under the same ChIP-seq processing pipeline.
- However, currently, very **limited number of Encode ChIP-seq data has been processed** using this pipeline (from user's perspective) and this uniform processing pipeline **only applies to ChIP-seq data only**.

Encode 2 Uniform Signal

- For the time being, **Encode 2 uniform signals** (Jan 2011 freeze from EBI, consisting of DNase-seq, FAIRE, Histone, and TFBS) were used in the analysis.
	- *• http://ftp.ebi.ac.uk/pub/databases/ensembl/encode/ [integration_data_jan2011/byDataType/signal/jan2011/bigwig/](http://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/signal/jan2011/bigwig/)*
- Human genome (hg19) was divided into 1Mb bin (rows) and the signal was averaged over each bin

Encode 2 Uniform Signal

- **145** features (columns) across **25 cancer cell lines + 1 cancer primary cell**
	- 84 ChIP-seq signals were normalized into fold change over control
	- 32 DNase-seq, 11 FAIRE-seq, 1 MNase-seq (K562)
	- 17 features including GC content and dinucleotides such as CpG percentages
- Replication timing (Repli-seq) was omitted because the data was not available on Jan 2011 for uniform processing

Encode Cancer Cancer Signal Matrix Donghoon Lee

Example: Hep G2 H3K28me3 ChIP-seq

**For DNase-seq, FAIRE-seq, and MNase-seq, we assume the background is uniform*

- In addition to histone ChIP-seq data, **TFBS experiments of CTCF, Pol2, c-Myc** were included as features in the matrix
- These TFBSs have implications for chromatin regulation and these could indirectly contribute to mutation rate correction.
	- CTCF provides an anchor point for positioning nucleosomes, and CTCF is implicated in chromatin remodeling and interactions (Fu, Y et al, 2008, Phillips, J. E., & Corces, V. G., 2009).
	- Myc has been shown to regulate acetylation of histones H3 and H4 at several chromosomal loci (Bouchard et al. 2001, Frank et al. 2001, Nikiforov et al. 2002).
	- RNA polymerase II ChIP-seq associates with open chromatin (DNase hypersensitivity), histone acetyltransferases (HATs, P300-CBP), active histone marks, etc (Orphanides, G. et al., 2000).

PCA revealed the first 3 P.C. accounts for approx. 68% of total variability in the data

First Principal Component

Coefficients (weights of rotation matrix) of the first P.C. shows no single feature is dominantly contributing to the total variability in the data

References

- Schuster-Böckler, B., & Lehner, B. (2012). Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature, 488(7412), 504–507.<http://doi.org/10.1038/nature11273>
- Fu, Y., Sinha, M., Peterson, C. L., & Weng, Z. (2008). The insulator binding protein CTCF positions 20 [nucleosomes around its binding sites across the human genome. PLoS Genetics, 4\(7\). http://doi.org/](http://doi.org/10.1371/journal.pgen.1000138) 10.1371/journal.pgen.1000138
- [Phillips, J. E., & Corces, V. G. \(2009\). CTCF: Master Weaver of the Genome. Cell. http://doi.org/10.1016/](http://doi.org/10.1016/j.cell.2009.06.001) j.cell.2009.06.001
- Bouchard, C., Dittrich, O., Kiermaier, A., Dohmann, K., Menkel, A., Eilers, M., & Lüscher, B. (2001). Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes and Development, 15(16), 2042-2047. http:// doi.org/10.1101/gad.907901
- Frank, S. R., Schroeder, M., Fernandez, P., Taubert, S., & Amati, B. (2001). Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes and Development, 15(16), 2069–2082.<http://doi.org/10.1101/gad.906601>
- Nikiforov, M. A., Chandriani, S., Park, J., Kotenko, I., Matheos, D., Johnsson, A., … Cole, M. D. (2002). TRRAP-dependent and TRRAP-independent transcriptional activation by Myc family oncoproteins. Molecular and Cellular Biology, 22(14), 5054–63.<http://doi.org/10.1128/MCB.22.14.5054-5063.2002>
- Orphanides, G., & Reinberg, D. (2000). RNA polymerase II elongation through chromatin. Nature, 407(6803), 471–5.<http://doi.org/10.1038/35035000>

Acknowledgement

Mark Gerstein

Jing Zhang

Joel Rozowsky