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most highly evolved organ: 
~ 1011 neurons 
~ 1014 synapses (connections) 
~ 5-50Hz firing rate 

 
in almost every tissue, cells continually grow and 
divide but most neurons stop growing in early 
childhood
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dealing with brain complexity

there is large interest in both long-term processes (Alzheimer’s, Parkinson’s, etc) and  
short-term processes (reward, addiction, PTSD)  
 
maybe more than any other organ, post-transcriptional regulation is extremely important 
 
as is the scope for alternative splicing…
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parallel, multi-level observations of gene expression

…although it is possible to assay 
translation and steady-state protein 
levels, the yield of these 
experiments is much lower than 
RNA-seq



7

easier to measure transcription than translation
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junction observability
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mean probabilities: 
RNA_pairedEnd = 85% 
RNA_singleEnd = 52% 

footprints = 23% 
mass-spec = 30%
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PE RNA-seq
SE RNA-seq

footprint
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RNA-seq will eventually 
produce single-molecule,  

whole transcript reads. 

Not the case for footprints 
and not clear if MS will ever 

be able to profile intact protein 

-> how can we integrate RNA, 
footprint, and MS data for  

mutual gain?



• for the naïve prior:

• maximise the likelihood of 1..N 
observed reads or peptides, R, 
given isoform abundances,    , of 
1..K isoforms:

EM algorithm
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update ratios
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footprint reads:

example: resolving the isoforms of POLDIP3
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The biological (RNA) prior supports POLDIP3-001 as the >2-fold dominant 

isoform, while the naïve prior gets stuck with three equally likely isoforms:

update transcript  
abundances using footprints
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naïve RNA-seqprior:

naïve RNA-seq

P (Ij|ψ) =
ψjlj

∑K
k=1

ψklk

P (R1:N |ψ) =
N∏

n=1

K∑

k=1

P (Rn|Ik)P (Ik|ψ)

P (R1:N |ψ) =
N∏

n=1

K∑

k=1

P (Rn|Ik)P (Ik|ψ)

• probability that the jth isoform 
will contribute a footprint or 
peptide is based on its CDS 
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• for each gene:



aside:  higher quality data improves our chances 
for successful integration
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ribosome-affiliated RNA (raRNA)  >  totalRNA

11

0
500

1000

co
un

t

1e−02

1e+00

1e+02

1e+04

0.00 0.25 0.50 0.75 1.00
major transcript fraction

m
aj

or
 tr

an
sc

rip
t e

xp
re

ss
io

n 
− 

lo
g1

0(
TP

M
)

0 1000 2000
count

single transcript

agree

disagree

#genes 0 5000 10000 15000 20000 #genes 0 5000 10000 15000 20000

co
un

t
1e−02

1e+00

1e+02

1e+04

0.00 0.25 0.50 0.75 1.00
major transcript fraction

m
aj

or
 tr

ns
cr

ip
t e

xp
re

ss
io

n 
− 

lo
g1

0(
TP

M
)

0 1000 2000
count

0.0 0.2 0.4 0.6 0.8 1.0

−2
−1

0
1

2
3

minimum major transcript fractionm
in

im
um

 m
aj

or
 tr

an
sc

rip
t e

xp
re

ss
io

n 
− 

lo
g1

0(
TP

M
)

0.0 0.2 0.4 0.6 0.8 1.0

−2
−1

0
1

2
3

minimum major transcript fractionm
in

im
um

 m
aj

or
 tr

an
sc

rip
t e

xp
re

ss
io

n 
− 

lo
g1

0(
TP

M
)

50
60

70
80

90
10

0
%

 g
en

es
 w

ith
 c

on
si

st
en

t d
om

in
an

t t
ra

ns
cr

ip
t

single transcript

agree

disagree

a)

b)

c)

totalRNA raRNA
basic agreement in
major transcript over
3 replicate samples:

totalRNA: 74% genes
raRNA: 81% genes

agreement 
depends on 
transcript dominance
-and- 
transcript expression

using genes with a
major isoform 
expressed ≥5 TPM
and comprising ≥50%
of the overall gene
abundance the
agreement between 
replicate samples 
increses:

totalRNA: 93% genes
raRNA: 97% genes

0
500

1000



raRNA suffers less intronic contamination than totalRNA
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ribosome footprinting  |  wet-lab methods

RESULTS

A Genetically Targeted Translational Profiling
Methodology
Because all mRNAs translated into protein are at one point at-
tached to a ribosome or polyribosome complex (polysome), we
reasoned that an affinity tag fused to a ribosomal protein would
allow isolation of bound mRNAs. We therefore screened fusions
of ribosomal proteins with enhanced green fluorescent protein
(EGFP) for efficient incorporation into polysomes to provide an
immunoaffinity tag for all translated cellular mRNAs (schematic,
Figure 1A). EGFP was chosen because preliminary screens us-
ing small epitope tags were unsatisfactory and because visuali-
zation of EGFP fluorescence provides a simple assay for proper
expression and localization of the fusion protein. After dozens of
candidate ribosomal protein fusions were tested, EGFP fused to
the N terminus of the large-subunit ribosomal protein L10a
(EGFP-L10a) was chosen because its nucleolar and cytoplasmic
localization was consistent with incorporation into intact ribo-
somes and because immunoelectron microscopy data demon-
strated its presence on polysomes (Figure S1 available online

Figure 1. The TRAP Methodology
(A) Schematic of affinity purification of EGFP-

tagged polysomes (originating from the target

cell population; green polysomes) with anti-GFP

antibody-coated beads.

(B) Transmission electron micrographs of anti-

GFP-coated magnetic beads after incubation with

extracts taken from HEK293T cells transfected

with an empty vector (left panel) or the EGFP-L10a

construct (right panel); images were acquired at

50,0003 magnification, with inserts enlarged by

a factor of 2.33.

and data not shown). Prior to the produc-
tion of bacTRAP transgenic mice, prelim-
inary studies in HEK293T cells trans-
fected with EGFP-L10a achieved rapid
and specific immunoaffinity purification
of polysomes (Figure 1B), overall copurifi-
cation of !10% of untagged ribosomal
proteins and ribosomal RNA from cul-
tures in which !30% of cells expressed
EGFP-L10a, and recovery observed for
translated, and not untranslated, mRNAs
(Table S1 and Figure S2). As further
validation of the technique, measure-
ments of the well-documented shift in
translational efficiency of Ferritin mRNA
in response to iron treatment were com-
parable with the TRAP methodology or
traditional polysome gradient methods
(Figure S2).

To genetically target expression of
EGFP-L10a to defined CNS cell popula-
tions, we generated BAC transgenic
mice. To tag polysomes in striatonigral

and striatopallidal cells of the mouse striatum, we used homolo-
gous recombination in bacteria to place EGFP-L10a under the
control of either the Drd2 receptor (striatopallidal) or Drd1a re-
ceptor (striatonigral) loci in the appropriate BACs. Striatonigral
MSNs send projection axons directly to the output nuclei of the
basal ganglia, i.e., the substantia nigra and the internal segment
of the globus pallidus (the entopeduncular nucleus in rodents),
whereas striatopallidal MSNs send projection axons to the exter-
nal segment of the globus pallidus. Mouse lines bearing the
TRAP transgene (EGFP-L10a) were generated and screened
by immunohistochemistry for appropriate expression of the
transgene, as judged by known Drd1a and Drd2 receptor ex-
pression patterns. The Drd2 bacTRAP line CP101 showed high-
est transgenic EGFP-L10a expression in the dorsal and ventral
striatum, olfactory tubercle, and hippocampus, as well as in
the substantia nigra pars compacta and ventral tegmental
area, as expected because of Drd2 autoreceptor expression in
dopaminergic cells (Figure 2A). The Drd1a bacTRAP line CP73
showed highest transgenic EGFP-L10a expression in the dorsal
and ventral striatum, olfactory bulb, olfactory tubercle, and
cortical layers 5 and 6 (Figure 2C). As expected for a ribosomal
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T
ranslational P

rofi
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M
ethodology

B
ecause

all m
R

N
A
s

translated
into

protein
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at
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point
at-

tached
to

a
ribosom
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or

polyribosom
e

com
plex

(polysom
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e
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a
ribosom

al protein
w
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isolation
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m

R
N

A
s. W

e
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fusions
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ribosom

al proteins
w
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enhanced

green
fluorescent

protein

(EG
FP
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incorporation
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im
m

unoaffinity
tag

for all translated
cellular m

R
N

A
s

(schem
atic,

Figure
1A

). EG
FP
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prelim
inary

screens
us-

ing
sm

all epitope
tags

w
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visuali-

zation
of EG

FP
fluorescence

provides
a

sim
ple

assay
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expression
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of the

fusion
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of
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ribosom

al protein
fusions
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N
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of
the

large-subunit
ribosom

al
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localization
w
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w
ith

incorporation
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ribo-
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m

unoelectron
m

icroscopy
data
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strated
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presence
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polysom
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(Figure
S
1

available
online

Figure
1.

The
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M
ethodology

(A
)

S
chem

atic
of
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purification

of
EG

FP
-

tagged
polysom

es
(originating

from
the

target

cell
population;

green
polysom

es)
w

ith
anti-G

FP

antibody-coated
beads.

(B
)
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ission

electron
m

icrographs
of

anti-
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FP

-coated
m

agnetic
beads

after incubation
w
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extracts
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EK
293T

cells
transfected

w
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em

pty
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FP

-L10a

construct
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panel);
im

ages
w
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acquired

at

50,0003
m

agnification,
w

ith
inserts

enlarged
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a
factor

of 2.33
.

and
data
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the

produc-
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of bacTR
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P

transgenic
m

ice, prelim
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inary
studies

in
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EK
293T

cells
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fected
w

ith
EG

FP
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rapid

and
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of polysom
es

(Figure
1B
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ribosom
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R
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from
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in
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!

30%
of
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EG
FP

-L10a,
and

recovery
observed

for

translated, and
not untranslated, m

R
N

A
s

(Table
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1

and
Figure

S
2).
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of
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technique,

m
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the

w
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ented
shift
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translational
efficiency

of
Ferritin

m
R
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in
response
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treatm
ent

w
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parable
w
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the

TR
A
P

m
ethodology

or

traditional
polysom

e
gradient

m
ethods

(Figure
S
2).
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genetically

target
expression
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EG
FP
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defined
C

N
S

cell popula-

tions,
w
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generated

B
A
C

transgenic

m
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To
tag

polysom
es

in
striatonigral

and
striatopallidal cells

of the
m

ouse
striatum

, w
e

used
hom

olo-
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recom

bination
in

bacteria
to

place
EG

FP
-L10a

under
the

control of
either

the
D

rd2
receptor

(striatopallidal) or
D

rd1a
re-

ceptor
(striatonigral)

loci in
the

appropriate
B

A
C

s.
S
triatonigral

M
S
N

s
send

projection
axons

directly
to

the
output nuclei of the

basal ganglia, i.e., the
substantia

nigra
and

the
internal segm

ent

of
the

globus
pallidus

(the
entopeduncular

nucleus
in

rodents),

w
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striatopallidal M
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N
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send

projection
axons

to
the
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segm
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of

the
globus
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TR
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transgene
(EG
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screened

by
im
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of
the
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D
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D
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bacTR
A
P

line
C

P
101

show
ed

high-
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EG
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the
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nigra
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of D
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(Figure
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EG
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,
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ribosom

al
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>98% of IP footprints map to mRNA CDS’
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IP footprints are more consistently in correct frame

15

ribosome IPa)

c)

sucrose cushion b)

26 27 28 29 30 31 32 33

2.5
2
1.5
1
0.5
0

read length (nt) re
ad
−m

id
po

in
t −

 n
ea

re
st

 c
od

on
 s

ta
rt 

(n
t)

0 0.51 0 0.3 0 0.08 0 0.27
0.44 0 0.41 0 0.09 0 0.31 0

0 0.35 0 0.13 0 0.46 0 0.46
0.33 0 0.14 0 0.61 0 0.55 0

0 0.14 0 0.57 0 0.46 0 0.27
0.23 0 0.45 0 0.3 0 0.14 0

26 27 28 29 30 31 32 33

2.5
2
1.5
1
0.5
0

read length (nt) re
ad
−m

id
po

in
t −

 n
ea

re
st

 c
od

on
 s

ta
rt 

(n
t)

0 0.59 0 0.07 0 0.02 0 0.34
0.54 0 0.07 0 0.01 0 0.26 0

0 0.23 0 0.03 0 0.38 0 0.49
0.19 0 0.12 0 0.67 0 0.67 0

0 0.18 0 0.9 0 0.59 0 0.17
0.27 0 0.81 0 0.32 0 0.06 0

re
ad

-m
id

 fr
am

e 
of

fs
et

 (n
t)

re
ad

-m
id

 fr
am

e 
of

fs
et

 (n
t)

5’ 3’
read length % reads in frame  

cushion
% reads in frame  

IP

26nt 44% 54%

27nt 51% 59%

28nt 45% 81%

29nt 57% 90%

30nt 61% 67%

31nt 46% 59%

32nt 55% 67%

ribosome

read length (nt) read length (nt)

eligible reads: 
- in CDS 
- >50% in correct frame



IP footprints better able to predict correct frame

16

c) 5’ 3’
read length % reads in frame  

cushion
% reads in frame  

IP

26nt 44% 54%

27nt 51% 59%

28nt 45% 81%

29nt 57% 90%

30nt 61% 67%

31nt 46% 59%

32nt 55% 67%

ribosome

eligible reads: 
- in CDS 
- >50% in correct frame
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• for the naïve prior:

• maximise the likelihood of 1..N 
observed reads or peptides, R, 
given isoform abundances,    , of 
1..K isoforms:

EM algorithm
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update ratios

p
ri
o

rs

footprint reads:

example: resolving the isoforms of POLDIP3

isoform ratios

s
te

p
 2

s
te

p
 1

s
te

p
 N

naïve RNA

POLDIP3-001

POLDIP3-002

POLDIP3-202

POLDIP3-203

POLDIP3-201

prior isoform ratios

naïve RNA3’ 5’

E
M

-001 2.8 7.5

-002 2.8 3.4

-202 2.8 0.1

-203 1.8 0

-201 0.8 0

-001 3.1 7.6

-002 3.1 3.3

-202 3.1 0.1

-203 1.4 0

-201 0.3 0

-001 3.67 7.6

-002 3.67 3.3

-202 3.67 0.06

-203 0 0

-201 0 0

numbers of reads

s
te

p
 2

s
te

p
 1

s
te

p
 N

naïve RNA
update ratios

iterate

re-assign

reads

assign reads based on prior isoform ratios

re
s
u

lt

posterior isoform ratios

naïve RNA

footprint reads:

POLDIP3-001

POLDIP3-002

POLDIP3-202

3’ 5’

The biological (RNA) prior supports POLDIP3-001 as the >2-fold dominant 

isoform, while the naïve prior gets stuck with three equally likely isoforms:

update transcript  
abundances using footprints

𝜓0 𝜓RNA

𝜓’0 𝜓’RNA

prior
none  

-or- 
RNA

𝜓0

𝜓RNA
𝜓’FPfootprints

update transcript  
abundances using peptides

none  
-or- 

RNA 
-or- 

RNA & FP

𝜓0

𝜓RNA 𝜓’MSMS peptides

𝜓’FP

a)

b)

naïve RNA-seqprior:

naïve RNA-seq

P (Ij|ψ) =
ψjlj

∑K
k=1

ψklk

P (R1:N |ψ) =
N∏

n=1

K∑

k=1

P (Rn|Ik)P (Ik|ψ)

P (R1:N |ψ) =
N∏

n=1

K∑

k=1

P (Rn|Ik)P (Ik|ψ)

• probability that the jth isoform 
will contribute a footprint or 
peptide is based on its CDS 
length, l, and abundance,     :P (R1:N |ψ) =

N∏

n=1

K∑

k=1

P (Rn|Ik)P (Ik|ψ)

P (R1:N |ψ) =
N∏

n=1

K∑

k=1

P (Rn|Ik)P (Ik|ψ)k = K-1

• for each gene:



implementation:  ‘miBAT’
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RNA-seq prior 
(optional)

RNA-seq + footprint prior 
(optional)

aligned spectra 
(.xml)

MS/MS spectra 
(.mzxml)

protein isoform  
quantifications (.exprs)

map spectra 

(X!Tandem)

transcriptome  
alignments (.bam)

transcriptome  
alignments (.bam)

footprint  
reads (.fq)

RNA-seq 
reads (.fq)

a) ribosome footprint EM

naïve prior

G
en

co
de

 
an

no
ta

ti
on

assign to transcripts using 
miBAT

footprint transcript 
quantifications (.exprs)

RNA-seq prior 
(optional) G

en
co

de
 

an
no

ta
ti

on
b) mass-spec proteomics EM

transcript 
quantifications (.xprs)

naïve prior

align reads 

(STAR)

align reads 

(STAR)

quantify 

(eXpress)

transcriptome  
alignments (.bam)

RNA-seq 
reads (.fq)

G
en

co
de

 
an

no
ta

ti
on

assign to transcripts using 
miBAT

G
en

co
de

 
an

no
ta

ti
on transcript 

quantifications (.xprs)
align reads 

(STAR)

quantify 

(eXpress)

footprint transcript 
quantifications (.exprs)-or-



naïve prior
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naïve EM

# 'best' isoforms per gene

# 
ge

ne
s

0 2 4 6 8 10

0
50

0
10

00
15

00
20

00
25

00 Footprints (58.2% ambiguous multi−isoform genes)
MS peptides (58.1% ambiguous multi−isoform genes)

FP: naïve EM

majorIsoform / secondIsoform
# 

ge
ne

s

1 2 3 4 5

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00

MS: naïve EM

majorIsoform / secondIsoform

# 
ge

ne
s

1 2 3 4 5

0
10

0
20

0
30

0
40

0
50

0

ribosome 
footprints or 

MS/MS peptides 
alone cannot 
distinguish 

isoforms for the 
majority of genes
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naïve EM

# 'best' isoforms per gene

# 
ge

ne
s

0 2 4 6 8 10

0
50

0
10

00
15

00
20

00
25

00 Footprints (58.2% ambiguous multi−isoform genes)
MS peptides (58.1% ambiguous multi−isoform genes)

FP: naïve EM

majorIsoform / secondIsoform

# 
ge

ne
s

1 2 3 4 5

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00

MS: naïve EM

majorIsoform / secondIsoform

# 
ge

ne
s

1 2 3 4 5

0
10

0
20

0
30

0
40

0
50

0

naïve prior

ratio of ‘best’ to ‘second-best’ isoform reveals  
all-or-nothing style behaviour of the naïve EM
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FP: totalRNA prior

majorIsoform / secondIsoform

# 
ge

ne
s

1 2 3 4 5
0

10
00

20
00

30
00

40
00

major isoform dominance:
2−fold dominant:83%
10−fold dominant:57.9%
100−fold dominant:43.2%

FP: raRNA prior

majorIsoform / secondIsoform

# 
ge

ne
s

1 2 3 4 5

0
10

00
20

00
30

00
40

00

major isoform dominance:
2−fold dominant:82.5%
10−fold dominant:58.1%
100−fold dominant:44.2%

MS: raRNA prior

majorIsoform / secondIsoform

# 
ge

ne
s

1 2 3 4 5

0
10

0
20

0
30

0
40

0
50

0

major isoform dominance:
2−fold dominant:78.1%
10−fold dominant:45.5%
100−fold dominant:26.3%

MS: raRNA+FP prior

majorIsoform / secondIsoform

# 
ge

ne
s

1 2 3 4 5
0

10
0

20
0

30
0

40
0

50
0

major isoform dominance:
2−fold dominant:83.8%
10−fold dominant:63.3%
100−fold dominant:46.9%

informative prior

ribosome footprints  
benefit from  

totalRNA or raRNA-seq prior

MS/MS peptides 
also benefit from  

raRNA-seq or footprint prior



global clustering
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raRNA after

raRNA prior

totalRNA after

totalRNA prior

naïve after

naïve prior

0 0.2 0.4 0.6 0.8 1

isoform Fraction

raRNA+FP after

raRNA+FP prior

raRNA after

raRNA prior

naïve after

naïve prior

3 31 7 6 8 6 2 5 43

a)

b)

cluster ID

4 cluster ID6 7 1 2 3 5 8

fo
ot

pr
in

ts

M
S/

M
S



cluster profiles

23

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

naïve totalRNA raRNA

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�
�

�
�

�

�

�

�

�

�

� �

�
�

�
�

�
�

� �

�

�

�

�

� �

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

cluster5 (927)
cluster4 (1066)

cluster3 (1211)
cluster7 (591)

cluster2 (1546)
cluster6 (767)

cluster8 (434)
cluster1 (108)

prior after prior after prior after

m
aj

or
 is

of
or

m
 fr

ac
tio

n 
of

 g
en

e 
ex

pr
es

sio
n

ribosome 
footprints

naïve raRNA raRNA+FP

�

�

�
�

�

�

�
�

�
�

�

�

�

�

�
�

�
�

�
�

�

�

� �

�
�

� �

�

�

�
�

� �

� �

�

�

� �

� �

� �

�

�

� �

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

cluster3 (N=314)
cluster5 (N=120)

cluster1 (N=28)
cluster7 (N=92)

cluster6 (N=109)
cluster2 (N=332)
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MS/MS 
peptides

informative prior 
helps determine 

isoform

footprints / peptides 
drive the isoform ID

isoform choice  
changes with  
different prior



validation

24

FP:naïve FP:totalRNA FP:raRNA MS:naïve MS:raRNA MS:raRNA+FP
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ALDH2−001
ALDH2−003

COPE−001
COPE−002
COPE−004
COPE−201

MOGS−001
MOGS−002
MOGS−007
MOGS−201

POLDIP3−001
POLDIP3−002
POLDIP3−202

transcript
name

PDHB−001
PDHB−005
PDHB−008

product
size (nt)

563
476
614

482
341

268
-
214

604
451
-
-

449
-
-
123

6 specific examples of genes/isoforms resolved 
by RNA-seq:

PCR:



54 1000genomes RNA-seq & footprint samples

25

is
of

or
m

 s
td

ev



 
 
  1 - proteomic profiling of human brain (psychENCODE) 
  2 - cell-type specific footprinting and proteomics (CEBRA) 

26

applications



a)

b) c)

RNA

% expressed genes 
detected as protein: 
>1 RPKM: 60% 
>10 RPKM: 80% 
>100 RPKM: 90%

log10(RPKM)

%
 m

RN
A

s 
w

ith
 p

ep
tid

e(
s)

all RNA
mRNAs
protein

log10(RPKM)

# 
ge

ne
s

d)

1 - proteomic profiling of human brain (psychENCODE)

x5 adult 
human brains

DFC dorsolateral prefrontal cortex
V1C primary visual cortex
HIP hippocampus
STR striatum
MD thalamus (mediodorsal nucleus)
AMY amygdala
CBC cerebellum

x7 brain regions

protein

per-sample quantification 
(all regions, all brains)  
single-run LC-MS/MS

per-sample quantification 
(all regions, all brains) 
poly-A RNA-seq

per-region survey 
(all regions, pooled brains) 
high-pH reversed-phase chromatography 
fractionated LC-MS/MS 



2 - cell-type specific footprinting and proteomics (CEBRA)

28
Htr6



2 - cell-type specific footprinting and proteomics (CEBRA)

29
Lhx5
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2 - cell-type specific footprinting and proteomics (CEBRA)

RESULTS

A Genetically Targeted Translational Profiling
Methodology
Because all mRNAs translated into protein are at one point at-
tached to a ribosome or polyribosome complex (polysome), we
reasoned that an affinity tag fused to a ribosomal protein would
allow isolation of bound mRNAs. We therefore screened fusions
of ribosomal proteins with enhanced green fluorescent protein
(EGFP) for efficient incorporation into polysomes to provide an
immunoaffinity tag for all translated cellular mRNAs (schematic,
Figure 1A). EGFP was chosen because preliminary screens us-
ing small epitope tags were unsatisfactory and because visuali-
zation of EGFP fluorescence provides a simple assay for proper
expression and localization of the fusion protein. After dozens of
candidate ribosomal protein fusions were tested, EGFP fused to
the N terminus of the large-subunit ribosomal protein L10a
(EGFP-L10a) was chosen because its nucleolar and cytoplasmic
localization was consistent with incorporation into intact ribo-
somes and because immunoelectron microscopy data demon-
strated its presence on polysomes (Figure S1 available online

Figure 1. The TRAP Methodology
(A) Schematic of affinity purification of EGFP-

tagged polysomes (originating from the target

cell population; green polysomes) with anti-GFP

antibody-coated beads.

(B) Transmission electron micrographs of anti-

GFP-coated magnetic beads after incubation with

extracts taken from HEK293T cells transfected

with an empty vector (left panel) or the EGFP-L10a

construct (right panel); images were acquired at

50,0003 magnification, with inserts enlarged by

a factor of 2.33.

and data not shown). Prior to the produc-
tion of bacTRAP transgenic mice, prelim-
inary studies in HEK293T cells trans-
fected with EGFP-L10a achieved rapid
and specific immunoaffinity purification
of polysomes (Figure 1B), overall copurifi-
cation of !10% of untagged ribosomal
proteins and ribosomal RNA from cul-
tures in which !30% of cells expressed
EGFP-L10a, and recovery observed for
translated, and not untranslated, mRNAs
(Table S1 and Figure S2). As further
validation of the technique, measure-
ments of the well-documented shift in
translational efficiency of Ferritin mRNA
in response to iron treatment were com-
parable with the TRAP methodology or
traditional polysome gradient methods
(Figure S2).

To genetically target expression of
EGFP-L10a to defined CNS cell popula-
tions, we generated BAC transgenic
mice. To tag polysomes in striatonigral

and striatopallidal cells of the mouse striatum, we used homolo-
gous recombination in bacteria to place EGFP-L10a under the
control of either the Drd2 receptor (striatopallidal) or Drd1a re-
ceptor (striatonigral) loci in the appropriate BACs. Striatonigral
MSNs send projection axons directly to the output nuclei of the
basal ganglia, i.e., the substantia nigra and the internal segment
of the globus pallidus (the entopeduncular nucleus in rodents),
whereas striatopallidal MSNs send projection axons to the exter-
nal segment of the globus pallidus. Mouse lines bearing the
TRAP transgene (EGFP-L10a) were generated and screened
by immunohistochemistry for appropriate expression of the
transgene, as judged by known Drd1a and Drd2 receptor ex-
pression patterns. The Drd2 bacTRAP line CP101 showed high-
est transgenic EGFP-L10a expression in the dorsal and ventral
striatum, olfactory tubercle, and hippocampus, as well as in
the substantia nigra pars compacta and ventral tegmental
area, as expected because of Drd2 autoreceptor expression in
dopaminergic cells (Figure 2A). The Drd1a bacTRAP line CP73
showed highest transgenic EGFP-L10a expression in the dorsal
and ventral striatum, olfactory bulb, olfactory tubercle, and
cortical layers 5 and 6 (Figure 2C). As expected for a ribosomal
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summary

• immunoprecipitation of ribosomes provides very clean [ra]RNA-seq and ribosome 
footprint data 

• developed flexible framework (miBAT) to not only assign footprints/peptides to 
isoforms, but also to allow these data to update isoform abundances estimated by 
RNA-seq 

• application to psychENCODE project (integrating RNA-seq and MS/MS proteomics) to 
provide isoform-resolution map of the human brain  

• application to specific cell-types to monitor translation (using RNA-seq, footprints, & 
MS/MS proteomics) in response to acute cocaine administration
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cell-type specific profiling of the mouse CNS
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what defines a neural cell-type?

location shape 
& 

connectivity

genes 
& 

neurotransmitters

protein fusion, EGFP fluorescence localized to the nucleoli and
cytoplasm (Figure 2B). EGFP direct fluorescence coincident
with enkephalin immunohistochemical detection (striatopallidal
cell marker) was observed in striatal cells from the Drd2 bac-
TRAP line but not the Drd1a bacTRAP line (Figures 2B and 2D),
verifying correct BAC-mediated cell-type expression. Velocity
sedimentation analysis of polysome complexes isolated from
striatal extracts of both bacTRAP lines confirmed incorporation

of the EGFP-L10a fusion protein into functional polysomes
in vivo (Figure S3 and data not shown).

We next developed procedures for rapid extraction and immu-
noaffinity purification of the EGFP-tagged polyribosome com-
plexes from intact brain tissue, which proved substantially
more challenging than from transfected cells in culture.
However, after several optimization steps (see the Experimental
Procedures), highly purified RNA was consistently obtained from
bacTRAP mouse brain tissue (Figure 3). Key steps of the purifica-
tion protocol include rapid manual dissection and homogeniza-
tion of the tissue, inclusion of magnesium and cycloheximide in
the lysis buffer to maintain ribosomal subunits on mRNA during
purification, inhibition of endogenous RNase activity, solubiliza-
tion of rough endoplasmic reticulum-bound polysomes under
nondenaturing conditions, use of high-affinity anti-EGFP anti-
bodies, and the addition of high-salt washes after immunoaffinity
purification to reduce background.

Translational Profiling of Striatonigral
and Striatopallidal MSNs
Translational profiling analysis was performed with immunoaffin-
ity-purified mRNA from adult striatonigral or striatopallidal
bacTRAP mice. After two rounds of in vitro transcription, biotin-
labeled antisense RNA (cRNA) was used to interrogate Affyme-
trix GeneChip Mouse Genome 430 2.0 arrays. Replicate
bacTRAP samples collected from each line gave nearly identical
genome-wide translational profiles (average Pearson correlation
of 0.982 and 0.985 for striatonigral and striatopallidal samples,
respectively). For each cell type, data were collected from three
independent biological replicates, each prepared from a cohort
of seven animals. Analysis of immunoaffinity-purified samples
revealed no bias for mRNA length or abundance (Figure S4).
Comparative analysis of these data (see the Experimental Proce-
dures) revealed that all of the well-characterized, differentially
expressed MSN markers (Gerfen, 1992) were enriched with the
TRAP translational profiling approach: dopamine receptor 2
(Drd2) (36.63), adenosine 2a receptor (Adora2a) (13.23), and en-
kephalin (Penk) (7.53) were enriched in the striatopallidal bac-
TRAP sample, whereas dopamine receptor D1A (Drd1a) (3.93),
substance P (Tac1) (3.63), and dynorphin (Pdyn) (5.63) were en-
riched in the striatonigral bacTRAP sample (Figure 3C and Table
S2). We also confirmed four striatopallidal-enriched mRNAs
(Adk, Plxdc1, BC004044, and Hist1h2bc), as well as six striato-
nigral-enriched mRNAs (Slc35d3, Zfp521, Ebf1, Stmn2, Gnb4,
and Nrxn1) reported in a microarray study of FACS-isolated
MSNs (Lobo et al., 2006) (Table S2). We further identified !70
additional striatopallidal-enriched transcripts and more than
150 additional striatonigral-enriched transcripts (Table S2). To
initially verify our data, we performed quantitative PCR assays
using independent biological bacTRAP Drd1a and Drd2 samples
and a different cDNA amplification procedure (see the Supple-
mental Experimental Procedures). Differential translation of
Eya1, Isl1, Gng2, and Crym in striatonigral MSNs and Gpr6,
Lhx8, Gpr88, Trpc4, and Tpm2 in striatopallidal MSNs was con-
firmed (Tables S3 and S4). These genes were selected because
they represent both highly and moderately enriched messages.

Given the apparent enhanced sensitivity of our translational
profiling method, we were next interested in large-scale

Figure 2. Expression of EGFP-L10a in Drd1a and Drd2 bacTRAP
Lines
(A) Immunohistochemistry to EGFP in adult sagittal sections from the Drd2

bacTRAP line CP101.

(B) Characterization of Drd2 bacTRAP line CP101 striatal MSN cells: direct

EGFP fluorescence (left panel with high-magnification image insert), enkeph-

alin immunohistochemical staining (middle panel), and merge (right panel,

with 20 mm scale bar).

(C) Immunohistochemistry to EGFP in adult sagittal sections from the Drd1a

bacTRAP line CP73.

(D) Characterization of Drd1a bacTRAP line CP73 striatal MSN cells: direct

EGFP fluorescence (left panel), enkephalin immunohistochemical staining

(middle panel), and merge (right panel).
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use combinations of these properties to select specific cell-types
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protein fusion, EGFP fluorescence localized to the nucleoli and
cytoplasm (Figure 2B). EGFP direct fluorescence coincident
with enkephalin immunohistochemical detection (striatopallidal
cell marker) was observed in striatal cells from the Drd2 bac-
TRAP line but not the Drd1a bacTRAP line (Figures 2B and 2D),
verifying correct BAC-mediated cell-type expression. Velocity
sedimentation analysis of polysome complexes isolated from
striatal extracts of both bacTRAP lines confirmed incorporation

of the EGFP-L10a fusion protein into functional polysomes
in vivo (Figure S3 and data not shown).

We next developed procedures for rapid extraction and immu-
noaffinity purification of the EGFP-tagged polyribosome com-
plexes from intact brain tissue, which proved substantially
more challenging than from transfected cells in culture.
However, after several optimization steps (see the Experimental
Procedures), highly purified RNA was consistently obtained from
bacTRAP mouse brain tissue (Figure 3). Key steps of the purifica-
tion protocol include rapid manual dissection and homogeniza-
tion of the tissue, inclusion of magnesium and cycloheximide in
the lysis buffer to maintain ribosomal subunits on mRNA during
purification, inhibition of endogenous RNase activity, solubiliza-
tion of rough endoplasmic reticulum-bound polysomes under
nondenaturing conditions, use of high-affinity anti-EGFP anti-
bodies, and the addition of high-salt washes after immunoaffinity
purification to reduce background.

Translational Profiling of Striatonigral
and Striatopallidal MSNs
Translational profiling analysis was performed with immunoaffin-
ity-purified mRNA from adult striatonigral or striatopallidal
bacTRAP mice. After two rounds of in vitro transcription, biotin-
labeled antisense RNA (cRNA) was used to interrogate Affyme-
trix GeneChip Mouse Genome 430 2.0 arrays. Replicate
bacTRAP samples collected from each line gave nearly identical
genome-wide translational profiles (average Pearson correlation
of 0.982 and 0.985 for striatonigral and striatopallidal samples,
respectively). For each cell type, data were collected from three
independent biological replicates, each prepared from a cohort
of seven animals. Analysis of immunoaffinity-purified samples
revealed no bias for mRNA length or abundance (Figure S4).
Comparative analysis of these data (see the Experimental Proce-
dures) revealed that all of the well-characterized, differentially
expressed MSN markers (Gerfen, 1992) were enriched with the
TRAP translational profiling approach: dopamine receptor 2
(Drd2) (36.63), adenosine 2a receptor (Adora2a) (13.23), and en-
kephalin (Penk) (7.53) were enriched in the striatopallidal bac-
TRAP sample, whereas dopamine receptor D1A (Drd1a) (3.93),
substance P (Tac1) (3.63), and dynorphin (Pdyn) (5.63) were en-
riched in the striatonigral bacTRAP sample (Figure 3C and Table
S2). We also confirmed four striatopallidal-enriched mRNAs
(Adk, Plxdc1, BC004044, and Hist1h2bc), as well as six striato-
nigral-enriched mRNAs (Slc35d3, Zfp521, Ebf1, Stmn2, Gnb4,
and Nrxn1) reported in a microarray study of FACS-isolated
MSNs (Lobo et al., 2006) (Table S2). We further identified !70
additional striatopallidal-enriched transcripts and more than
150 additional striatonigral-enriched transcripts (Table S2). To
initially verify our data, we performed quantitative PCR assays
using independent biological bacTRAP Drd1a and Drd2 samples
and a different cDNA amplification procedure (see the Supple-
mental Experimental Procedures). Differential translation of
Eya1, Isl1, Gng2, and Crym in striatonigral MSNs and Gpr6,
Lhx8, Gpr88, Trpc4, and Tpm2 in striatopallidal MSNs was con-
firmed (Tables S3 and S4). These genes were selected because
they represent both highly and moderately enriched messages.

Given the apparent enhanced sensitivity of our translational
profiling method, we were next interested in large-scale

Figure 2. Expression of EGFP-L10a in Drd1a and Drd2 bacTRAP
Lines
(A) Immunohistochemistry to EGFP in adult sagittal sections from the Drd2

bacTRAP line CP101.

(B) Characterization of Drd2 bacTRAP line CP101 striatal MSN cells: direct

EGFP fluorescence (left panel with high-magnification image insert), enkeph-

alin immunohistochemical staining (middle panel), and merge (right panel,

with 20 mm scale bar).

(C) Immunohistochemistry to EGFP in adult sagittal sections from the Drd1a

bacTRAP line CP73.

(D) Characterization of Drd1a bacTRAP line CP73 striatal MSN cells: direct

EGFP fluorescence (left panel), enkephalin immunohistochemical staining

(middle panel), and merge (right panel).

740 Cell 135, 738–748, November 14, 2008 ª2008 Elsevier Inc.

mixed cells single cell-type single cell

✔ easy to obtain 
✔ plenty of material  
✘  ++ white matter 
✘  not sensitive

✔ easy to obtain…  
✘  …only in model organism 
✔ plenty of material  
✔ promoter-specific  
✔ sensitive

✘  difficult to obtain 
✘  little material 
✘  lose processes 
✔ sensitive  
✘  ChIP & MS/MS hard

dissection bacTRAP / FACS LCM / FACS

the case for cell-types
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major problems associated with profiling RNA abundance in the human brain

limitations of human transcriptomics

death 
& 

PMI

sample quality 
& 

biopsy precision

cell-types 
& 

transgenics



single-cell RNA-seq  |  bad [human] experiment
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single-cell RNA-seq  |  good [mouse] experiment
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major problems associated with profiling RNA abundance in the human brain

limitations of human transcriptomics
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limitations of human transcriptomics
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major problems associated with profiling RNA abundance in the human 
brain



overcoming limitations of human transcriptomics
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how can we use high-quality, high-resolution mouse data 
to learn more about the development of the human brain?
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early fœtal, neuron-specific, human lincRNAs 



current database of cell-type specific raRNA-seq
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interactive web resource of cell-type enriched genes
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uses of cell-type enriched gene catalogue

• clustering and single-cells 
 
- use known cell-types to inform clustering of single cell based on expression profiles 
 

• deconvolution! 
 
- use to interpret gene expression profiling of human CNS 
 

• cell-type specific PPI + coexpression networks 
 
- use to find cell-type specific hubs/bottlenecks  
 
- use to refine cell-type hierarchy
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