integrated analysis of the transcriptome, translatome, and proteome

Rob Kitchen

GPMTG

18 Feb 2016

Lichtman 2015 Cell

dealing with brain complexity

most highly evolved organ:

- $\sim 10^{11}$ neurons
- ~ **1014 synapses** (connections)
- ~ **5-50Hz firing rate**

in almost every tissue, cells continually grow and divide but **most neurons stop growing** in early childhood

there is large interest in both **long-term** processes (Alzheimer's, Parkinson's, etc) and **short-term** processes (reward, addiction, PTSD)

maybe more than any other organ, **post-transcriptional regulation is extremely important**

as is the scope for **alternative splicing…**

parallel, multi-level observations of gene expression

parallel, multi-level observations of gene expression

…although it is possible to assay translation and steady-state protein levels, the yield of these experiments is much lower than RNA-seq

easier to measure transcription than translation

7

junction observability

RNA-seq will eventually produce single-molecule, whole transcript reads.

Not the case for footprints and not clear if MS will ever be able to profile intact protein

-> how can we integrate RNA, footprint, and MS data for mutual gain?

EM algorithm

- for each gene:
- maximise the likelihood of *1..N* observed reads or peptides, *R*, given isoform abundances, ψ , of *1..K* isoforms:

$$
P(R_{1:N}|\psi) = \prod_{n=1}^{N} \sum_{k=1}^{K} P(R_n|I_k) P(I_k|\psi)
$$

- for the naïve prior: $\psi_k = K^{-1}$ **Find biological (RN**)
- probability that the *jth* isoform will contribute a footprint or peptide is based on its CDS length, *l*, and abundance, ψ :

$$
P(I_j|\psi) = \frac{\psi_j l_j}{\sum_{k=1}^K \psi_k l_k}
$$

aside: higher quality data improves our chances for successful integration

ribosome-affiliated RNA (raRNA) > totalRNA

raRNA suffers less intronic contamination than totalRNA

12

ribosome footprinting | wet-lab methods .
some foot prote footpr<mark>i</mark>n print: ne footprinti translated.
Notorintin Table S1 (.
10 some foot proteins and ribosomal RNA culprint: me footprinti translated.
Ne footprintin Table S1 (Because all mRNAs translated into protein are at one point atwith an empty vector (left panel) or the EGFP-L10a construct (riboso and the series of the serie
Series of the series of th .
Som

!30% of cells expressed

!30% of cells expressed

validation of the technique, measurements of the well-documented shift in

validation of the technique, measurements of the well-documented shiftin candidate ribosomal protein fusions were tested, EGFP fused to

A Genetically Targeted Translational Profiling

tached to a ribosome or polysome complex (polysome complex (polysome), we complex (polysome \mathcal{P} reasoned that an affinity tag fused to ^a ribosomal protein would

candidate ribosomal fusions were tested, EGFP fused tothe ^N terminus of the large-subunit ribosomal protein L10a

>98% of IP footprints map to mRNA CDS'

IP footprints are more consistently in correct frame

IP footprints better able to predict correct frame

EM algorithm

- for each gene:
- maximise the likelihood of *1..N* observed reads or peptides, *R*, given isoform abundances, ψ , of *1..K* isoforms:

$$
P(R_{1:N}|\psi) = \prod_{n=1}^{N} \sum_{k=1}^{K} P(R_n|I_k) P(I_k|\psi)
$$

- for the naïve prior: $\psi_k = K^{-1}$ **Find biological (RN**)
- probability that the *jth* isoform will contribute a footprint or peptide is based on its CDS length, *l*, and abundance, ψ :

$$
P(I_j|\psi) = \frac{\psi_j l_j}{\sum_{k=1}^K \psi_k l_k}
$$

implementation: 'miBAT'

naïve prior

distinguish isoforms for the majority of genes

naïve prior

ratio of 'best' to 'second-best' isoform reveals all-or-nothing style behaviour of the naïve EM

informative prior

FP: totalRNA prior FP: raRNA prior 4000 4000 1000 2000 3000 4000 1000 2000 3000 4000 major isoform dominance: major isoform dominance: 2−fold dominant:83% 2−fold dominant:82.5% 3000 10−fold dominant:57.9% 3000 10−fold dominant:58.1% 100−fold dominant:43.2% 100−fold dominant:44.2% **ribosome footprints** # genes # genes 2000 2000 **benefit from totalRNA or raRNA-seq prior** 1000 1000 \circ \circ 1 2 3 4 5 1 2 3 4 5 majorIsoform / secondIsoform majorIsoform / secondIsoform **MS: raRNA prior MS: raRNA+FP prior** 500 500 100 200 300 400 500 100 200 300 400 500 major isoform dominance: major isoform dominance: 2−fold dominant:78.1% 2−fold dominant:83.8% 400 400 10−fold dominant:45.5% 10−fold dominant:63.3% 100−fold dominant:26.3% 100−fold dominant:46.9% **MS/MS peptides** 300 300 # genes # genes **also benefit from** 200 200 **raRNA-seq or footprint prior** $\frac{100}{100}$ 100 \circ \circ 1 2 3 4 5 1 2 3 4 5 majorIsoform / secondIsoform 21 majorIsoform / secondIsoform

global clustering

cluster profiles

validation

6 specific examples of genes/isoforms resolved by RNA-seq:

54 1000genomes RNA-seq & footprint samples

25

applications

 1 - proteomic profiling of human brain (psychENCODE) 2 - cell-type specific footprinting and proteomics (CEBRA)

1 - proteomic profiling of human brain (psychENCODE)

2 - cell-type specific footprinting and proteomics (CEBRA)

2 - cell-type specific footprinting and proteomics (CEBRA)

2 - cell-type specific footprinting and proteomics (CEBRA) and proteom om
— and proteomic and proteomic and proteomics allow is a bound proteomics. of proteemics w $\mathbb{E}[\mathbf{E}(\mathbf{E}(\mathbf{E})|\mathbf{E}(\mathbf{E}))]$ and data not show the prior to the prior inary studies in HERC
In HERCE cells transfected with EGFP-L10a achieved rapid Because tached to reasoned that allow cell-
—— $\mathsf C$ small expression \angle candidate (EGFP-L10a) was

and specific immunoaffinity purifications $\frac{1}{2}$ of polysomes (Figure 1B), overall copurifi-

ing

zation

N

localization

immunoaffinity tag for all translated cellular mRNAs (schematic, Figure 1A). EGFP was chosen because preliminary screens using small epitope tags were unsatisfactory and because visuali-

summary

- **immunoprecipitation of ribosomes** provides very clean [ra]RNA-seq and ribosome footprint data
- developed flexible framework (**miBAT**) to not only assign footprints/peptides to isoforms, but also to allow these data to update isoform abundances estimated by RNA-seq
- **application to psychENCODE** project (integrating RNA-seq and MS/MS proteomics) to provide isoform-resolution map of the human brain
- **application to specific cell-types** to monitor translation (using RNA-seq, footprints, & MS/MS proteomics) in response to acute cocaine administration

cell-type specific profiling of the mouse CNS

what defines a neural cell-type?

t snecific cell-tynes Lines **use combinations of these properties to select specific cell-types**

the case for cell-types

 \vee easy to obtain \blacktriangleright plenty of material \bm{x} ++ white matter ✘ not sensitive

mixed cells single cell-type dissection bacTRAP / FACS

- ✔ easy to obtain...
- $\mathbf F$ in model organism in $\mathbf F$ little X ...only in model organism
- α ty of matorial α \blacktriangleright plenty of material
- (B) Characterization of *Drd2* bacTRAP line CP101 striatal MSN cells: direct \blacktriangledown promoter-specific \blacktriangledown sens
- \blacktriangledown sensitive

tion protocol include rapid manual dissection and homogeniza-

nondenaturing conditions, use of high-affinity anti-EGFP anti-

respectively). For each cell type, data were collected from three single cell of seven animals. Analysis of immunoaffinity-purified samples. Analysis of \mathbb{R}^n $r = 0$ Comparative analysis of these data (see the Experimental Proce-

- ϵ expressed MSN markers (Gerfen, 1992) were enriched with the set of ϵ \times difficult to obtain
- (*Drd2*) (36.63), adenosine 2a receptor (*Adora2a*) (13.23), and en-<u><mark></mark> $×$ </u> little material bac-
- TRAP sample, whereas dopamine receptor D1A (*Drd1a*) (3.93), **<mark></mark></mark>** $\boldsymbol{\mathsf{z}}$ lose processes
- $\frac{1}{\sqrt{2}}$ S \blacktriangleright sensitive
- (*Adk*, *Plxdc1*, *BC004044*, and *Hist1h2bc*), as well as six striato-**X** ChIP & MS/MS hard alin immunohistochemical staining (middle panel), and merge (right panel,

 s pecificity $\mathcal{S}\mathsf{P}\mathsf{C}\mathsf{C}\mathsf{I}\mathsf{T}\mathsf{C}\mathsf{I}\mathsf{I}\mathsf{C}\mathsf{I}\mathsf{I}\mathsf{Y}$ 150 additional striatonigral-enriched transcripts (Table S2). To

EGFP fluorescence (left panel), enkephalin immunohistochemical staining

limitations of human transcriptomics

major problems associated with profiling RNA abundance in the human brain

death & PMI

sample quality & biopsy precision

cell-types & transgenics

single-cell RNA-seq | **bad** [human] experiment

CANCER GENOMICS

Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma

Anoop P. Patel, *1,2,3,4 Itay Tirosh, *3 John J. Trombetta, 3 Alex K. Shalek, 3 Shawn M. Gillespie.^{2,3,4} Hiroaki Wakimoto.¹ Daniel P. Cahill.¹ Brian V. Nahed.¹ William T. Curry,¹ Robert L. Martuza,¹ David N. Louis,² Orit Rozenblatt-Rosen,³ Mario L. Suvà, ^{2,3}⁺ + Aviv Regev, ^{3,4,5} + Bradley E. Bernstein^{2,3,4} + +

100 20 40 60 80 100 **very low** genome-mapped reads mapped to transcriptome −mapped reads mapped to transcriptome **read counts** 80 80 $\overline{4}$ **contamination?**contamination? **DNA** \overline{S} % genome δ \circ 2 3 4 5 6 7 log10(transcriptome reads)

Patel et al. Glioblastoma single cells

single-cell RNA-seq | **good** [mouse] experiment

RESOURCE

nature neuroscience

Adult mouse cortical cell taxonomy revealed by single cell transcriptomics

Bosiljka Tasic^{1,2}, Vilas Menon^{1,2}, Thuc Nghi Nguyen¹, Tae Kyung Kim¹, Tim Jarsky¹, Zizhen Yao¹, Boaz Levi¹, Lucas T Gray¹, Staci A Sorensen¹, Tim Dolbeare¹, Darren Bertagnolli¹, Jeff Goldy¹, Nadiya Shapovalova¹, Sheana Parry¹, Changkyu Lee¹, Kimberly Smith¹, Amy Bernard¹, Linda Madisen¹, Susan M Sunkin¹, Michael Hawrylycz¹, Christof Koch¹ & Hongkui Zeng¹

Allen mouse cortex single cells

limitations of human transcriptomics

major problems associated with profiling RNA abundance in the human brain

death & PMI

sample quality & biopsy precision

cell-types & transgenics

limitations of human transcriptomics

major problems associated with profiling RNA abundance in the human brain

overcoming limitations of human transcriptomics

 \mathbf{G}

how can we use high-quality, high-resolution mouse data to learn more about the development of the human brain?

early fœtal, neuron-specific, human lincRNAs

current database of cell-type specific raRNA-seq

interactive web resource of cell-type enriched genes

uses of cell-type enriched gene catalogue

• **clustering and single-cells**

- use known cell-types to inform clustering of single cell based on expression profiles

- **deconvolution!**
	- use to interpret gene expression profiling of human CNS

- **cell-type specific PPI + coexpression networks**
	- use to find cell-type specific hubs/bottlenecks
	- use to refine cell-type hierarchy

acknowledgements

Gerstein lab Mark Gerstein Arif Harmanci Joel Rozowsky Anurag Sethi Jing Zhang

Nairn lab Angus Nairn Becky Carlyle

Sestan lab Nenad Sestan Yuka Kawasawa Mingfeng Li

