integrated analysis of the transcriptome, translatome, and proteome

Rob Kitchen

GPMTG

18 Feb 2016

Lichtman 2015 Cell

dealing with brain complexity

most highly evolved organ:

- ~ 10¹¹ neurons
- ~ 10¹⁴ synapses (connections)
- ~ 5-50Hz firing rate

in almost every tissue, cells continually grow and divide but **most neurons stop growing** in early childhood

there is large interest in both long-term processes (Alzheimer's, Parkinson's, etc) and short-term processes (reward, addiction, PTSD)

maybe more than any other organ, post-transcriptional regulation is extremely important

as is the scope for alternative splicing...

parallel, multi-level observations of gene expression

parallel, multi-level observations of gene expression

...although it is possible to assay translation and steady-state protein levels, the yield of these experiments is much lower than RNA-seq

easier to measure transcription than translation

7

junction observability

RNA-seq will eventually produce single-molecule, whole transcript reads.

Not the case for footprints and not clear if MS will ever be able to profile intact protein

-> how can we integrate RNA, footprint, and MS data for mutual gain?

EM algorithm

- for each gene:
- maximise the likelihood of 1...N observed reads or peptides, R, given isoform abundances, ψ, of 1...K isoforms:

$$P(R_{1:N}|\psi) = \prod_{n=1}^{N} \sum_{k=1}^{K} P(R_n|I_k) P(I_k|\psi)$$

- for the naïve prior: $\psi_k = K^{-1}$
- probability that the j^{th} isoform will contribute a footprint or peptide is based on its CDS length, *l*, and abundance, ψ :

$$P(I_j|\psi) = \frac{\psi_j l_j}{\sum_{k=1}^K \psi_k l_k}$$

aside: higher quality data improves our chances for successful integration

ribosome-affiliated RNA (raRNA) > totalRNA

raRNA suffers less intronic contamination than totalRNA

ribosome footprinting | wet-lab methods

>98% of IP footprints map to mRNA CDS'

IP footprints are more consistently in correct frame

IP footprints better able to predict correct frame

EM algorithm

- for each gene:
- maximise the likelihood of 1...N observed reads or peptides, R, given isoform abundances, ψ, of 1...K isoforms:

$$P(R_{1:N}|\psi) = \prod_{n=1}^{N} \sum_{k=1}^{K} P(R_n|I_k) P(I_k|\psi)$$

- for the naïve prior: $\psi_k = K^{-1}$
- probability that the j^{th} isoform will contribute a footprint or peptide is based on its CDS length, *l*, and abundance, ψ :

$$P(I_j|\psi) = \frac{\psi_j l_j}{\sum_{k=1}^K \psi_k l_k}$$

implementation: 'miBAT'

naïve prior

19

naïve prior

ratio of 'best' to 'second-best' isoform reveals all-or-nothing style behaviour of the naïve EM

informative prior

global clustering

cluster profiles

validation

6 specific examples of genes/isoforms resolved by RNA-seq:

54 1000genomes RNA-seq & footprint samples

applications

1 - proteomic profiling of human brain (psychENCODE)2 - cell-type specific footprinting and proteomics (CEBRA)

1 - proteomic profiling of human brain (psychENCODE)

2 - cell-type specific footprinting and proteomics (CEBRA)

2 - cell-type specific footprinting and proteomics (CEBRA)

2 - cell-type specific footprinting and proteomics (CEBRA)

summary

- immunoprecipitation of ribosomes provides very clean [ra]RNA-seq and ribosome footprint data
- developed flexible framework (miBAT) to not only assign footprints/peptides to isoforms, but also to allow these data to update isoform abundances estimated by RNA-seq
- application to psychENCODE project (integrating RNA-seq and MS/MS proteomics) to provide isoform-resolution map of the human brain
- application to specific cell-types to monitor translation (using RNA-seq, footprints, & MS/MS proteomics) in response to acute cocaine administration

cell-type specific profiling of the mouse CNS

what defines a neural cell-type?

use combinations of these properties to select specific cell-types

the case for cell-types

mixed cells dissection

easy to obtain
plenty of material
++ white matter
not sensitive

single cell-type bacTRAP / FACS

- ✓ easy to obtain...
- ✗ …only in model organism
- ✓ plenty of material
- ✓ promoter-specific
- ✓ sensitive

single cell LCM / FACS

- X difficult to obtain
- ✗ little material
- ✗ lose processes
- ✓ sensitive
- ✗ ChIP & MS/MS hard

specificity

limitations of human transcriptomics

major problems associated with profiling RNA abundance in the human brain

single-cell RNA-seq | bad [human] experiment

CANCER GENOMICS

Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma

Anoop P. Patel,^{*1,2,3,4} Itay Tirosh,^{*3} John J. Trombetta,³ Alex K. Shalek,³ Shawn M. Gillespie,^{2,3,4} Hiroaki Wakimoto,¹ Daniel P. Cahill,¹ Brian V. Nahed,¹ William T. Curry,¹ Robert L. Martuza,¹ David N. Louis,² Orit Rozenblatt-Rosen,³ Mario L. Suvà,^{2,3}†‡ Aviv Regev,^{3,4,5}†‡ Bradley E. Bernstein^{2,3,4}†‡

Patel et al. Glioblastoma single cells

single-cell RNA-seq | good [mouse] experiment

RESOURCE

nature neuroscience

Adult mouse cortical cell taxonomy revealed by single cell transcriptomics

Bosiljka Tasic^{1,2}, Vilas Menon^{1,2}, Thuc Nghi Nguyen¹, Tae Kyung Kim¹, Tim Jarsky¹, Zizhen Yao¹, Boaz Levi¹, Lucas T Gray¹, Staci A Sorensen¹, Tim Dolbeare¹, Darren Bertagnolli¹, Jeff Goldy¹, Nadiya Shapovalova¹, Sheana Parry¹, Changkyu Lee¹, Kimberly Smith¹, Amy Bernard¹, Linda Madisen¹, Susan M Sunkin¹, Michael Hawrylycz¹, Christof Koch¹ & Hongkui Zeng¹

Allen mouse cortex single cells

limitations of human transcriptomics

major problems associated with profiling RNA abundance in the human brain

limitations of human transcriptomics

major problems associated with profiling RNA abundance in the human brain

overcoming limitations of human transcriptomics

how can we use high-quality, high-resolution mouse data to learn more about the development of the human brain?

early fœtal, neuron-specific, human lincRNAs

current database of cell-type specific raRNA-seq

interactive web resource of cell-type enriched genes

uses of cell-type enriched gene catalogue

- clustering and single-cells
 - use known cell-types to inform clustering of single cell based on expression profiles

- deconvolution!
 - use to interpret gene expression profiling of human CNS

- cell-type specific PPI + coexpression networks
 - use to find cell-type specific hubs/bottlenecks
 - use to refine cell-type hierarchy

acknowledgements

Gerstein lab Mark Gerstein Arif Harmanci Joel Rozowsky Anurag Sethi Jing Zhang

Nairn lab Angus Nairn Becky Carlyle

Sestan lab Nenad Sestan Yuka Kawasawa Mingfeng Li

Lichtman 2015 Cell