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Abstract: As the cost of sequencing continues to decrease and the amount of sequence data 
generated grows, new paradigms for data storage and analysis are increasingly important. The 
relative scaling behavior of these evolving technologies will impact genomics research moving 
forward. 
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History from the 50s to NGS 

In the 1950s, the contemporaneous development of biopolymer sequencing and the digital 
computer started a digital revolution in the biosciences. Then in the late 1970s the advent of the 
personal computer (PC) and Sanger sequencing led to an appreciable amount of sequence data 
being generated, stored in databases, and conceptualized within a computational framework (1-
4). In the 1980s communal sequence databases were developed (5, 6); however, most 
investigators worked with data of a scale that allowed transfer to and processing on a local client. 
In the 1990s the rise of the Internet facilitated increased data sharing and analysis techniques 
began to shift to programs hosted on websites (7). In the mid 2000s the most recent big change 
occurred with the advent of cloud computing and next generation sequencing (NGS), which led 
to a dramatic increase in the scale of datasets (see box on increase in sequencing) (4, 8). This 
necessitated changes in the storage infrastructure; databases such as the European Nucleotide 
Archive (9) and the Sequence Read Archive (SRA) (10) were created to store and organize high-
throughput sequencing data. The SRA has grown significantly since its creation in 2007, now 
containing almost four petabases, approximately half of which are open access (11). These 
datasets present a challenge because they are too large for the old sharing and analysis 
paradigms. However recent innovations in computational technologies and approaches, 
especially the rise of cloud computing, provide promising avenues for handling the vast amounts 
of sequence data being generated. 

 
 Organizing principles for biocomputing history 
 
In relation to the coevolution of sequencing and computing there are a number of key concepts to 
keep in mind. First is the idea that scientific research and computing have progressed through a 
series of discrete paradigms driven by the technology and conceptual frameworks available at the 
time, a notion popularized by Jim Gray from Microsoft (12). Gray organized his views into four 
paradigms of scientific research. The first two paradigms are empirical observation and attempts 
to identify general theories. Gray’s third paradigm describes the original type of scientific 
computing, epitomized by large supercomputer-based calculations and modeling – e.g. 
computing a rocket trajectory from a set of equations. This approach tends to favor differential 
equations and linear-algebraic types of computations.  
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The fourth paradigm is much more data intensive. Here the “capture, curation, and analysis” of 
large amounts of information fuels scientific research (12). One often tries to find patterns in 
“big data” and a premium is placed on resource interoperability and statistical pattern finding. In 
order to fully realize the potential of this approach to science, significant investment must be 
made in both the computational infrastructure to support data processing and sharing as well as 
providing training resources for researchers to better understand, handle, and compare large 
datasets. 
 
The second key concept is the interplay between fixed and variable costs, especially with regard 
to their impact on the scaling behavior. Much of the decrease in sequencing costs has been a 
result of a shift between these two cost structures. Next-generation sequencing introduced more 
efficient and complicated equipment, increasing the fixed cost. However, a reduction of the 
variable costs of sequencing via lower per sample costs has accompanied this increase in fixed 
cost and encouraged the sequencing of an ever-greater number of samples in order to reduce the 
average cost and achieve economies of scale. 
 
The opposite shift in cost structures is beginning to occur in the context of scientific computing. 
In the past, computing operated under a similar cost structure as seen for sequencing. This often 
involved a large fixed cost associated with purchasing a machine followed by low variable costs 
for actual running of the machine (e.g. usually power, cooling, systems administration time). 
Cloud computing and its associated concepts such as software, platform, and infrastructure as a 
service removes the need for a large initial fixed cost investment (13). However, the variable 
costs associated with cloud computing access can be significantly higher. This new regime in 
which costs scale with the amount of computational processing time places a premium on driving 
down the average cost by developing efficient algorithms for data processing. 
 
The different cost structure of this new computing paradigm will significantly impact how 
funding agencies and researchers approach data analysis. Traditionally, in academic settings 
large computing equipment expenses have been exempt from additional indirect cost fees levied 
by universities on smaller consumption purchases. Furthermore, running costs for the hardware, 
such as electricity and cooling required, are supported by the university at little to no cost for the 
individual investigator (usually from the overall pool of indirect costs). However, in the case of 
cloud computing time, universities do not consider it an equipment purchase and levy the 
indirect cost fees on top of the “service” purchase. Additionally, the cloud computing cost often 
incorporates the additional costs (electricity, rent, etc.) directly into the price. These funding 
schemes add to the expense of purchasing cloud-computing time compared to large purchases of 
computing equipment.  
 
The cost of sequencing is frequently referred to as a dollar amount per genome. Whether this 
price includes all steps in the sequencing process (e.g. sample prep, downstream processing, etc.) 
or merely the sequencing run is often ambiguous. This single price also obscures the cost 
breakdown of sequencing projects. A more comprehensive approach in which the full economic 
cost (FEC) of sequencing is evaluated would enable both researchers and funding agencies to 
better understand and plan such projects. This approach breaks the cost of a sequencing project 
into its substituent parts and identifies the shared institutional resources used as well as the 
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indirect costs associated with the project. Such accounting practices would more explicitly call 
attention to the shift in cost structures described in the previous paragraph and better enable the 
adaptation of funding mechanisms to meet the changing needs of sequencing enabled research. 
 
A comparison of more detailed cost breakdowns between sequencing projects can also reveal 
how different components of the sequencing pipeline scale with the size of the project. Figure 2 
illustrates the cost breakdown of exome and a whole genome sequencing projects into the cost of 
labor, reagents and supplies, instrument depreciation and maintenance, administration, basic data 
processing and initial storage, and indirect fees. Noticeably, reagents and supplies represent a 
larger fraction of the cost for whole genome sequencing relative to that of exome sequencing, 
which requires sequencing a smaller number of bases. Labor costs follow the opposite trend, 
which indicates that labor scales well with the amount of sequence data generated. However, 
these analyses have one common drawback since they generally include only the cost of basic 
data processing and initial storage. As bioinformatics becomes increasingly important in the 
generation of biological insight from sequencing data the long-term storage and analysis of 
sequencing data will represent a larger fraction of project cost. Efforts to better incorporate 
detailed and realistic accounting of downstream bioinformatics analysis is essential to the 
development of accurate models of the full economic cost of sequencing projects. 

The third key concept to take into account with these developments is the idea of scaling 
behavior in sequencing technology and its impact on biological research. The most prominent 
analogous example of this is Moore's law, which describes the scaling of integrated circuit 
development and its wide-ranging impact on the computer industry. 

Backdrop of the computer industry & Moore's law 

Improvements in semiconductor technology have dramatically stimulated the development of 
integrated circuits during the last half-century. This spurred the development of the personal 
computer and the Internet era. Various scaling laws, which model and predict the rapid 
developmental progress in high-tech areas driven by the progress in integrated circuit 
technology, have been proposed. Moore’s law accurately predicted that the number of transistors 
in each square inch would double every two years (14). In fact, the integrated circuit industry has 
used Moore’s law to plan its research and development cycles. Besides Moore’s law, various 
other predictive laws have also been proposed for related high-tech trends. Rock’s law (also 
called Moore’s second law) predicted that the fixed cost of constructing an integrated circuit chip 
fabrication plant doubles about every four years (15). Additionally, Kryder’s law describes the 
roughly yearly doubling in the area storage density of hard drives over the last few decades (16).  

The roughly exponential scaling described by these laws over a period of multiple decades is not 
simply the scaling behavior of a single technology but rather the superposition of multiple S-
curve trajectories. These curves represent the scaling of different technological innovations that 
contribute to the overall trend (see Fig 1). The S-curve behavior of an individual technology is 
due to three main phases: development, expansion and maturity (17). For example, the near 
yearly doubling of hard drive storage density over the last two and a half decades is the 
superposition of the S-curves for five different basic storage technologies. This behavior is also 
seen for sequencing-based technologies. 
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The success of these predictive laws encouraged the development of forecasts for other emergent 
technologies including sequencing. The cost of sequencing roughly followed a Moore’s law 
trajectory in the decade before 2008. However, the introduction of next generation sequencing 
technologies caused costs to drop faster than would be expected by Moore’s law. Specifically, in 
the past five years the cost of a personal genome has dropped to $4,200 in 2015 from $340,000 
in 2008 (18). This departure from Moore’s law indicates that the transition between these 
technologies introduced a new cost-scaling regime.  

Computational component of sequencing - what's happening in bioinformatics 
The decreasing cost of sequencing and increasing number of sequence reads being generated are 
placing greater demand on the computational resources and knowledge necessary to handle 
sequence data. It is critically important that as the amount of sequencing data continues to 
increase it is not simply stored but organized in a manner that is both scalable as well as easily 
and intuitively accessible to the larger research community.  We see a number of key directions 
of change in bioinformatics computing paradigms that are adapting in response to the ever-
increasing amounts of sequencing data.  The first is the evolution of alignment algorithms in 
response to larger reference genomes and sequence read datasets. The second involves the need 
for compression to handle large file sizes - especially the need for compression that takes 
advantage of domain knowledge more specific to sequencing data to achieve better outcomes 
than more generic compression algorithms. The third change involves the need for distributed 
and parallel cloud computing to handle the large amounts of data and integrative analyses. The 
fourth change is driven by the fact that much of the future sequencing data will be private data 
related to identifiable individuals; consequently, there is a need to put protocols in place to 
secure such data particularly within a cloud computing environment.  
 
Innovations underlying scaling in alignment algorithms 
 
Alignment tools co-evolved with sequencing technology to meet the demands placed on 
sequence data processing. The decrease in their running time approximately follows Moore’s 
Law (see Fig 3). This improved performance is driven by a series of discrete algorithmic 
advances. In the early Sanger sequencing era, the Smith-Waterman (19) and Needleman-Wunsch 
(20) algorithms used dynamic programming to find a local or global optimal alignment. But the 
quadratic complexity of these approaches makes it impossible to map sequences to a large 
genome. Following this limitation many algorithms with optimized data structures were 
developed, employing either hash-tables (e.g. Fasta (21), BLAST (22), BLAT (23), MAQ (24), 
Novoalign (25)) or suffix arrays with the Burrows-Wheeler transform (BWT) (e.g. STAR (26), 
BWA (27), Bowtie (28)).  
 
In addition to these optimized data structures, algorithms adopted different search methods to 
increase efficiency. Unlike Smith-Waterman and Needleman-Wunsch, which compare and align 
two sequences directly, many tools (e.g. FASTA, BLAST, BLAT, MAQ, STAR) adopt a two-
step seed-and-extend strategy. While this strategy cannot be guaranteed to find the optimal 
alignment, speeds are significantly increased by not comparing sequences base by base. BWA 
and Bowtie further optimize by only searching for exact matches to a seed (25). The inexact 
match and extension approach can be converted into an exact match method by enumerating all 
combinations of mismatches and gaps. 
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In addition to changing search strategies, algorithms adjusted to larger datasets by first 
organizing the query, the database, or both. This involves an upfront computational investment 
but returns increased speed as datasets grow larger. For example, some algorithms (e.g. BLAST, 
FASTA, MAQ) first build indexes for query sequences before scanning the database. On the 
database side, some algorithms format the database into compact binary files (e.g. BLAST, 
MAQ), while others build an offline index (e.g. BLAT, Novoalign, STAR, BWA, Bowtie). In 
particular, STAR, BWA and Bowtie can significantly reduce the marginal mapping time (i.e. the 
time it takes to map a single read), but require a relatively large amount of time to build a fixed 
index. In general, we find a negative correlation between the marginal mapping time (i.e. the 
time to map a single read) and the time to construct the fixed index making BWA, Bowtie and 
STAR better suited to handle progressively larger NGS datasets (Fig 3).). However, many of 
these alignment algorithms are not suitable for longer reads because of the scaling behavior of 
their seed search strategies. As long-read technologies continue to improve there will be an ever 
greater need to develop new algorithms capable of delivering similar speed improvements as 
have been obtained for short read alignment (25). 

Recently, new approaches have been been developed that substitute assembly for mapping. As 
such these are not directly comparable to the mappers above, but they have significant speed 
gains in certain contexts and may represent the next technological innovation in alignment. 
These approaches, including Salmon and Kallisto (29, 30), mostly focus on RNA-seq transcript 
identification and quantification and employ hashed k-mers and a De Bruijn graph for the task of 
RNA-Seq quantification. Moreover, instead of developing a base pair resolution alignment these 
approaches identify a ‘pseudoalignment’ that consists of the set of transcripts compatible with a 
given read.  

In addition to read alignment the other main computationally intensive algorithmic issue 
associated with the analysis of sequencing reads is the de novo assembly of a genome sequence. 
The have been many tools developed for assembly using short read sequencing technology (31, 
32). The time and memory requirements of these different algorithms vary significantly (see Fig. 
3B). The advent of long read sequencing technologies such as Pacific Biosciences, Oxford 
Nanopore and Moleculo (33) promise high quality sequence assemblies with potentially reduced 
computational costs.  However higher sequencing error rates for longer reads require novel 
assembly algorithms (34-37). The main benefit is that one is able to assemble contigs which are 
10-100x larger as compared with the contigs from traditional short read technologies even with 
lower fold coverage (see (38) for a comparison in mammalian genomes). 
 
Compression 
 
The explosion of sequencing data created a need for efficient methods of storage and 
transmission. General algorithms like Lempel-Ziv offer great compatibility, good speed and 
acceptable compression efficiency on sequencing data and are widely used (39). However, to 
further reduce the storage footprint and transmission time, customized algorithms are needed. 
For example, many researchers use the SAM/BAM (Sequence/Binary Alignment/Map) format to 
store reads. A widely accepted compression method, CRAM, is able to shrink BAM files by 
~30% without any data loss (“losslessly”) and more if one uses compression that loses some 
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information (“lossy”), typically in the quality scores (40). CRAM only records the reference 
genome and applies Huffman coding to the result. Developing new and better compression 
algorithms is an active research field and we believe that high compatibility and the balance 
between usability and compression is key to moving forward.  
 
Cloud computing 
 
Scalable storage, query, and analysis technologies are necessary to handle the increasing 
amounts of genomic data being generated and stored. Distributed file systems greatly increase 
the storage I/O bandwidth, making distributed computing and data management possible. An 
example is the NoSQL database that provides excellent horizontal scalability, data structure 
flexibility, and support for high load interactive queries (41). Moreover, the parallel 
programming paradigm has evolved from fine-grained MPI/MP to robust, highly scalable 
frameworks such as MapReduce (42) and Apache Spark (43). This situation calls for customized 
paradigms specialized for bioinformatics study. We have already seen some exciting work in this 
field (44). 
 
These distributed computing and scalable storage technologies naturally culminate in the 
framework of cloud computing, where data is stored remotely and analysis scripts are then 
uploaded to the cloud and the analysis is performed remotely. This greatly reduces the data 
transfer requirements since only the script and analysis results are transferred to and from data 
that resides permanently in the cloud.  

Privacy 

In a similar fashion to the way that the Internet gave rise “open source” software; the initial 
sequencing of the human genome (particularly that from the “public consortium”) was associated 
with “open data.” Researchers were encouraged to build upon existing publicly available 
sequence knowledge and contribute additional sequence data or annotations. However, as more 
genomes of individuals are sequenced concerns for the privacy of these subjects necessitates 
securing the data and only providing access to appropriate users (45). 

 
As changing computing paradigms such as cloud computing are playing a role in managing the 
flood of sequencing data, privacy protection in the cloud environment becomes a major concern 
(46, 47). Research in this field can broadly be split into two layers: [1] sensitive data must be 
protected from leaking to a third party (48), and [2] the cloud service provider should be made as 
oblivious as possible to the computation (49). One possible culmination of these ideas could be 
the creation of a single, monolithic “biomedical cloud” that would contain all the protected data 
from genomics research projects. This would completely change the biomedical analysis 
ecosystem, with researchers gaining access to this single entry point and storing all their 
programs and analyses there. Smaller implementations of this strategy can be seen in the 
development of HIPAA compliant cloud resources where datasets can be stored and shared on 
remote servers (47).  
 
The cost of sequencing and the changing biological research landscape 
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The decrease in the cost of sequencing that has accompanied the introduction of NGS machines 
and the corresponding increase in the size of sequence databases has changed both the biological 
research landscape and common research methods. The amount of sequence data generated by 
the research community exploded over the past ten years. Decreasing costs enabled the formation 
of large consortia with broad goals (e.g. measuring human genetic variation, profiling cancer 
genomes), as well as individual labs to target more specific questions. These developments 
helped democratize and spread sequencing technologies and research, increasing the diversity 
and specialization of experiments. Using Illumina sequencing alone, nearly 150 different 
experimental strategies have been described, applying this technology to nucleic acid secondary 
structure, interactions with proteins, spatial information within a nucleus, and more (50).  

 
The changing cost structure of sequencing will significantly impact the social enterprise of 
genomics and bio-computing. Traditionally research budgets have placed a high premium on 
data generation. But now with sequencing prices falling rapidly and the size of sequence 
databases ever expanding, translating this data into biological insights is becoming increasingly 
important. Consequently, the analysis component of biological research is taking up a larger 
fraction of the real value in an experiment (8). This of course shifts the focus of scientific work 
and the credit in collaborations. As a corollary of this, job prospects for scientists with training in 
computational biology remain strong, despite squeezed budgets (51).  Universities, in particular, 
have increased the number of hires in bioinformatics (see Fig 4). 
 
Moreover, the falling price of sequencing and the growth of sequence databases reduced the cost 
of obtaining useful sequence information for analysis. Sequence data downloadable from 
databases is ostensibly free. However, costs arise in the need for computational storage and 
analysis resources as well as the training necessary to handle and interpret the data. Initial 
automated processing pipelines for sequence data have lower fixed costs but higher variable 
costs compared to sequence generation. Variable costs associated with data transfer, storage, and 
initial pipeline processing using the cloud (e.g. to call variants) all scale with the size of the 
sequence data being analyzed. In sequence data generation the high initial cost of a sequencing 
machine is offset by sequencing ever-greater amounts in order to distribute the cost of the initial 
capital investment over a larger number of sequenced bases. However, this approach merely 
increases the amount of computational time required for initial pipeline processing. In the 
context of cloud computing this translates into greater cost since the user is only charged for 
computational time used. This creates a mismatch, as the combination of costs in sequence data 
analysis doesn’t provide the same economy of scale seen in the generation of sequence data.  
 
There are two possible cost structures for the downstream analysis depending on how 
bioinformaticians are compensated. Bioinformaticians might be paid on a per project basis (in 
the extreme, an hourly wage) in which case they resemble the low initial fixed cost and higher 
variable cost structure of cloud computing. On the other hand, if bioinformaticians are salaried 
the cost structure of downstream analysis more closely resembles that of sequencing 
technologies with the salaries representing an initial fixed cost. However, bioinformaticians 
differ from sequencing machines in that they cannot be consistently replaced by more expensive 
versions capable of processing more sequencing information. Consequently, driving down the 
cost of sequence analysis follows a similar path regardless of cost structure. In order to drive 
down costs, downstream analysis should be made as efficient as possible. This will enable 
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bioinformaticians to analyze as much sequence data as possible under given time constraints. 
Generating ever-greater amounts of sequence information will become futile if that data hits a 
bottleneck during processing and analysis. 
 
This necessitates that many of the big projects in addition to having large amounts of sequencing 
data pay attention to making analysis and data processing efficient. This can often lead to a 
framework for large-scale collaboration where much of the analysis and processing of the data is 
done in a unified fashion. This enables the entire dataset after the fact to be used as a coherent 
resource without needing reprocessing. If the sequence data generated by individual labs is not 
processed uniformly and sequence databases are not made easily accessible and searchable, then 
analysis of aggregated datasets will be challenging. It might seem superficially cheaper to pool 
the results of many smaller experiments but the reprocessing costs for all of these datasets may 
be considerably larger than redoing the sequencing experiment itself. In addition to posing 
technical issues for data storage, the increasing volume of sequences being generated presents a 
challenge to integrate newly-generated information with the existing knowledge base. Hence, 
while people thought that the advent of next generation sequencing would democratize 
sequencing and spur a movement away from the large centers and consortia, in fact the opposite 
has been the case. The need for uniformity and standardization in very large datasets has, in fact, 
encouraged very large consortia such as 1000 Genomes (52) and TCGA (53). 
 
In the future, one might like to see a way of encouraging uniformity and standardization without 
having an explicit consortium structure, letting many people aggregate small sequencing 
experiments and analyses together.  Perhaps this could be done by open community standards in 
a similar manner to the way the Internet was built through pooling of many individual open 
source actors using community-based standards (54). It is imperative that such a standardization 
initiative accompany the development and implementation of new technologies including more 
efficient data processing and compression algorithms as well as secure cloud computing.  A 
scalable biocomputing infrastructure is vital to a biological research ecosystem capable of 
integrating vast amounts of heterogeneous sequencing data. 
 
 

Figure Captions: 

Figure 1: 

A. The exponential increase in the number of gigabytes per dollar in hard drive storage 
technology is due in part to the sequential introduction and improvement of three technologies. 
B. Exponential scaling in technological cost improvement is often the superposition of multiple 
S-curve trajectories of individual technologies. At the beginning of a technology’s life cycle, 
development costs keep cost reductions low. As the technology matures improvements in 
production are able to drive down per unit costs and establish an exponential regime. Eventually, 
the technology reaches maturity where technological limits are encountered and the cost 
improvements again slow down. 

Figure 2: 
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Cost breakdown of exome and a whole genome sequencing projects. The total cost of these 
projects is split into the cost of labor, reagents and supplies, instrument depreciation and 
maintenance, administration, basic data processing and initial storage, and indirect fees. 

Figure 3: 

Multiple advances in alignment algorithms have contributed to an exponential decrease in 
running time over the past forty years. We synthesized one million single ended reads of 75 bp 
for both Human and Yeast. The comparison only considers the data structure, algorithms and 
speeds. There are many other factors, such as accuracy and sensitivity, which are not discussed 
here, but can be found elsewhere (25). Initial alignment algorithms based on dynamic 
programming were applicable to the alignment of individual protein sequences. However, they 
were too slow for efficient alignment at a genome scale. Advances in indexing helped reduce 
both running time. Additional improvements in index and scoring structures enabled next 
generation aligners to further improve alignment time. A negative correlation is also observed 
between the initial construction of an index and the marginal mapping time per read. 

Figure 4: 

The number of faculty position hires at 51 US universities in three-year bins. The recent increase 
in hiring coincides with the explosion in sequencing data.  Data was obtained from 
(http://jeffhuang.com/computer_science_professors.html). 

Box: Illustrations of the dramatic increase in rate and amount of sequencing 

A. Next generation sequencing reads have become the dominant form of sequence data. This is 
illustrated in a graph of NIH funding related to the keywords “Microarray” and “Genome 
Sequencing”, which shows increasing funding for next generation sequencing and decreases in 
the funding of previous technologies such as microarrays. 

 B. The size and growth rate of the SRA highlight the importance of efficiently storing sequence 
data for access by the broader scientific community. The SRA’s centrality in the storage of DNA 
sequences from next-generation platforms means that it also serves as a valuable indicator of the 
scientific uses of sequencing. Furthermore, the rise in protected sequence data highlights the 
challenges facing genomics as ever-greater amounts of personally identifiable sequence data are 
being generated. 

C. It is interesting to look at the contribution of large sequence depositions compared to smaller 
submissions. This provides an indication of the size distribution of sequencing projects. At one 
end of this size spectrum are large datasets generated through the collaborative effort of many 
labs. These include projects that have taken advantage of sequencing trends to generate 
population scale genomic data (1000 Genomes) or extensive characterization of cancer genomes 
by The Cancer Genome Atlas (TCGA). On top of generating vast amount of sequencing data to 
better understand human variation and disease, high throughput sequencing has dramatically 
expanded the number of species whose genomes are documented. The number of newly-
sequenced genomes has exhibited an exponential increase in recent years. Entries with asterisks 
indicate projects that produce open access data. 
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D. A more detailed analysis of the SRA illustrates the pace at which different disciplines adopted 
sequencing. Plots depicting the cumulative number of bases deposited in the SRA and linked to 
papers appearing in different journals provide a proxy for sequencing adoption. More general 
journals such as Nature and Science show early adoption. Meanwhile, SRA data deposited by 
articles from more specific journals such as Nature Chemical Biology and Molecular Ecology 
remained low for a significantly longer time before increasing. These trends highlight the spread 
of sequencing to new disciplines. 
 
E. Sequence data has also been distributed over the tree of life. In terms of size, the vast majority 
of sequence data generated has been for eukaryotes. This is due in part to the larger genome size 
of eukaryotes as well as efforts to sequence multiple individuals within a given species, 
especially humans. In terms of number of species sequenced prokaryotes are by far the best 
represented. Moving forward the continued decrease in the cost of sequencing will enable further 
exploration of the genetic diversity both within and across species. 
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