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SPECIFIC AIMS link to RFA
This proposal aims to continue the current Data Analysis Center (DAC) for the ENCODE project, towards completing the inventory of functional elements in the human genome using high-throughput experiments and computational methods. The proposed DAC will respond to directions from the ENCODE Analysis Working Group (AWG), and in particular help process, analyze, integrate, and interpret data from all groups in the ENCODE Consortium in an unbiased manner. The analyses we propose will substantially augment the value of the ENCODE data by integration of diverse data types, which are typically not available within a single production group, and require expertise spanning multiple data types. 

The proposed DAC members (Zhiping Weng, Mark Gerstein, Manolis Kellis, Roderic Guigo, Rafael Irizarry, Shirley Liu, Anshul Kundaje, and William Noble) have extensive experience working together in the context of ENCODE, and are leaders in their respective fields of computational genomics, bioinformatics, data mining, machine learning, algorithm development, statistical theory, tool development, pipeline building, and application to genomic data, They have a strong track record of delivering collaborative analyses in the context of the ENCODE, Roadmap Epigenomics, GTEx, modENCODE, PsychENCODE, 1000 Genomes, and The Cancer Genome Atlas (TCGA) projects. This group of researchers was responsible for much of the analyses and the majority of the figures and tables in published papers for several of these consortia. These researchers also have strong track records in the broader contexts of genomics and other statistical applications, in some cases beyond the life sciences.

Our proposed activities are directly responsive to the RFA and can be grouped into four aims:
Aim 1. Analyzing and integrating data and metadata from a broad range of experimental and computational functional genomics projects.
The DAC will facilitate and perform data integration of data and metadata generated by the mapping centers and annotation centers and the computational groups of the ENCODE consortium, as well as the data by other consortia and public data, with the goal of accurately annotating different classes of functional elements. In addition to integrating diverse data types in multiple cell types to annotate the locations, activity, and dynamics of functional elements, The DAC will carry out exploratory data analyses across multiple types of functional elements based on the guidelines provided by the AWG, in order to seek novel insights and correlations between classes of functional elements, and to pursue data-driven investigations that complement traditional hypothesis-driven investigations. The DAC will also facilitate and carry out comparative analyses between human and mouse using ENCODE and public data in both organisms, to study deeply conserved biological mechanisms as well as their differences.

Aim 2. Creating high quality Encyclopedias of DNA elements in the human and mouse genomes.
Based on the integrative analyses in Aim 1, the DAC will use stat-of-the-art methodologies to generate catalogs of functional elements in a cell type specific manner, collectively called the Encyclopedia. The Encyclopedia comprises several levels of catalogs, with increasing integration. The ground level of catalogs include genomic regions that are enriched in various biochemical signals such as DNase accessibility, histone modifications, transcription factor (TF) occupancy, DNA methylation, RNA transcription, RNA-binding protein (RBP) occupancy, chromatin-driven topologically associating domains (TAD) etc. Several of these catalogs are produced by by the current Data Coordination Center (DCC), using uniform data analysis pipelines developed by the current DAC in collaboration with other members of the ENCODE consortium. The DAC aims to complete the development of uniform data analysis pipelines for all major ENCODE data types and to continually refine these pipelines when new experimental techniques become available and by incorporating more advanced computational methods (Aim 3). The second level of catalogs in the Encyclopedia include integrative predictions of functional elements including enhancers, promoters, insulators, silencers, TF binding sites, and RBP binding sites. For example, histone modifications, DNA accessibility, RNA transcription, and DNA methylation are all informative of the locations of functional elements such as promoters, enhancers, insulators, and silencers,  but sophisticated machine learning approaches are required for integrating these biochemical data to achieve the greatest predictive power. In particular, we plan to develop supervised machine learning algorithms to take advantage of the functional data generated by the Characterization Centers. The third level of catalogs in the Encyclopedia include higher order interactions among the predicted functional elements. For example, which genes does an enhancer target in a specific cell type, or which enhancer–target gene interaction does an insulator block. Existing algorithms for building these high-level catalogs have limited predictive power and we foresee great needs of new algorithm developments which the DAC will pursue in collaboration with the computational groups and the data producing centers in ENCODE. One important aspect of the Encyclopedia is its accessibility and utility to a broad range of biomedical researchers and clinicians. We will develop and implement approaches to present the Encyclopedia in an intuitive and detail-on-demand manner.

Aim 3. Serving as an informatics resource by supporting the activities of the ENCODE Analysis Working Group (AWG).
The DAC will work with the AWG to define and prioritize integrative analyses of ENCODE data. We will administer bi-weekly conference calls with the AWG to receive requests for analysis, report on progress, and explain timetables to help guide the priorities set by the AWG. This will form the backbone of our organization and prioritization. The DAC will provide shared computational guidelines and infrastructure for data processing, common analysis tasks, and data exchange. Specific questions articulated and prioritized by the AWG will be addressed by one or more components of the DAC. This will require coordination with the ENCODE Data Collection Center (DCC) for particular data freezes. Whenever a frequently performed analysis becomes routine, an appropriate group within the DAC will establish it as a robust uniform analysis pipeline that are run by the DCC automatically on subsequently generated datasets. Other analyses will require more extensive interactions, and the DAC will bring together the data producers and analysis experts within and outside the DAC. Specifically, to facilitate integrative discovery of functional elements the DAC will help integrate and assimilate data from large-scale genomic consortia (e.g. Roadmap, 1000 Genomes, TCGA, iHEC). Furthermore, the DAC will perform integrative analyses to ensure that the functional elements identified are useful in interpreting variants—they are correctly sized and built in a LD-aware fashion. Overall, the DAC will work in an entirely open manner, allowing other ENCODE Consortium members to participate on an equal footing to DAC members in any analysis. As novel biological insights emerge from the integrative analysis, the DAC will facilitate writing manuscripts in coordination with the AWG and the ENCODE Consortium. 

Aim 4. Assessing quality and utility of the ENCODE data and providing feedback to NHGRI and the Consortium.
The DAC will develop and apply computational methods to assess the quality and utility of ENCODE datasets in a systematic and unbiased way. We will work in four areas. (1) Data-type specific measures of dataset quality: We will work with the DAC and the PIs to standardize metrics of dataset quality. For example, for RNA, we will develop and apply metrics based on sequencing depth, alignment rate, duplicate read rate, compositional biases, ncRNA content, intronic vs. exonic coverage, positional bias, and coverage continuity. For ChIP-Seq experiments, we will develop and apply metrics based on antibody validation, replicate consistency, replicate rank consistency, cross-correlation analysis, and fraction of reads in peaks. For DNA ChIP-Seq of DNA binding proteins, we will additionally use motif-based metrics including enrichment, positional specificity, and rank-based enrichment. For DNase, we will use peak-based metrics for ChIP-Seq, including fraction of reads in peaks, signal portion of tag analysis, shape analysis, replicate correlation analysis. (2) Data-type agnostic measures of dataset quality. In addition to these metrics, we will develop and apply general methods for assessing experiment quality. In particular, we have demonstrated the use of systematic imputation of histone marks, DNA methylation, RNA-Seq, and DNase datasets based on their correlation with datasets of the same data type and of different datatypes within the same cell type and within other cell types. We found that the agreement of a dataset with the imputed signal based on this correlation analysis provides a powerful and unbiased metric for evaluating dataset quality, flagging low-quality datasets that are sometimes missed by other quality metrics, including sample or antibody swap problems. We will extend these methods to incorporate additional data types and additional features in the prediction. (3) Progress and completeness. We will develop metrics and methods for evaluating the progress and completeness of the entire ENCODE project, along multiple axes, including: (i) genomic coverage, towards identifying biochemically active nucleotides across all datasets and cell types; (ii) cell type coverage, towards identifying all distinct cellular states; (iii) data type diversity, for each cell type; (iv) activity pattern capture, for each functional element. (4) Metrics of independent dataset utility: In addition to quality control of individual datasets, we will develop and apply unbiased methods for evaluating the per-nucleotide information content of each data type in a given cell type independently of any other data, based on: (i) genome-wide coverage, (ii) resolution, (iii) reproducibility. (5) Prioritization of assays and cell types. In addition the independent metrics of dataset utility, we will evaluate the utility of datasets in the context of all other data across assays and across cell types. Within each cell type, we will evaluate the utility of each data type based on its ability to predict other data types, and the difficulty of predicting it by other data types. Conversely, for each data type we will use the same approach for evaluate the utility of different cell types, based predictive power and predictability. We combine the two approaches to rank each datasets in each cell type, and to prioritize the set of experiments that will be of greatest overall utility. (6) Disease-specific prioritization: In addition to these goal-agnostic measures of dataset utility, we will develop and apply methods for prioritizing datasets based on specific tasks of interest. Specifically in the context of disease, we will provide a ranking of cell types and assays based on their predictive ability for genetic variants (from GWAS) or epigenetic marks (e.g. from MWAS) are associated with specific diseases and traits. 

Team expertise of the DAC
We have organized the DAC such that Weng, Gerstein, and Kellis are multiple-PIs and Guigo, Irizarry, Liu, Kundaje, and Noble are co-investigators. All eight of us have collaborated effectively, in particular as members of the current ENCODE DAC, and have highly complementary expertise. Each of us will participate in all four Aims of the project, in response to the types and volumes of data as well as analysis needs. Nevertheless, due to the complexity of the Consortium, we have devised a management plan to maximize the effectiveness and responsiveness of the DAC. 

Weng, Gerstein, and Kellis will jointly make decisions on all matters related to the DAC. They will jointly coordinate the integration of diverse data sources (Aim 1). Weng currently leads the development of the Encyclopedia and will continues to lead this effort (Aim 2). Gerstein has made important contributions to all aspects of the current DAC and he will oversee the DAC activities in support of the AWG (Aim 3). Kellis has perform extensive analysis on the quality and utility of ENCODE data and will continue to lead this effort (Aim 4). 

Guigo has extensive expertise on analyzing RNA transcription data and will participate in all the DAC activities that involve RNA. Irizarry is a bio-statistician highly recognized for his work on identifying and minimizing batch effects. He will participate in the analysis whenever we compare datasets of the same type but generated by different labs. Kundaje has been instrumental for establishing the existing uniform analysis pipelines and quality assessment metrics for TF and histone mark ChIP-seq data, and will continue to update these and related analysis pipelines and data standards. Noble has built a number of algorithms for analyzing chromatin conformation data, and will play a key role in generating the third level catalogs of the Encyclopedia. Liu has built many methods and databases for integrating DNase-seq and ChIP-seq data (both TF and histone marks), and will work on expanding the coverage of the Encyclopedia by incorporating these and other relevant data from the public domain. For example, there are close to 1000 H3K27ac ChIP-seq datasets in the GEO and integrating these with ENCODE data can significantly increase the cell types for which we can make reliable enhancer predictions.
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SIGNIFICANCE
The ENCODE Project is one of a number of ambitious projects building on the foundation of the Human Genome Project. The goal of ENCODE is to apply high-throughput, cost-efficient approaches to generate a comprehensive catalog of functional elements in the human genome, including transcribed regions, chromatin features, transcriptional control regions, and post-transcriptional control regions. The impact of this project is large, broadly affecting biomedical research and personalized medicine, because functional genomic elements are the basis of all biological processes. As a coordinated effort, ENCODE members strategize common biological samples, enforce quality standards, and implement rapid data release policies. The value of ENCODE data is greatly enhanced by efforts to increase the breadth, depth, quality, and utility of the data. Although the individual datasets produced by the ENCODE project are highly effective in the study of any individual region, their true potential is achieved by integrative genome-wide analyses1-3. 
We propose an ENCODE Data Analysis Center (EDAC, DAC in short) to support, facilitate, and enhance integrative analyses of the ENCODE Consortium data on human and various model organisms. We will work closely with Consortium members to identify and prioritize integrative analyses that should be carried out, identify the best groups and methods to accomplish them, coordinate all necessary data transformations, and undertake these analyses with the other Consortium members. Our ultimate goal is to ensure a successful final product of high-quality annotation in human, mouse, fly, and worm, and gain new insights into the biology and gene regulation of animal genomes.
We envision seven central roles for the DAC, corresponding to the seven aims of the proposal: to define and prioritize integrative analysis activities (Aim 1); to provide common computational guidelines and a common infrastructure for data processing (Aim 2); to facilitate and carry out element-specific integrative analyses to identify diverse classes of functional elements based on combinations of relevant datasets coming from multiple groups (Aim 3); to carry out exploratory data analyses across different data types to discover potentially novel correlations and insights relating diverse classes of elements (Aim 4); to carry out comparative analyses between human, mouse, fly, and worm (Aim 5); to integrate with genome-wide association studies (GWAS) community and disease datasets (Aim 6); and to summarize results of our integrative analysis in Consortium papers (Aim 7).
To achieve these seven aims, the proposed DAC will work closely with members of the Consortium, and in particular two entities within it, the Analysis Working Group (AWG), consisting of all Principal Investigators (PIs) of the production groups, all informatics PIs and personnel from each of the groups, and other Consortium members involved in the analysis; and the Data Coordination Center (DCC), responsible for all data sharing, data formatting, and data standards within the Consortium, and also for making all primary datasets and secondary datasets resulting from integrative analyses freely available for browsing and download by the larger scientific community. 
The seven aims and the interactions needed to achieve them are greatly facilitated by the composition of the proposed DAC. The DAC members’ expertise spans human, mouse, fly, and worm, and includes element-specific expertise (promoters, enhancers, silencers, protein-coding and non-coding genes, miRNAs, motifs, splicing, 3’UTRs), as well as genome-wide analyses and dimensionality reduction techniques (PCA, SVM, HMMs, clustering). DAC members are collaborating directly with every production group in ENCODE, and thus will have intrinsic knowledge of each data type and the experimental intricacies involved in its generation. This will make for a uniquely flexible team able to take on any aspect of the integrative analysis, but also a highly integrated team, as all members have longstanding experience of working together in ENCODE and related consortia. In addition, we have established a strong leadership and organizational structure for the DAC, as described in the PI Leadership Plan. Weng will be the head of the DAC, and a three-person committee composed of Weng, Gerstein, and Kellis will jointly make decisions on all important matters. These three labs are located in physical proximity of each other (~2 hours drive), in the same time zone, and thus can collaborate extensively and respond quickly to any analysis needs, which is particularly important during the final pushes of putting together Consortium papers. See support letters from the PIs of several current production groups of ENCODE and modENCODE: Drs. Mike Snyder, Rick Myers, Brad Bernstein, Tom Gingeras, Jason Lieb, and Sue Celniker. 



INNOVATION
This project requires a different type of innovation from traditional R01s. The RFA requires that we follow the directions set by the AWG, although we can contribute to setting the directions. Thus, we are fundamentally limited in being innovative in taking direction. Nonetheless, we are highly innovative in putting together a multifaceted team to meet the enormous challenge of facilitating and performing the integrative analysis activities in ENCODE, a large and complex consortium. At present, our team consists of seven highly talented investigators with expertise covering broad biological areas: transcriptional regulation (Weng, Kellis, Gerstein, Guigo, and Liu), epigenetics (Kellis, Weng, Gerstein, and Liu), evolution (Kellis), genomics and proteomics (Noble, Gerstein, Weng, and Guigo), regulatory RNA (Kellis and Weng), biophysics (Gerstein and Weng), and disease association studies (Daly). The team also has a variety of expertise in computational biology, e.g., machine learning (Noble and Kellis), statistical genetics (Liu, Daly, and Irizarry), networks (Gerstein and Weng), and gene annotation (Roderic). 
We are confident that the assembled team can produce innovative science in a consortium framework. This is manifested by the many Consortium publications that the team members have led and participated in. In particular, the team members have been highly innovative in building and applying state-of-the-art methods, with examples described in Aims 2-6, and a long history of producing computational tools that are widely used by the broader community. Importantly, most team members have a rich experience in various consortia: ENCODE (Weng, Gerstein, Kellis, Guigo, and Noble), modENCODE (Gerstein, Kellis, and Liu), the Epigenome Roadmap (Kellis), the 1000 Genomes Project (Gerstein and Daly), the Brainspan Project (Gerstein), DOE KBase (Gerstein), and the 29 Mammals Project and the 12 Flies Project (Kellis). In summary, we have assembled a team with the right expertise, that has worked in large collaborative consortia and has delivered in that environment. The details of the team members are provided as follows:
Zhiping Weng (U. Mass. Medical School) Professor Zhiping Weng has an engineering background, and has worked for the last decade on biological problems ranging from genomic to proteomic analysis. She has participated in the ENCODE project since its inception in 2003, leading a technology development project in the pilot phase of ENCODE (2003-2007) and a pilot project during the scale-up phase of ENCODE (2007-2011). She has also participated in the integrative analysis in ENCODE since 2003, co-chaired the transcription regulation analysis group in the pilot phase of ENCODE, and is currently a member of the ENCODE DAC. She led one of the high profile ENCODE companion papers, focused on transcription factor binding site detection4, and several other companion papers5-7.
Manolis Kellis (MIT and the Broad Institute) Professor Manolis Kellis is a professor of Computer Science and has a background in machine learning, computer science, and computational biology with 10+ years experience in genomics. He has led or co-led a large number of large-scale genomic studies, including the comparative analysis of 29 mammals, the integrative analysis of ENCODE chromatin datasets, the fly modENCODE integrative analysis, the comparative analysis of 12 Drosophila species, the comparative analysis of eight Candida genomes, and the first comparative studies of four yeast species. 
Mark Gerstein (Yale U.) Professor Gerstein has been an integral part of the ENCODE Project since its inception, and within the project he has assumed a number of leadership roles. For instance, he co-directed the Networks/Elements Group, which resulted in his co-leading one of the ENCODE high-profile companions8. He was co-chair of the AWG in modENCODE and in this capacity led the worm integrative paper9. He also led and participated in a number of sub-analyses resulting in 10 companion papers in pilot ENCODE and modENCODE, particularly those focusing on pseudogenes, ncRNAs, and TF binding sites10-19. He is a member of a number of other genomics consortia, including the 1000 Genomes Project, Brainspan, and DOE Kbase and in these groups he has worked on connecting the ENCODE annotations with other datasets.

Roderic Guigo (Institut Municipal d'Investigació Mèdica) Professor Guigo has been active in the field of Computational Genomics for more than 20 years. He has developed widely used tools for gene finding and annotation, such as geneid and sgp. His lab has more recently developed tools for analysis of RNA-Seq data, such as the GEM read mapper, and the Flux Capacitor for transcript quantification. He has participated in many genome projects, including in the leadership of the mouse genome project. He has been involved in the ENCODE Project since the pilot phase, in which he lead the GENCODE efforts to delineate the gene and transcript reference annotation of the human genome. In the current phase of ENCODE, he leads the Transcriptome Analysis Working group. 
Rafael Irizarry (Johns Hopkins U.) Professor Irizarry has over ten years of experience developing methods for high-throughput genomics data. His dedication to producing tools that are useful to biologist and the wider research community is evidenced by the popularity of the methods he has developed, such as RMA, fRMA, GCRMA, CRLMM, and CHARM. He has made these tools and the computer code freely available. His expertise in dealing with bias, systematic errors, and unwanted variation in biological data will be extremely valuable for improving the quality of ENCODE data via statistical methods.
X. Shirley Liu (Dana Farber Cancer Institute; Harvard U.) Professor Liu is a computational biologist with expertise in the integrative modeling of transcriptional and epigenetic regulation in development, metabolism, and cancers. She developed a number of widely used algorithms for transcription factor motif discovery (BioProspector, MDscan, Motif Regressor, and CompareProspector, in total referenced by over 1,500), ChIP-chip and ChIP-Seq peak calling (MAT for Affymetrix, MA2C for NimbleGen, and MACS for ChIP-Seq, in total over 4,800 registered users) and an integrative analyse pipeline (http://cistrome.org, over 1,400 users). She is a member of the modENCODE worm chromatin group, a member of the AACR Cancer Epigenome Task Force, and the director of the Center for Functional Cancer Epigenetics at the Dana-Farber Cancer Institute. 
William Noble (U. Washington) Professor Noble has a background in computer science and has applied a series of computer science techniques to biological problems. He is one of the creators of the widely used cis-regulatory motif finding programs MEME and Meta-MEME, and he has led the use of support vector machines, wavelet analyses and dynamic Bayesian networks in genomic and proteomic analysis. Working in the Department of Genome Sciences at the University of Washington, he interacts with many high-throughput experimental groups and continues to have strong links to the computer science community.
A risk in creating such a combined multi-site DAC is that the multiple investigators and geographical separation potentially prevent the DAC from working as a cohesive team. This risk is discussed and mitigated in the Section titled “Risk Assessment and Leadership” in the PI Leadership Plan. In fact, the geographic distribution of the members of the DAC is ideally suited for a consortium that is itself expected to be geographically distributed, and has been geographically distributed in the previous two phases of the ENCODE Project. Importantly, we have a strong track record of working together over the past eight years of analysis during the ENCODE Project, modENCODE Project, and other large-scale consortia. Overall, the difficulties of coordination are offset by the benefits of the many different environments and scientists provided by the participating groups.

APPROACH
In Aim 1, we describe the principles that we will follow to define and prioritize analysis tasks that the DAC will perform. Groups in the proposed DAC have performed a large number of ENCODE and genome-wide analyses. In Aims 2-6 we highlight some of the most relevant ones to provides a concrete illustration of what the methodology and tools the DAC groups are capable of providing. During the ENCODE project, the AWG will prioritize the precise application of these tools as described in Aim 1. In Aim 7, we delineate our plans for disseminating the results of our integrative analyses.
Aim 1. Define and prioritize integrative analysis activities. 
The wealth of data from the ENCODE Project will lead to biological insights only if well-defined analyses are performed with appropriate computational methods in a reasoned priority. The large number of possible analyses could lead to confusion or even stagnation if not prioritized wisely. Thus, the design of the DAC has placed a strong emphasis on posing questions that are potentially the most informative and prioritizing the work flow. The AWG is responsible for selecting the questions to be addressed and solved. This will be done in consultation with the DAC, which will provide feedback on feasibility, resource requirements, timelines, etc. The DCC and data producers also play important roles in selecting the questions. The AWG includes other members, such as the production PIs, bioinformatics members of the production groups, members of the U01 groups interested in participating in integrative analysis, and other informatics groups loosely associated with the Consortium. The DAC will work on analyses formulated by the AWG, coordinating closely with the DCC and data producers, and to some extent with the computational groups funded by the U01s. The types and details of the analyses will be determined during the course of the project, and we provide example analyses in Aims 2-6. 
The interactions among AWG, DAC, DCC, production groups, and interested U01-funded analysis groups are best explained in the context of the entire work-flow for DAC, from experimental data through to analysis results. Much of the initial specific analysis of each dataset will occur by the appropriate production group, e.g., peak finding in ChIP-Seq data and transcript identification in RNA-Seq data. The DAC aims to establish specific contacts with the bioinformaticians in each production group and the DCC, in order to keep up-to-date with the nuances of the specific data types which can benefit integrative analysis. Furthermore, the DAC can assist the primary analysis in several ways: controlling data quality, maintaining data format consistency, and providing analysis pipelines. 
Moving beyond the primary data processing, the main source of work will be biological questions or analysis directions posed by the AWG, with examples described in Aims 2-6. The DAC leadership committee (Profs. Weng, Kellis, and Gerstein) will assign them to a group for investigatation and determination of whether there are existing methods that have both appropriate statistics and are scalable to genome-wide techniques. When an existing method is appropriate, the analysis will be run. Depending on the type of the analysis, the results will be reported either as data integrated into the genome browser and/or a new pipelined approach provided for regular use by all users, in particular other members of the ENCODE Consortium. 
For some questions, new statistical methods are required as some existing methods do not scale for genome-wide datasets. We may be able to draw upon the strengths of some U01 groups. An example is Prof. Peter Bickel (see support letter from him). In these cases we will invite these U01 groups to perform or participate in the analysis. For other questions, we will create a small group of DAC members to focus on the problem, in many cases starting with developing new statistical methods, followed by algorithmic/engineering analysis for genome-wide scalability. The statistical methods are likely to be novel applications of the broad collection of statistical and machine-learning toolkits, but the precise outline of what models to build and test requires a complex interaction between statisticians, bioinformaticians, and biologists. Once a new method has been successfully created and scales well, this method can then be appropriately pipelined. Some problems will require us to recruit expertise outside the Consortium. We have established a procedure to invite outside investigators to join the AWG and fund some of their efforts through the DAC (see the PI Leadership Plan). 
We expect to quickly have more tasks than resources, in particular because we expect to have a steady flow of tasks to change existing ad-hoc analysis schemes into methods that can either be pipelined or provided as end-user tools. As the number of questions posed by the AWG mounts, they will need prioritization. We will schedule our work in a completely transparent manner, with any priority disputes being resolved, and with the AWG having the final say on priorities. Figure 1 outlines the management of the prioritized list of tasks being performed by the DAC. As in the current phase of ENCODE, we will organize a weekly conference call for the entire AWG. The call at the beginning of each month will be open to any member of the Consortium and used to report progress from the previous month and discuss the prioritization of the active tasks. DAC members will provide estimates on the relative “cost” of each task, and the optimal groups to handle each task. New tasks are generated by the AWG and by DAC members suggesting new pipelining or engineering approaches to make existing ad hoc methods more robust. Although the DAC members can suggest tasks and obviously must be involved in the assessment of matching tasks to groups, we will strictly enforce the prioritization by the AWG to ensure that the DAC does the analysis the Consortium needs.
The DAC will ensure openness by inclusiveness in its working practices and a formal prioritization process from the AWG. To ensure inclusiveness, the DAC will conduct all meetings in formats that allow any ENCODE Consortium member to join and participate as equal members in the analysis. The progress of analysis will be posted on the ENCODE Wiki, again allowing complete access by other Consortium members. The progress of DAC analysis tasks will be reviewed and future priorities set in an open forum with the AWG and related ENCODE Consortium members, under the working principle that the AWG is the final arbiter of any priority dispute. DAC members will be available, given practicalities, for any AWG-proposed meeting. AWG phone calls will be chaired by the three members of the DAC leadership committee, with the three members changing their roles between incoming, outgoing, and incumbent chairs in a weekly rotation. This structure is modelled on the existing ENCODE PI calls and has proven to work effectively. [image: ]
The members and leadership of the proposed DAC recognize that the proposed work flow and management is quite different than the usual mode of working on investigator-initiated projects. The DAC will be responsive to a wide range of inputs, with problems defined and prioritized by the AWG, close coordination with the DCC, and inclusion of other members of the ENCODE Consortium and others with needed expertise. We will organize annual data analysis workshops to bring together researchers from both inside and outside of the Consortium including the data producers, experts in data analysis, and experts in the biology of different classes of functional elements for face-to-face interactions to promote better data analysis. We expect that these interactions will be collegial and that the expertise and experience of the DAC members will be weighed favorably as the AWG establishes priorities. Indeed, this community-based approach to problem solving will be exciting and lead to insights that may not be obtained in studies by single investigators. Below we summarize the intended interactions between the DAC and various entities in and beyond the ENCODE Consortium:
AWG: DAC members are active participants of the AWG, and the goal of the DAC is to perform and facilitate the analyses defined by the AWG. The DAC will assist the AWG in defining and prioritizing the tasks, performing the tasks in the most efficient and thorough manner, reporting analysis progress, and disseminating analysis results.
Production groups and U01 groups: A challenge in the AWG will be to coordinate between the diversity of groups participating in analysis, and to ensure not only that each planned analysis is successfully completed, but also that there is minimal replication of effort between different groups. Achieving these goals will require constant communication between the different members of the AWG. DAC members will work closely with each production group and the U01 analysis groups to coordinate analysis goals, plan deliverables, establish milestones, and ensure that different groups build on each other’s results. In particular, we will work with the PIs of the production groups who are ideally situated for understanding the subtleties of their datasets to establish optimal protocols, sequencing depth, and number of biological and technical replicates, and agree upon uniform processing pipelines based on the statistical expertise of the DAC and the AWG and the particularities of each data type. We will also work with the PIs of the production groups to establish goals for integrative analysis, and the specific integration plan for each type of data, interpret the analysis results, and adjust analysis goals based on their biological interpretation. 
DCC: The DAC and DCC components of the EDCAC will work together on several issues, with five examples listed here. (1) Perform uniform primary processing of datasets and establish a single processing pipeline to be run by the DCC component on all datasets; (2) Establish uniform naming schemes for all datasets, a transparent directory structure, and ways to acces the datasets; (3) Determine data processing priorities for data freezes and data quality standards for accepting and posting individual datasets; (4) Build a common computing platform for running common tools on all datasets; and (5) Disseminate the analysis results of the DAC.
NHGRI: On a regular basis, the DAC will update the ENCODE Consortium and the NHGRI on the progress towards completion of the comprehensive catalog of functional elements. We will also provide quarterly reports that will allow assessment of progress towards achieving DAC goals.
Additional informatics groups outside the Consortium: We will identify areas of expertise not represented in the AWG, and will invite outside investigators to join AWG analyses when necessary. We have specifically budgeted funding for the DAC to support some of these efforts. Candidates will be discussed among the DAC investigators and the AWG head, with the final decision made by the DAC leadership committee in consultation with the NHGRI.
Other large consortia and outside production groups with complementary datasets: In addition to the ENCODE project, several large consortia are involved in systematic data generation activities involving the human genome, resulting in a wealth of functional information that would be of great value to ENCODE integrative analyses. We will work with the scientific leadership and analysis groups of each consortium to ensure that our analysis plans are synergistic, and to ensure mutual understanding of data use policies, embargo dates, and coordination in our published analyses. In addition to consortia, we will work with individual labs that systematically generate large-scale datasets of significant value to the ENCODE Project, based on the priorities set forth by the AWG, the ENCODE PIs and co-PIs, and the NHGRI. 
Integration of ENCODE data with epigenomics data: The NIH Common Fund Epigenomics Roadmap Project (http://www.roadmapepigenomics.org/) and the International Human Epigenome Consortium (http://www.ihec-epigenomes.org/) have generated rich maps of histone modifications, including high-resolution maps of more than 20 modifications in a small number of cell lines, maps of a few modifications in a large number of cell types, as well as maps of DNA methylation and DNA accessibility. As each of these data types are widely used in the ENCODE Consortium, we will work with the data coordination centers and informatics groups participating in these consortia to integrate relevant datasets into ENCODE pipelines for joint integrative analyses by the ENCODE AWG. For those cases in which we seek to integrate non-ENCODE datasets into our existing pipelines, we will ensure that such data meet the same quality standards as ENCODE datasets. To optimize the compatibility with published papers by each of these consortia, we will use the processed files from the investigators as much as possible. However, when necessary, we will reprocess the primary data according to the ENCODE uniform pipelines to ensure that data quality standards are met. 
[bookmark: h.gjdgxs]Integration of ENCODE data with GTEx, Brainspan, and TCGA data: Other sources of complementary, large-scale human data include the NIH GTEx (Genotype-Tissue Expression) Project (http://genome.gov/gtex), the NIMH Brainspan Project (http://brainspan.org), and the NCI Cancer Genome Atlas (TCGA) Project (http://cancergenome.nih.gov). Over 1,200 data samples from primary tissues have already been collected and analyzed during the initial stages of the GTEx project. We propose combining the large amount of population-specific lymphoblastoid genotype and mRNA expression data in ENCODE with the GTEx samples to improve the identification of expression quantitative trait loci (eQTL). In addition, compilation and comparison of DNA methylation, mRNA/miRNA expression, as well as genotype data from ENCODE, GTEx, and Brainspan, will permit a robust analysis of the expression landscape of the human brain and provide a valuable resource for other investigators given the scarcity of such large-scale, high-quality datasets. Finally, the integration of the large volume of ENCODE cancer data (from both primary tissue samples and immortalized cell lines) with over 500 clinical samples in TGCA will enable analyses of somatic mutations, mRNA/miRNA expression, copy number, and DNA methylation on an unprecedented scale.
Integration of ENCODE data with 1000 Genomes Consortium data: We aim to integrate different non-coding annotations with the variants identified by the 1000 Genomes Consortium. In this way, the non-coding annotation of each variant will be available to all users of the 1000 Genomes data and should serve as a valuable resource for the genetics community to identify the causal variant in GWAS. It will also provide easy access to downstream analyses for all the users. For instance, it will enable the calculation of selection pressure on variants in different annotation classes. The integration of ENCODE data with 1000 Genomes variants (SNPs, small insertions and deletions, and large structural variants) will be provided in the annotated Variant Call Format (VCF; http://www.1000genomes.org/node/101) These VCF files will contain the annotation of each genomic variant, including presence in non-coding RNA, TF peaks, TF motifs, and pseudogenes. Furthermore, SNPs which exhibit allele-specific behavior will also be identified with a distinct tag in the VCF files.

Aim 2: Provide shared computational guidelines and infrastructure for data processing, common analysis tasks, and data exchange
Rationale: To successfully accomplish the integrative analyses required in a consortium as diverse and complex as ENCODE, great care must be taken to ensure that in addition to uniform data production standards, uniform data processing standards are established and followed during each step of the analysis, in consultation with the AWG.
Methods: We will work closely with the AWG and DCC to ensure that common analysis tasks are standardized. Such tasks include processing of RNA-Seq datasets (short-read sequencing of mRNA), peak calling in ChIP-Seq datasets (chromatin immunoprecipitation followed by deep sequencing) and the identification of sequence motifs and transcription factor (TF) binding sites from TF ChIP-Seq data. We will develop and evaluate different analysis methods for such frequently performed tasks, provide sound statistics for selecting among them, and work with the AWG to ensure uniformity in subsequent processing of each data type using the selected methods (Aim 2.1). In addition, to facilitate tools sharing and minimize duplicated efforts across groups, we will provide a computational framework for frequently performed ENCODE analysis tasks (Cistrome) and statistical tasks (Genome Structural Correction (GSC)) through the Galaxy infrastructure, thereby enabling each group to combine tools and methodologies from every other group into common analysis pipelines (Aim 2.2). The vast majority of ENCODE data is based on deep sequencing, a technology that only became widely practiced in the past few years. This presents potential biases and errors not yet completely understood, and thus we discuss plans for assessing the quality of ENCODE data (Aim 2.3). Lastly, we will work closely with the DCC to facilitate data import, access, and uniformity between ENCODE and the larger community. We will ensure that relevant public datasets are available in a common repository and in uniform formats to ENCODE members. We will also ensure that all analysis results by ENCODE members are shared with the larger community (Aim 2.4).
2.1. Development and evaluation of uniform data processing methods for different platforms. To facilitate the integrative analysis of the ENCODE datasets produced by different groups, we will develop and evaluate methods for uniform data processing for all common platforms, e.g., ChIP-Seq, RNA-Seq, DNase-Seq, MNase-Seq, and FAIRE-Seq. Below, we describe two examples: RNA-Seq data for transcript annotation, and ChIP-Seq data for TF binding and chromatin marks.
Established ENCODE RNA-Seq analysis pipelines: The Gerstein and Guigo labs have developed a number of pipelines for RNA-Seq processing and downstream transcriptome analysis. Below, we summarize these pipelines and the biological insights that they have provided when analyzing ENCODE RNA-Seq data. Building upon these established pipelines, the DAC will also work with the production groups to benchmark new computational methods and protocols for analyzing RNA-Seq data, and will integrate those new methods with high accuracy and efficiency in the ENCODE pipelines.
The Gerstein lab has developed a number of tools and data formats to handle the increasingly large quantities of data generated by RNA-Seq experiments. We have developed a suite of tools (RSEQtools) that uses this format for the analysis of RNA-Seq experiments20. These tools consist of a set of modules that perform common tasks, such as calculating gene and exon expression values, generating signal tracks of mapped reads, and segmenting that signal into actively transcribed regions. RSEQtools is implemented in C, and the source code is available at http://rseqtools.gersteinlab.org/. Moreover, the components of RSEQtools can readily be assembled and extended to build customizable RNA-Seq workflows. To this end, we have developed three different analysis pipelines: FusionSeq, IQSeq, and DupSeq. FusionSeq21 is designed for detecting fusion transcripts from paired-end RNA-Seq data. Specifically, it can detect fusion transcripts generated from either trans-splicing or genomic translocations (http://rnaseq.gersteinlab.org/fusionseq/). To prioritize experimental validation, FusionSeq ranks the candidates by several statistics. IQSeq is a transcript isoform quantification tool which uses a partial sampling framework (http://archive.gersteinlab.org/proj/rnaseq/IQSeq/). It uses an expectation-maximization algorithm to resolve the maximum likelihood expression level of individual transcript isoforms. DupSeq is a computational tool used to analyze the expression patterns of highly similar genomic regions. This framework is particularly useful for the identification of transcribed pseudogenes, in that it can distinguish genuinely transcribed pseudogenes from mapping artifacts, which may result from the high sequence similarity between the parent genes and the pseudogenes. 
The Guigo lab has designed and implemented a number of tools complementary to those described above, including the GEM read aligner (http://big.crg.cat/services/gem_genome_multi_tool_library), the Flux Capacitor22 for transcript quantification (http://big.crg.cat/services/flux_capacitor), and NextGeneid for de novo transcript modeling and discovery. We have incorporated these tools, as well as tools developed elsewhere, into GRAPE, a robust, efficient and scalable open source software system for the storage, organization, access, and analysis of RNA-Seq data. GRAPE has two main components: a structured repository hosting the raw and processed data, and an RNA-Seq pipeline to construct transcript models and quantify novel and annotated transcripts. Quality control (QC) is implemented at each step of the pipeline. If biological replicates are available, statistical methods can be applied to assess data reproducibility, such as the IDR approach widely used by the ENCODE Consortium23. The pipeline is built in a fully modular fashion, and any tool compliant with popular data interchange formats (GFF, BAM/SAM, BED etc.) can be used. GRAPE can be used to compare datasets across conditions, identify differentially expressed transcripts and reconstruct regulatory networks. The GRAPE dashboard offers a point of entry to the data and results through schematics of the project’s experimental design. For instance, http://genome.crg.cat/encode_RNA_dashboard/ is the dashboard for the ENCODE Project, and it illustrates all ENCODE RNA-Seq data as an interactive matrix. GRAPE has been used to process RNA-Seq data produced by the ENCODE Project and elsewhere. Pre-release versions of GRAPE have been deployed at a number of sites, and a first version will be released in the public domain within the next few months. Changes in the relative ratio of splice forms, even in the absence of changes in gene expression, may have important phenotypic impacts. The Guigo lab has also developed statistical methods to assess the variability of splicing ratios, identify genes with condition-specific splicing patterns, and deconvolute the relative contributions of expression variation and splicing variation to the variation in the abundance of alternative splice forms24.
By applying these and other tools to the ENCODE data, the Guigo group has recently contributed to a better understanding of the pathways involved in RNA synthesis and processing. We found that a large fraction of the variability in transcript abundance can simply be explained by the variability in global gene expression25. We discovered that nucleosomes are preferentially positioned within exons26, suggesting a role for chromatin structure in regulating alternative splicing. This role has recently been demonstrated experimentally27. We used histone marks to predict the level of exon inclusion28, and found strong evidence that splicing occurs predominantly during transcription29. We have also found that long noncoding RNAs (lncRNAs) often activate the expression of nearby genes30, and we provided a comprehensive characterization of this emerging class of RNAs31.
Use RNA-Seq results to improve gene annotation: The DAC will contribute to the development of methods and pipelines that facilitate the integration of RNA-Seq data into high-quality gene and transcript catalogs. During the current phase of ENCODE, a pilot project has been initiated in which unbiased RNA-Seq contigs are used as anchor points to originate 5’ and 3’ RACE reactions. The products of these reactions are then sequenced in a highly multiplexed way by using instruments which produce long sequence reads, such as Roche 454 and PacBio. Sequence reads are assembled into longer transcript sequences, which can further be extended through subsequent iterative RACE reactions. The resulting sequences are submitted to the HAVANA team of the Sanger Institute for manual curation and eventual inclusion in GENCODE. The DAC will work to develop computational methods to minimize the experimental effort in deriving full-length transcript structures from the RNA-Seq data produced within or outside of the ENCODE Project. The DAC may also organize or contribute to the organization of benchmark community experiments in the spirit of RGASP and EGASP (the latter was organized during the pilot phase of ENCODE to assess automatic methods for gene and transcript annotation).
Development of methods for analyzing CLIP-Seq data: Currently no ENCODE production group maps the binding sites of RNA-binding proteins. If such projects are funded in the next round of ENCODE, the DAC will evaluate existing methods for such data, and will develop new methods if necessary. Depending on the protocol, these experiments involve the sequencing of the entire RNA molecule bound to the protein (for instance, those based on formaldehyde crosslinking). They can be considered RNA enrichment protocols, and standard RNA-Seq analysis pipelines can be employed. Other protocols, such those based on UV crosslinking (i.e., CLIP), preferentially recover the RNA fragment specifically bound to the protein, and thus, are more similar to ChIP-Seq assays. However, standard ChIP-Seq processing pipelines, which rely on genome mapping of the reads, cannot be employed directly because of the split nature of RNA molecules and the prevalence of alternative splicing. Estimating the binding affinity of an RNA binding protein to the correct alternative splicing isoform (as estimated from CLIP-Seq, for instance) is not a trivial problem. The DAC will collaborate with the groups eventually producing this novel data type to develop pipelines meeting the ENCODE standards, and ensure that the processing pipelines for such data are consistent with the ENCODE pipelines used for RNA-Seq and ChIP-Seq analysis.
Peak calling for ChIP-Seq: We have performed comparisons of several published approaches for analyzing ChIP-Seq data in the context of ENCODE. We developed metrics for assessing performance by comparing the agreement between genome-wide motif occurrences (based on comparative genomics) and genome-wide peaks of predicted occupancy (based on ChIP-Seq data), and by comparing the reproducibility of called peaks from independent biological replicates. We found that there is a core group of peak-callers which exhibit comparable performance, resulting in the selection of SPP32, MACS33 (the Liu lab), and PeakSeq34 (the Gerstein lab) for consistent and uniform analysis in the ENCODE Consortium. We will continue to evaluate possible sources of bias in existing methods, and continue to test new peak calling methods for reproducibility and consistency with independent evidence, such as motif instances, sequence conservation, and relevant experimental datasets. As part of the DAC, the Liu lab maintains an active Google Group for MACS with over 2500 users, and will continue to improve the algorithm in several aspects: higher resolution, more accurate sub-peak detection, better speed and memory efficiency, and more accurate normalization with increasing sequence coverage. The lab also plans to develop a new algorithm (MACS2Diff) to identify differential binding between two or multiple conditions, as well as the ability to call SNPs and allele-specific binding events by contrasting two ChIP-Seq datasets.
Identifying sequence motifs and TF binding sites in ChIP-Seq peaks: The Weng and Kellis labs have developed computational pipelines to identify sequence motifs enriched in TF ChIP-Seq peaks4,35. The Weng lab applied the pipeline to 457 ENCODE ChIP-Seq datasets on 119 human TFs in the January 2011 freeze. We found highly enriched sequence motifs in most datasets, thereby revealing new motifs and validating known ones (Figure 2A). Most top-ranked peaks contain sites for the motifs, and the motif sites are located near the summits of peaks, and thus are likely functional TF binding sites (Figure 2B). These TF binding sites can be validated by mutagenesis and transient transfection assays, and we showed that the rate of validation is 70% using four cell lines7. TF binding sites are located in GC-rich, nucleosome-excluded regions with well-positioned flanking nucleosomes (Figure 2CD). In addition to the canonical TF motifs, we frequently detected secondary motifs, indicating tethered binding, co-binding, and competitive binding between multiple TFs. We observed significant position and orientation preferences for many co-binding TFs (Figure 2EF). This motif analysis and TF binding site detection pipeline is in place, and it will be applied to all new ENCODE ChIP-Seq data. We have built a Web-accessible Wiki-based repository, available at http://factorbook.org. Factorbook is a TF-centric repository of all ENCODE ChIP-Seq datasets, as well as the results of the integrative analysis on these data.
2.2. Provide Computational and Statistical Pipelines, using Galaxy, GSC, and Cistrome. In addition to the primary data processing needs that are typically applied once for each dataset, there are recurrent analysis tasks that are frequently re-implemented by different computational groups in slightly different ways to achieve nearly identical goals. To facilitate such analyses, ensure that consistent processes and sound statistics are implemented by each group, and to avoid duplication of efforts across different groups, we will share all analysis tools used by multiple groups using the Galaxy infrastructure36, an easy-to-use, open source, scalable framework for tools and data integration of genomics data. Galaxy readily handles web user login, data upload/download, analysis requests, and workflow management. It includes a number of tools for merging/joining/subtracting two sets of genomic intervals (e.g., ChIP-Seq peaks for two TFs), filtering, sorting, manipulating tab-delimited text files, and retrieving batch genomic regions (e.g., genomic sequences for ChIP-Seq peak regions for motif discovery). We will discuss with the future DCC the potential for collaborating on the Galaxy deployment.
Genome Structural Correction (GSC): The Bickel group (a member of the current ENCODE DAC; see support letter from Prof. Bickel for his future participation) developed a statistically rigorous method (termed GSC) for the computation of p-values and confidence intervals for linear or asymptotically linear statistics that operate along large genomes (http://encodestatistics.org). Much work in genome annotation involves questions regarding the statistical significance with which particular genomic features overlap. Examples of pairs of such features may include evolutionarily constrained regions and transcription factor binding sites, or specific epigenetic modifications and annotated pseudogenes. These feature co-association analyses are contingent on null models that faithfully reproduce the marginal distribution of features. One value of the GSC approach is that it provides a realistic null model by preserving the complex, non-uniform nature of features, thereby enabling one to reliably gauge the significance of feature pair overlap statistics. That is, the nature with which each feature is distributed across the genome (which may be highly clustered in some regions, and sparse in others, for instance) is preserved in the generation of null models, whereas the joint distribution of the pair of features is randomized. Importantly, GSC does not assign significance to feature overlap statistics when there is no significant overlap, and it identifies significant co-association in cases for which significance may go undetected when employing more naive null models (such as those generated by uniformly randomizing the start sites of features across the genome). Thus, this powerful technique will equip us with the ability to identify pairs of features that are truly correlated across the genome. The method is widely applicable. For instance, it may be used to assign confidence regions to the eigenvalues and loadings in a principle component analysis of multiple genomic features, to call peaks on mapped reads in a ChIP-Seq experiment by generating a confidence band around a negative control track, or to compute conservative and realistic False Discovery Rates (FDRs) for a variety of assays. The Bickel group has already implemented a few statistics within this framework in the form of software modules in the downloadable package (such as Pearson correlation and a variety of "overlap" statistics which are useful for assessing the significance of the coverage of one genomic feature by another). Working with the Bickel group, the DAC will continue to develop statistical modules for inclusion in the GSC package on an as-needed basis, determined by the AWG. We will also integrate GSC with Galaxy, thus facilitating its wide use and preventing the need for local compilations of the core C-module.[image: ][image: ]
Cistrome pipeline and browser: The Liu lab has developed an integrated analysis pipeline (called Cistrome)37 to allow biologists to manipulate ChIP-Seq and expression data, and to conduct comprehensive analyses within a single robust platform (Figure 3). Cistrome is based on the Galaxy infrastructure, and was developed in Python and R. It enables complex data analysis and integration tasks without the need to install and configure multiple pieces of software, exchange and reformat data, or develop custom code for recurrent tasks on new datasets, which we will extend and share over the course of this project. The Cistrome pipeline includes standard analysis tools for finding peaks, determining the quality control of replicates, analyzing gene expression, analyzing gene ontology, determining genome-wide binding site distributions, identifying binding site enrichment at certain genomic features (such as promoters or exons), creating heatmaps with k-means clustering or averaged profile for ChIP-Seq signals around specific genomic locations, scanning of known regulatory motifs, discovering enriched motifs de novo, evolutionary conservation analysis, and assigning TF binding sites to nearby genes. Cistrome also includes integrative analysis tools for predicting regulated target genes based on binding, conservation and epigenetic profiles, detecting motif combinations that define groups of target genes, selecting conserved or differential binding patterns of a factor (between species, conditions, or factors), and studying differences between classes of genes (such as housekeeping genes or GC-rich promoters). The output of each analysis is either a set of data files in standard format (such as plain text, BED or BigWig) which can serve as input files for further analyses, or a set of figures which can be directly copied into users’ manuscripts. The user’s data, corresponding output and work sessions can be saved in Cistrome, annotated, and then reused at the next login. The Cistrome database uses an SQL infrastructure, and stores both public and private data processed through the Cistrome pipeline, either by a standard analysis workflow based on default parameters, or by a user-specified customized analysis process. A user can keep data private, export it to the public after submission to the DCC or publication, or share it with another user or group. In addition, two Cistrome browsers are provided: one allows users to explore, import, and download all the available data and corresponding meta-data, and the second is a local mirror of the UCSC Genome Browser with standard Cistrome data tracks for visualization. Since its release in the summer of 2011, Cistrome has accumulated over 1200 users. Three developments are planned for Cistrome (Figure 3):[image: ]
1. The Liu Lab will continue to maintain and improve the Cistrome analysis pipeline, and incorporate new features and functions for ChIP-Seq data analysis. We will adopt the ENCODE ChIP-Seq data quality standards with new features to perform quality control on all the ChIP-Seq data, including a library complexity measure based on redundant read rate, the number of uniquely mapped locations from ChIP-Seq reads, fragment size estimate near ChIP-Seq peaks, the number of peaks with good FDR, the percentage of peaks at different folds of enrichment, data verification through replicate correlation and Irreproducible Detection Rate (IDR)23, overlap with union of existing DNase-Seq peaks, evolutionary conservation of the peak regions, signal enrichment relative to gene annotations (such as the enrichment of TF binding sites near the transcription start sites), and the ability to find the correct motif enrichment (e.g., those for TFs). These criteria are well tested for transcription factors, and we will continue to develop standard quality control methods for TFs binding to broad regions as we better understand their data characteristics and downstream use.
2. The volume of ChIP-Seq data generated by the scientific community outside of ENCODE effort has been increasing exponentially in the last several years. Data analysis involving the integration of ENCODE data with other public ChIP-Seq data may yield more reliable biological insights. In collaboration with Prof. Yong Zhang at Tongji University in Shanghai, the Liu lab is collecting and processing all ~5000 publicly available ChIP-Seq data in human and mouse to make a Cistrome Data Collection. Once the data collection is in place, we will create data import functions to allow users to readily take advantage of these data for integrative analysis. We will deploy the quality control measures in the analysis pipeline described above to assess the quality of these data. We will also implement a community-based data ranking system. In ways similar to those used by Amazon to rank books, we will monitor and keep track of the number of times a dataset is downloaded or imported into Cistrome (by volume), and allow registered Cistrome users to rank the usability and quality of specific data (by stars). This will provide incentives for the data generators to provide higher quality data with better annotations, and enable more informed and efficient data reuse.
3. To further facilitate integrative analyses, we will collaborate with the Broad Institute to integrate Cistrome into GenomeSpace. Funded by the NHGRI, GenomeSpace (http://www.genomespace.org/) provides a common workspace which enhances the interoperability between six popular genomics tools (Cytoscape, Galaxy, GenePattern, Genomica, Integrative Genomics Viewer (IGV), and the UCSC browser). Since Cistrome is built on the Galaxy infrastructure, it will be easy and beneficial to make it compatible with GenomeSpace.
2.3. Assessing the quality of ENCODE data and upholding ENCODE data standards. The Irizarry Lab has developed several computational methods for preprocessing high-throughput sequencing data38-41. We will apply these and develop new methods to assess the quality of ENCODE data. To measure quality, we quantify the effect of removing bad quality data on the final biological results reported by ENCODE, which we refer to as the ‘bottom-line’ results. We will assess the quality for individual sequencing runs as well as batches, as we have learned from microarray experiments that these appear to have the largest number of outliers42. Because most results from ENCODE will be a combination of data from various samples, a single bad sequencing run can easily taint the final results. Therefore, quality control becomes even more important than before. Currently, quality metrics for high-throughput sequencing data have been an ad-hoc procedure, with each lab implementing its own approach. We plan to standardize quality metrics in preparation for combined data from different sources. We will leverage both our experience with ENCODE data as well as our experience with other high-throughput methods such as those employed in microarray data; the literature in microarrays is particularly mature (see 42 for review). We will implement techniques that model data from various samples and explore summary statistics such as cross-sample correlations, data distributions, and exploratory tools based on principal component analysis.
There are several sources of errors and biases in data generated using deep sequencing. (1) Base-calling quality computed using manufacturer-supplied tools and protocols is not a sufficient indicator of error-rate and is too coarse a measure to quantify bias in sequencing error. (2) Base-call errors are not randomly distributed across the cycle positions in sequenced reads43 and although we developed a normalization method for the SOLiD platform39, this issue has not been studied extensively. Alternative base-calling methods that reduce the cycle-related bias in error rates have been developed40,44. Numerous error correction methods have also been developed to reduce errors from reads after bases have been called45-48. (3) A long-observed phenomenon in high-throughput sequencing data is the strong, reproducible effect of local sequence content (such as GC content) on the coverage of a genomic region by sequencing reads43,49. For sequencing projects where coverage levels are compared across regions, such as RNA-Seq, ChIP-Seq or copy number detection, this can be particularly problematic. Adjusting signal for GC content leads to improved results in both ChIP-Seq and copy number estimation with sequencing data49,50. (4) Genomic regions that are identical or highly similar to one another create ambiguity in alignment to the genome and these ambiguous reads are generally discarded. The low coverage in these regions can produce biased measurements or remove the regions from consideration in downstream analysis. Methods have been developed for taking this ‘mappability’ property into account to adjust for the observed signal in these regions49. (5) There are some other types of biases such as spatial bias that seems to be unique to the sample preparation protocol being used. Hansen et al. have shown that random hexamer priming can lead to coverage bias in RNA-Seq analyses51, and Li et al. present a model for the non-uniformity of RNA-Seq read coverage52. Both papers provide solutions to adjust for these biases and achieve more uniform coverage. We will develop computational methods to correct these different types of experimental biases.
Finally, batch effects, which are complications typical to high-throughput studies, occur when measurements are affected by laboratory conditions and reagent lots53-55. Previously, the Irizarry Lab has demonstrated that batch effects are widespread and critical to address53. Unfortunately, the sources of batch effects are often unknown. As the ENCODE Project grows and data from different sources are incorporated, assessing and removing batch effects will be a major challenge. The primary way to avoid batch effects is through careful experimental design. Randomization of all experimental variables across treatment conditions should be employed to avoid systematic effects within a condition. In order to correct for these batch effects, they need to first be detected and then adjusted for. We will develop detection and correction methods, be it through the use of covariates in linear models or more involved procedures such as surrogate variables.
2.4. Establish data types, data repositories, and data sharing guidelines. We will keep close communication with the DCC to ensure timely and consistent processing of raw data through a uniform pipeline. The output of the pipeline will be cleansed and normalized, ready for downstream analyses. We will assemble a subgroup of DAC analysts responsible for various aspects of uniform data processing and the data transform that is necessary prior to the uniform data processing. In particular, the subgroup will include analysts who have been part of the uniform data processing during the current DAC and will be part of the next DAC. During the EDCAC kickoff meeting, these DAC analysts will meet with the appropriate DCC members to evaluate the status of uniform data processing pipelines. During the first three months of the project, all existing pipelines will be established and applied to all available datasets. This subgroup will be the point of contact with DCC on this issue. Whenever an analysis method has matured to the stage of a pipeline, it will be turned over to this subgroup to implement and apply to all existing data.
We will work closely with the AWG and DCC to ensure that all analysis results, similar to primary data, are available in uniform formats from all groups, and additionally that all metadata are stored, including versions of programs used to generate the data, which pipeline version was used, and that all tools and data processing methods remain available for the duration of the project. For each type of functional element, we will establish a unique and standardized representation, including for enhancers, promoters, transcripts, alternative splice forms, transcription start/end sites, genome segmentation etc. We will also make sure that all analyses done in parallel in human, mouse, fly, and worm use the same formats, parameters, and pipelines whenever possible, and that these are clearly documented to facilitate cross-species comparisons. To achieve this, we will establish a single coordinator within the DAC for each type of analysis who will be responsible for ensuring reproducibility and consistency within the Consortium.
All data exchange will also be stored at the DCC servers, and all results of validated analyses will be made public upon validation, following the ENCODE common Data Release Policy. Care will be taken to anticipate the versioning of ENCODE data generated for all three organisms between different genome builds. As the project progresses the data products generated earlier in the project will get updated to the most recent genome builds for each organism in a controlled fashion. This will either be done via simple liftOver or via uniform reprocessing. We also anticipate data freezes (approximately every six months) where the collective set of all primary processed data products generated up until that stage by the entire Consortium are frozen for more detailed integrative downstream analyses.
We will also store at the DCC all public datasets which have been reformatted for ENCODE use by members of the DAC or AWG to minimize duplication of efforts, and ensure consistency between different groups. The DCC will also serve as our intermediate repository for all datasets coming from the epigenome project, the 1000 Genomes Project, TCGA, GTEx, Brainspan, GEO, SRA, FlyBase, and WormBase. These clear guidelines and standards may appear cumbersome at first, but they will be invaluable in preparing the datasets for integration, and preparing the integrative analysis for publication. Lastly, all data shared with the larger community will be shared through the DCC servers and browsers, and through FlyBase, WormBase, and general genome browsers (such as NCBI, ENSEMBL, and NCBI) whenever possible.
Aim 3: To facilitate and carry out data integration for element-specific analyses.
Rationale: While the goal of individual production groups includes the annotation of almost each known class of functional element (enhancers, promoters, insulators, coding and non-coding transcripts and splice forms, miRNAs, 3’UTRs), it is rare that any single element type uses only data from a single group. Thus, pairwise or multi-way data integration is needed in order to most accurately annotate each class of functional elements. Such analyses could be done by either group involved (using the other group’s data), or by ad-hoc consortia formed around specific analyses. However, as integrative analyses often requires rigorous statistical underpinnings, complex machine learning methodologies, and similar efforts in different species, they are best done by leveraging the combined computational and biological expertise of the entire Consortium, and thus best done in the context of the AWG, which the DAC can facilitate.
Methods: We have structured this aim around different classes of elements to be annotated, and for each class we propose specific analyses that we foresee as important, including enhancers, promoters, insulators, and other regions of active chromatin (Aim 3.1), transcribed protein-coding and non-coding RNAs and their upstream and downstream regulatory regions (Aim 3.2), prediction of gene expression level and alternative splice forms using chromatin and TF binding signals (Aim 3.3), prediction of TF binding sites in new cell lines (Aim 3.4), and the definition of pre- and post-transcriptional regulatory networks based on transcription factor binding in promoter and enhancer regions and miRNA targeting in 3’UTRs (Aim 3.5); although, these activities will be prioritized in our interactions with the AWG and be limited by data availability.
3.1. Data integration for defining promoters, enhancers, insulators, and repressors. While the signals of transcription factors, chromatin remodelers, chromatin marks, histone variants, nucleosome positioning, and DNase hypersensitivity have all been shown to be predictive of regions of regulatory importance, the precise combinations of these signals that distinguish enhancers, promoters, and insulators are still unclear. With the number, density, and resolution of genome-wide assays that are currently becoming available, we have a unique opportunity to systematically study the precise combinations of genomic features that are most predictive of each type of element. Transcription start sites (TSSs) as defined by CAGE analysis provide true positives for promoter regions, and also allow us to distinguish between constitutive and condition-specific promoters, and between single-promoter genes and alternative promoter genes. Growing datasets of regions able to drive tissue-specific gene expression in enhancer assays provide true positives for enhancer regions. Mapping of enhancer-associated chromatin marks (e.g., H3K4me1 and H3K27ac) and enhancer binding proteins (e.g., p300) are being performed for many cell lines in ENCODE.
In each of these cases, we would like to know which combinations of genomic features are most predictive of each type of region and most likely contribute to its establishment, maintenance, and recognition. We will use feature selection methods within a supervised learning framework, such as in decision trees, support vector machines (SVMs), Bayesian, and regression methods. As input features we will use chromatin marks, binding of sequence-specific and general TFs, chromatin remodeling factors, chromatin accessibility, and nucleosome density. We will also include sequence features such as nucleotide composition, combinations of regulatory motifs, and sequence/motif conservation in closely related species.
Our ultimate goal is not only the systematic annotation of each functional element in these genomes, but also new mechanistic insights into the interplay between different functional elements, and we will work closely with the AWG and Consortium members to design computational and experimental tests to evaluate the role of the most informative features.
3.2. Data integration for defining protein-coding and non-coding genes and transcripts. To characterize coding and non-coding transcripts, we will integrate RNA-Seq data, promoter-associated chromatin marks, transcription elongation-associated chromatin marks, and comparative genomics of related species.
Transcriptional evidence: Several types of data generated by ENCODE provide transcriptional evidence56: RNA-Seq can be used to derive the structure and level of transcripts, CAGE determines the precise positions of the 5’ ends of transcripts, and RNA-PET (also called diTAGs) provides connectivity for the 5’ and 3’ ends of transcripts. Moreover, ENCODE has generated transcript data with high-density (5 bp) tiling DNA microarrays for some cell lines.
Chromatin evidence: We have found that distinct combinations of chromatin marks and chromatin accessibility are associated with promoter regions, transcribed regions, and transcription termination regions. Surprisingly, internal exon-intron boundaries are also associated with distinct chromatin marks and nucleosome positioning biases57, suggesting that these can be used as an additional line of evidence in defining transcript boundaries, especially with respect to low-expression genes for which the transcriptional evidence may be weaker. We have recently used such marks to discover more than a thousand novel long intergenic non-coding RNAs (lincRNAs) in mouse58 and more recently in human24.
Comparative evidence: The Kellis lab identified evolutionary signatures that are uniquely associated with each class of functional elements59, with protein-coding genes showing distinct patterns of codon substitution frequencies and reading-frame conservation, non-coding RNAs showing compensatory changes and silent GU-involving substitutions, miRNAs showing a distinct conservation profile (high conservation in the star and mature arm and lower conservation in loop and flanking regions), and other structural conservation properties. We used these signatures to reveal at least 30 non-coding genes in the fly genome using modENCODE transcript data and comparative genomics of 12 Drosophila species60. We will apply a similar approach to human and mouse ENCODE data.
Combinations of features: We will combine these transcriptional, chromatin, and comparative features to distinguish different classes of genes in a machine learning framework. We will use Support Vector Machines to classify each transcript into coding or non-coding. We will also apply a previously developed Conditional Random Field (CRF) framework to predict coding and non-coding exons and transcripts from the combined evidence. CRFs are graphical probabilistic models similar to Hidden Markov Models (HMMs) but they allow much richer feature sets due to their discriminative training nature. Lastly, we will associate non-coding RNAs with precursors of miRNAs, piRNAs, and other classes of small RNAs using short-RNA sequencing results.
Identification of non-coding RNA genes: We will utilize an integrative machine learning approach for identifying novel non-coding RNA (ncRNA) genes17. The method is based on support vector classification to classify non-coding RNAs from other elements like coding sequences and UTRs. For each non-coding RNA, a set of features are computed which are then used for training. These features comprise the quantities that are chosen to maximize the discriminatory power of the machine-learning algorithm. For example, high short RNA-Seq expression levels, high secondary structure stability and conservation, medium nucleotide conservation, and low amino acid conservation are the expected characteristics for the non-coding RNAs. The machine learning algorithm enables combining these features for prediction of the new ncRNAs in a formal manner. The known non-coding RNAs are utilized as the training set for the method. We will then apply the method on the remaining unannotated parts of the genome to discover novel non-coding RNA genes.
3.3. Prediction of gene expression level and alternative splicing from chromatin and TF. Correlating gene expression with TF binding and histone modifications: Transcriptome monitoring by RNA-Seq can provide accurate genome-wide estimates of the steady-state abundance of transcripts. Such estimates are essential to fully understand the pathways involved in RNA biogenesis. A number of genetic and epigenetic factors cooperate to determine the abundance of a specific RNA species in a particular cellular compartment: 1. signals in genomic DNA and in intermediate RNA molecules, e.g., TF binding sites, splicing regulatory sites, and polyadenylation signals; 2. the structure and status of chromatin; and 3. the abundance and concentration of the regulatory molecules—including both proteins and RNAs themselves. The relative contribution of each of these factors and their mode of cooperation, are largely unknown. The goal of the ENCODE Project is to simultaneously monitor many of these factors across multiple cell conditions and types. 
Given the gene expression data from RNA-Seq and the TF binding or histone modification data from ChIP-Seq experiments, the Gerstein and Weng labs have investigated their relationship in a quantitative fashion5,61. We have previously constructed TF models and histone modification models in different species from yeast to human18,62,63. Our results indicate that both TF binding and histone modifications are predictive of gene expression levels in a position dependent manner, and either account for at least 50% of gene expression level variation. The histone modification model accurately predicts gene expression in a wide chromatin region from the promoter to the transcribed regions, whereas the TF model achieves high accuracy only in a narrow chromatin region around transcription start sites (TSSs) of genes (Figure 4). Our study also indicates that TF and histone modifications are highly coordinated during transcriptional regulation and a combination of TF and histone modification signals does not further improve prediction accuracy relative to using each alone.[image: ]
Based on the CpG content, promoters of genes can be divided into high CpG (HCP) and low CpG (LCP). Interestingly, we find that expression levels of HCPs are easier to predict than those of LCPs5. More detailed analysis indicates that the relative importance of TFs and histone modifications in the models are different between the two promoter categories. These results suggest different regulatory mechanisms between HCPs and LCPs. The prediction accuracy of TF and histone modification models to some extent reflects the quality of the expression data. For example, the models achieve significantly higher accuracy for expression measured by RNA-Seq than by microarray. In addition, the models can also be used to predict the expression levels of non-coding RNAs (miRNAs) with fairly high accuracy. In the future, we suggest using the TF and histone modification models as a benchmark to understand transcription regulation.
Predicting alternative splicing using chromatin modifications and TF binding. We propose to investigate how inclusion levels of alternative exons covariate with histone modifications and TF binding, which will help us understand how these factors cooperate to modulate the specific abundance of RNA splice variants in the cell. Sophisticated probabilistic models have been recently developed to successfully predict tissue specific exonic inclusion64. However, the splicing code delineated in such a way includes hundreds of variables, many of which are concomitant but unlikely to be mechanistically involved in splicing. Within the current phase of ENCODE the Guigo lab has used statistical models to explore the relationship between levels of histone modifications and inclusion of exons. We found that, even when controlled for gene expression, some histone marks (e.g., H3K9ac and H3K36me3) are consistently significant (albeit weak) predictors of exon inclusion, and we built a predictive model of exon inclusion by combining the signals of these marks25,28 (Figure 5). By computing a measure of splicing completion on RNA-Seq datasets obtained in different sub-cellular compartments, we found strong evidence that splicing in the human genome occurs predominantly during transcription29, providing a molecular justification to the increasing evidence connecting chromatin with splicing65. We propose to further develop and apply statistical methods to the data obtained through the ENCODE Project, as well as to other publicly available data, to identify novel genetic and epigenetic factors involved in RNA processing, splicing in particular. We propose to:
1. Identify and characterize histone modifications that play a role in the regulation of alternative splicing, using correlation and modeling analysis.
2. Apply methods used to investigate the distribution of TF binding sites in promoter regions to investigate their distribution in exons and exon-intron boundaries. We will further correlate exon skipping events, as measured by RNA-Seq, with differential binding of TFs.
3. Identify novel regulators of splicing by searching for co-variation between the levels of exon inclusion (or alternative splicing events in general) and gene expression. This approach will uncover protein coding genes not yet known to play a role in splicing regulation, and more interestingly, lncRNAs that may act as splicing regulators. The RNA expression levels of protein coding genes are only a proxy for protein expression—the latter is the effector of the biological function. In contrast, expression levels of lncRNAs are almost the actual physiological levels. Inferences based on co-variation between exon inclusion and abundances of lncRNAs are therefore more likely to be biologically meaningful.
4. We will investigate the relationship between RNA expression levels, protein expression levels, and protein binding activity—both to DNA and RNA—for transcription and splicing regulators, and determine how they relate to cellular abundance of the regulated RNAs.[image: ]
3.4. Predicting in vivo transcription factor binding by combining chromatin and motif data. Conceptually, the space of possible ENCODE experiments can be represented as a large two-dimensional matrix, in which one dimension corresponds to various experimental assays and the other dimension corresponds to various cell or tissue types. Thus far, ENCODE has taken a two-pronged approach, in which a small set of assays (mapping histome marks by ChIP-Seq and chromatin accessibility by DNase-Seq) has been carried out in a large variety of cell lines and primary tissues, and a much larger set of assays (specifically ChIP-Seq of TFs) has been performed in a small number of cell lines. Thus, some rows and some columns in the experiment matrix are largely filled in; however, it is clearly not feasible to fill in the entire matrix in the near future. Thus it is of particular interest to fill the matrix using computational approaches. One example is to predict TF binding sites in a new cell line.
Several DAC members have strong expertise in this area. The Gerstein lab developed a method to predict TF binding sites based on the integration of histone modification data and TF motif information and applied it to the modENCODE data on worm9 and also in yeast62. First, a chromatin model is constructed to integrate different chromatin features (histone modifications, DNase hypersensitivity etc.) to infer the local accessibility of DNA regions (binding active regions). Then we search these regions for TF binding motifs to determine the binding sites of TFs. In this method, chromatin features provide non-TF-specific accessibility information in a tissue-specific manner, while motif information determines TF-specific bindings. When applied to ENCODE and modENCODE data, the method demonstrates substantial improvement of positively predicted binding sites.
The Liu lab recently discovered that chromatin dynamics coupled with TF motif discovery could be used to infer functional TF binding and gene expression changes66 by taking into account the characteristics of the TFs. For example, estrogen receptor binding sites already show DNase hypersensitivity prior to estrogen activation, and estrogen binding does not influence nucleosome positioning; in comparison, androgen receptor binding sites show little DNase hypersensitivity prior to androgen activation, and androgen binding is associated with nucleosome depletion at the binding sites. With more ENCODE data, we will systematically identify distinct chromatin dynamics relative to different TF binding, differentiate signatures between transcriptional activators versus repressors, and model signatures associated with slow versus fast transcriptional responses upon perturbation. We can also adopt and revise the Bayesian epistasis association mapping approach developed for GWAS analysis to infer transcriptional regulatory modules from chromatin dynamics and explain transcriptome changes.
Building upon the expertise in dynamic Bayesian network (DBN) in the Noble lab in close collaboration with the Weng lab, we propose to develop computational methods to identify TF binding sites in a generalized way. We will focus in particular on the problem of predicting the results of a ChIP-Seq assay for binding of a sequence-specific transcription factor in formulating the problem as follows. Other ENCODE data types (e.g., chromatin accessibility measured by DNase-Seq) can be easily incorporated into our computational framework. In a particular cell line or tissue, we are given several generic chromatin architecture datasets—e.g., DNase accessibility plus a variety of informative histone modification ChIP-Seq assays—as well as the results of ChIP-Seq experiments for a set of “training” TFs. We are then asked to predict what would happen if we were to run a ChIP-Seq experiment for a given “test” TF, knowing only its binding affinity sequence motif, as determined from a ChIP-Seq assay in another cell line.
This problem is akin to what is known in the field of speech recognition as “speaker adaptation.” In that context, a system trained to produce a textual translation of a spoken utterance must learn to adapt to the peculiar characteristics of a new speaker. Similarly, our model will learn to adapt to the characteristics of a new TF, using methods developed in speech recognition. In particular, the model will predict the locations of in vivo binding events based upon features of the local chromatin architecture, while taking into account that some types of TF binding exhibit different local chromatin properties than others.[image: ]
We will solve this problem using a combined classifier and DBN. The classifier (a support vector machine or a deep neural network) will learn to predict the binding of a given TF based on the observed local chromatin profile. We will train one such classifier for each TF in the training set. The scores produced by these classifiers will then be combined in the context of a DBN such as the one shown in Figure 6. In this model, MotifScore is an observed variable measuring how well the sequence starting at the current position matches the known motif of the target TF represented by its PSSM. The hidden variables state and Class indicate (respectively) whether a position is inside a binding site of the target TF and the identity of the training TF whose chromatin pattern is the closest match to those of the current position. In addition, the model contains one virtual evidence track for each of the N training TFs. Thus, Vti is a positional virtual evidence variable that tells how well the chromatin pattern associated with the sequence starting at position i matches the patterns learned for the training TF t. Because every virtual evidence track corresponds to exactly one class value, we introduce a binary variable Iti, indicating the corresponding virtual evidence track of each class value. The conditional probability of this indicator variable, Pr[Iti = 1|classi = c], equals 1 only if c = t, and is 0 otherwise. As mentioned above, the virtual evidence, Pr[Vti = 1|Iti], is produced by the TF-specific classifier. Finally, the observed binary variable missing is used as a switching parent of the virtual evidence nodes to handle positions where the chromatin profile contains missing data.
The accuracy of this predictive model can be validated in a prospective fashion within the context of ENCODE, because the Consortium is constantly producing new data. Accordingly, we will make predictions for experiments that are currently in the pipeline, and directly measure the accuracy of our predictions once the data become available.
In addition to providing a valuable resource for TFs that have not yet been fully characterized experimentally and shedding light on the relationship between local chromatin architecture and TF binding, this project will enable us to prioritize future experiments. By investigating the dependence of prediction accuracy upon properties of the cell line, available local chromatin data, and properties of the TF itself, we will be able to predict which entries in the 2D experimental matrix can be easily imputed and which entries will likely provide the most value in training future imputation models.
3.5. Data integration for inferring transcriptional and post-transcriptional networks. TF/miRNA targets: Given a high-quality annotation of enhancers, promoters, insulators, protein-coding genes (including all transcription factors, TFs), microRNAs, and other non-coding RNAs, we will work to piece together regulatory networks based on condition-specific TF binding, conserved TF motif instances in active promoter and enhancer regions, and conserved miRNA motif instances in 3’UTRs. The Kellis lab previously showed that comparative genomics of the 12 Drosophila genomes enables the high-accuracy definition of regulator targets, and that combining comparative genomics with condition-specific TF binding led to a further increase in signal67.
Binding vs. regulation: We will use condition-specific changes in gene expression levels of TFs, miRNAs, and their targets to distinguish ‘biochemical’ binding from ‘biological’ transcriptional regulation. The Kellis lab previously showed that bound motifs associated with expression changes are under stronger selective pressure across related species, and show stronger functional enrichments67. This suggests that we can use positive or negative expression changes to further annotate our inferred transcriptional networks with activation, repression, or simply binding edges, when no effect is detectable. We have further characterized the chromatin and sequence context of each of these three classes of edges, to search for predictive features of each class that could lead to new insights on the logic of gene regulation68.
Associating enhancers with target genes: The logic by which enhancers are linked to promoters of their target genes is still unclear. We will evaluate the role of insulator regions, spatial proximity, chromatin marks, binding of complementary or synergistic TFs, motif content, and association with general and specific TFs in determining enhancer-promoter specificity. The Kellis lab uses co-expression of regulators and their targets to tentatively assign enhancers to promoters, and search for additional features supporting these assignments68. The Gerstein lab has used ENCODE ChIP-Seq data to identify enhancers and connect them to target transcripts69. Using TF binding regions as the gold standard, a statistical model was trained on chromatin features (e.g., histone modifications from ChIP-Seq experiments, DNase I hypersensitivity assay) to discriminate TF-binding regions from non-TF-binding regions. TF-binding regions that are distal from TSSs, evolutionarily conserved, and exhibit specific enhancer histone modification signals (e.g., H3K4me1) are deemed enhancers. They can then be connected to transcripts based on statistically significant correlation of histone mark intensity and transcript expression values across cell lines. A fraction of these predicted enhancers were validated by in vivo transgenic assays69. We can apply these methods to ChIP-Seq data in more tissues/cell-lines in human and in more organisms (mouse, worm, and fly). More ENCODE experiments in tissues/cell lines will help to increase the statistical power to pair enhancers and genes, which will facilitate better understanding on distal regulation of gene expression. Enhancers and other distal regulatory regions also drive evolution. We will apply the methods to more organisms to yield a valuable resource for cross-species dynamics comparison.
miRNA regulation: A complete view of mixed TF/miRNA pre- and post-transcriptional networks requires accurate promoter and enhancer annotation for miRNA precursors, and accurate tissue- and stage-specific 3’UTRs for all miRNA target genes. Kellis led the fly modENCODE integrative paper and generated TF/miRNA regulatory networks60 (Figure 7) and we will perform similar analysis on human and mouse ENCODE data. We will use chromatin marks to annotate miRNA promoters based on genomic proximity and tissue-correlated activity. We will use the longest 3’UTR from updated gene models combined with multi-species sequence alignments based on the most up-to-date genome alignments with all sequenced species to identify evolutionarily conserved 3’UTR target sites. We will search for and re-evaluate previously-discovered 3’UTR motifs that were not associated with miRNAs to determine whether we can now identify putative trans-acting agents that may mediate regulation through these sites. We will also evaluate the potential for other non-coding genes to serve as targets for miRNA regulation. Lastly, we will study the effect of alternative polyadenylation sites on miRNA regulatory networks. We have identified many such sites within protein-coding transcripts resulting in loss of key functional miRNA binding sites, which may play key roles in altering regulatory relationships during development and proliferation. We will look for anti-correlations between miR NAs and their predicted targets, and assess whether transcripts with short vs. long 3’UTR isoforms which exclude or include conserved miRNA binding sites, differ in expression in the presence of cognate miRNAs. This may have major implications for human gene regulation as well, as the Burge and Sharp labs reported that proliferating cells, and by extension cancer cells, preferentially shift towards shorter transcript isoforms that escape miRNA regulation70.[image: ]
Aim 4: Facilitate and carry out exploratory data analyses across elements.
Rationale: One important aspect of the systematic genome-wide experimental assays of ENCODE is the ability to discover novel insights and correlations between elements that were previously thought to be disconnected, and to pursue data-driven research which can help complement traditional hypothesis-driven investigations by formulating new hypotheses and pursuing new and perhaps unexpected findings.
Methods:  To enable such data-driven exploratory analyses, we will apply dynamic Bayesian networks and  several state-of-the-art dimensionality-reduction techniques to genome-wide coordinates and signals resulting from ENCODE experiments (Aim 4.1), apply bi-clustering techniques to discover co-expressed, co-bound, and co-regulated gene modules (Aim 4.2), and study the structure and dynamics of inferred regulatory networks (Aim 4.3).
4.1. Dynamic Bayesian Networks and dimensionality reduction techniques for signal integration. We propose using various appropriate techniques to extract higher-level information from ENCODE data, given its size and complexity.
Discovery and characterization of chromatin states: During the pilot phase of ENCODE, the Noble lab combined a hidden Markov model (HMM) with wavelet smoothing to produce a two-label segmentation of the ENCODE pilot regions into “active” and “repressed” regions2,71. A variety of segmentation models have been described subsequently, employing HMMs with flat72,73 or hierarchical structure74, or generalizing the HMM to a hierarchical change-point model75. During the scale-up phase of ENCODE, the Kellis and Noble labs independently developed segmentation algorithms, ChromHMM76 and Segway77, and applied them to human ENCODE data78 and fly modENCODE data60 (Figure 8). The model summarized information from all one million combinations of chromatin tracks (n=2^20) into a small number of states (n=25), corresponding to distinct enhancer, promoter, and transcribed states, without any prior knowledge of annotation information. These states show distinct functional enrichments, confirming their distinct biological functions. They also provide a chromatin context for understanding binding of sequence-specific factors, motif enrichments, and other diverse functional elements, such as origins of replication or insulator regions. The two methods employ closely related probabilistic models that offer multiple important advantages, including efficient algorithms for carrying out inference and a modeling paradigm in which the model’s internal variables have well-defined semantics. The two approaches are complementary: ChromHMM aims for a birds-eye view of the data, opting to collapse each 200 bp of data to a single Boolean value, whereas Segway provides a more detailed view, operating on the data at its native 1 bp resolution.
For the next phase of ENCODE, we propose to improve upon and extend these methods in three significant ways. Ultimately, these unsupervised and semi-supervised learning methods will provide a scalable way to integrate all of the ENCODE data, along with human annotations, to provide a joint annotation that summarizes, at multiple scales, our knowledge of the functional landscape of the human genome in various cell and tissue types.[image: ]
1. Large-scale behavior. In addition to identifying relatively small functional elements such as exons, promoters, enhancers, etc., we will develop methods to automatically characterize structures that are >10 kbp in size. Such structures might correspond, for example, to chromatin domains that have important functional impacts on gene expression. To capture such phenomena, we will explore a three-pronged approach. First, we will apply a combination of interpolation and wavelet smoothing to pre-process the ENCODE data to a desired resolution, leading to segments of a desired size. This approach was used successfully in the pilot phase of ENCODE2,71,79. Second, we will investigate the use of hard and soft constraints to automatically adjust the size of our inferred segments. These methods are already implemented within the Segway annotation algorithm, but have not yet been extensively tested. Third, we will implement a hierarchical model, in which the annotation consists of two layers of labels: small sublabels enclosed within larger superlabels. The emission distributions in the model will mimic the model topology, in the sense that the parameters of the sublabel emissions will themselves be random variables following a probability distribution defined at the superlabel level. A similar hierarchical model has been previously employed to model genome-scale data75. We will validate all three of our approaches to modeling large-scale behavior by investigating the relationship between the domains identified by our algorithms to domains identified on the basis of the genome sequence or from Hi-C data80, as well as by comparison with known boundary elements81.
2. Soft supervision. One of the major outputs of ENCODE is the high quality GENCODE annotation, but this information is not currently exploited by our automated annotation engines. We already have the ability to perform semi-supervised learning, in which examples of a known type of functional element are constrained to be assigned a specified label; however, such an approach requires cell type-specific annotations of elements. We will therefore implement a “soft” semi-supervised learning scheme in which a given set of genomic loci are encouraged, but not required, to receive a specified label. Such an approach can be easily implemented in a probability model using a method known as “virtual evidence”82,83. Using this approach, for example, we might tell our annotation system about the existence of known TSSs without specifying whether any particular TSS is active in a given cell line or not.
3. Improved learning. A probability model that attempts to summarize dozens or even hundreds of genome-wide datasets necessarily contains a large number of trainable parameters. Consequently, optimization of these parameters may be subject to local optima, and in the presence of very high-dimensional data, may occur with respect to unrealistically complex optimization surfaces. Measure propagation is a recently described algorithm for graph-based semi-supervised learning that propagates distributions over a graph84,85. It uses an objective function that consists of a sum of a number of KL-divergence terms. This objective is convex and is easily optimizable using a message-passing algorithm. We propose to interleave this measure propagation algorithm with our existing, expectation-maximization (EM) approach. In the measure propagation step, the graph will be formed from a similarity measure defined over loci in the genome, where the similarity may be based on a variety of types of biological knowledge or hypotheses. The output of the measure propagation would then be used as soft labels during the next round of EM training. This approach has the potential to vastly improve the learning power of our system by simultaneously integrating local context (via the Markov chain embedded in segmentation model) and global structure of the data (via the graph used in measure propagation). This computation is feasible: measure propagation scales to graphs of size 120 million nodes86. We will directly measure the improved performance by cross-validated testing of our ability to identify known functional elements.
Genome-wide aggregation, Biplot, and PCA: More generally, we will integrate regulatory datasets over a list of genomic anchors using the ACT tool87. These can be either single base pair locations (point anchors) or genomic segments (segment anchors) and are possibly stranded. Examples of point anchors include the 5’-ends of genes, precise TF binding sites, the centers of DNA hypersensitive sites, and splicing sites. Examples of segment anchors include genes and exons. Theoretically any set of defined genomic positions can be used as anchors, so long as a researcher is interested in some genomic signal occurring in a position-specific way with respect to the set. We can then study correlations between these genome-wide coordinates either as binary vectors (on/off values after applying a tunable cutoff) or as real-valued vectors that maintain intensity values. We will also use biplots, which make use of Principal Component Analysis (PCA) to plot both features (experiments/factors) and instances (gene regions) in the same plot, to aid in recognizing previously unseen correlations, such as the relationships between transcription factors and genes13,88.  Such techniques have already produced useful findings in the analysis of the ENCODE data. Besides PCA, we will also explore non-linear dimensionality reduction methods such as kernel PCA, ISOMAP, and autoencoders based on shallow or deep neural networks to embed instances into low-dimensional (for e.g., two- or three-dimensional) space to visualize relationships between instances directly.
In addition to reducing dimensionality of a dataset, principal component analysis is very useful for understanding the factors driving total variance and we have previously applied this technique to modENCODE data. Using tiling array data from six matched tissue samples taken from two C. elegans developmental stages (mixed embryo and L2), we found that the first principal component responsible for 50% of the total variance in the dataset separated the tissue samples by developmental stage9. Biplots can be used in a similar manner in that they show the relationships between observations along the two highest components of variance, but are more descriptive because the relationships between the variables are also represented as vectors from the origin on the same plot13. The same techniques can be applied to other types of data and summary statistics including RNA-Seq expression values, total signal level in a region, etc.
Dimensionality reduction methods can also be used for data compression. In the ENCODE project, there are over 1,000 signal tracks generated from the read depth signals in the ChIP-Seq experiments for probing binding sites of transcription factors and histone modifications. These signal tracks are valuable for quantifying binding and modification levels at nucleotide resolution. However, a very large amount of information generated as signal tracks is usually under-utilized since most of the analysis only concentrates on a small subset of the genome, e.g., the peak regions and the promoters. We are working on efficient genome-wide representations of the signal tracks by compressing the tracks. A good compression scheme reveals redundancy both within and between the signal tracks. In this way, the compressed signal is the minimum-description-length representation of all the signal tracks. We will use both linear and non-linear dimensionality reduction methods for hashing and storing signals of genomic anchors on the redundant signal tracks, and we will explore HMMs and general DBNs combined with dimensionality reduction methods to perform signal track alignment to reduce both within-track and between-track signal redundancy.  
4.2. Biclustering: Identification of co-regulated modules and regulatory programs. Biological systems are inherently modular, with different groups of gene products functioning together in complexes, pathways, and co-regulated groups to achieve specific biological outcomes in different spatiotemporal cellular contexts.  To computationally reveal biologically significant modules, we will employ scalable multi-dimensional clustering algorithms to reveal groups of genes that are coordinately regulated in their chromatin, binding, expression, replication, and modification patterns, and in their motif and sequence content. We will employ general clustering methodologies such as bi-clustering, hierarchical clustering, k-means and fuzzy k-means clustering,
(bi-)spectral clustering, or exemplar-based affinity propagation89, and also specialized module-discovery procedures that search for biologically-meaningful relationships between groups of genes based on their motif content, co-expression patterns, and network connectivity90. Such techniques can be useful for exploratory data mining to tease out functional associations between known genes, reveal candidate functions for novel genes based on related genes with known functions, and can also serve as a first stage in the construction of network models that aim to model regulatory relationships91,92.
4.3. Biological network structure and dynamics. In addition to the identification of gene modules and their co-regulation, described in Aim 3.5, we will study the structure and dynamics of inferred regulatory networks and relate these to other cellular networks93. Our core networks will primarily consist of mixed TF/miRNA director regulatory networks discovered in Aim 3.5, but will also be populated by undirected networks, constructed using information regarding protein interaction and biological-relatedness, such as those utilized or discovered in Aim 3.2 (http://papers.gersteinlab.org/papers/mirnet). Figure 9 illustrates the TF-miRNA regulatory network generated with ENCODE data8. Extending our previous work, we will use graph algorithms to discover clusters of highly connected genes within these networks, network motif algorithms to discover recurrent patterns of connectivity, and specifically search for recurrent regulatory feedback and feed-forward subgraphs94-96. We will also look at the degree of rewiring between networks97. 
We will create and analyze a meta-network composed of the TF regulatory network and protein-protein interactions integrated with the miRNA data. To integrate the miRNA data, the TargetScan software will be used to obtain the miRNA-TF edges in this network98 by assessing complementarity of the miRNA seed region coupled with conservation information. This expanded, integrated network will be analysed using the tools and methodologies described below, allowing us to look for new types of motifs, regulatory patterns, and relationships that would likely remain undetected in individual analyses of the separate networks.
The networks will be analyzed using several methods to calculate key statistics. One such method is 'tYNA'99, a web system developed to compare and mine multiple networks in order to identify cliques and motifs, as well as calculating statistics on a network. Statistics such as ‘eccentricity' and ‘betweeness' can help explain the connectivity and behavior of nodes in a network100. Eccentricity is defined as the maximum shortest path from a node to any other node in the network; this describes how a node interacts with all the other nodes it is connected to, i.e., a node with a small eccentricity is tightly connected to all nodes that it interacts with- including nodes to which it is not directly connected. Betweeness is defined as the number of shortest paths in the network that pass through a given node; this is a measure of a node’s centrality and is related to how involved a node is the communications between all other nodes in a network. These and other statistics can help in the definition and understanding of a particular network.
Connectivity statistics, in particular the difference between out- (O) and in- (I) degree, elucidate the direction of information flow in the network and can reveal hierarchical organization. In previous work, we employed a simple simulated annealing procedure to arrange TFs into discrete levels that maximize the number of edges propagating down from higher to lower levels. To complement these discrete level assignments we defined a continuous parameter h=(O-I)/(O+I), which can be interpreted as the height of a TF within the hierarchical structure. We plan to apply the same procedures to the transcriptional regulatory network in human, mouse, fly, and worm. Of particular interest is a comparison of the distribution of TFs between the different levels to determine, for example, the extent to which middle-level regulator nodes are conserved across different networks. Furthermore, it is important to evaluate the robustness of our results, as there exist several methods of constructing network hierarchies (e.g. breadth-first search) and we intend to assess the impact of various network construction methods on these results.[image: ]
We have previously exploited the model of hierarchical organization by examining the degree of collaboration among different regulators101-103. This is essentially the ratio of the number of genes co-regulated by two regulators (from the same or different levels) to the union of their target genes summed over all such pairs of regulators from the two levels102,103. We found that in E. coli, yeast, and human the highest degree of collaboration is between regulators from the middle level, which is analogous to a corporate setting in which middle managers play an important organizational role. We plan to investigate the same arrangement using more comprehensive co-regulatory networks from human, mouse, worm, and fly. In addition to co-regulation we also studied the overlap between modules in terms of their position within the hierarchy. We defined a module as all accessible nodes downstream of a top regulator and investigated the overlap (share of regulators) between modules. We found that the modules in E. coli are more independent compared to those within the call-graph of the Linux kernel104. We intend to examine the module-overlap in human, mouse, worm and fly, and other eukaryotes compared to our previous observations in E. coli. We speculate that these networks of more complex eukaryotes will be more similar to the Linux call-graph.
In addition to the global features of the regulatory hierarchy we plan to study the networks from the perspective of their constituent building blocks, which are small connectivity patterns that carry out canonical functions and are referred to as network motifs. In previous work, we identified various enriched motifs including the feed-forward loops (FFLs) in the human regulatory network8 and we aim to apply the same analysis procedures for networks generated with ENCODE data and further compare the enrichment profiles. The motif analyses will allow a characterization of key regulatory mechanisms in each species and the further comparison between species will enable us to observe how these mechanisms evolve. 
Aim 5: Facilitate and carry out comparative analyses across human, mouse, fly, and worm.
Rationale: ENCODE has invested tremendous efforts in the studies of human, mouse, fly, and worm, with the ultimate purpose to further our understanding of biology, and also transfer the biological knowledge gained to human biology and health. An essential premise for such knowledge transfer is the accurate assignment of genes and regions of common descent and corresponding function (orthologs), and the ability to discover similarities and differences based on these orthologs assignments.
Methods: We will work closely with the AWG, the DCC, and the phylogenomics community to develop an orthologs resource between human, mouse, fly, and worm (Aim 5.1), and we will undertake a comparison first between human and mouse (Aim 5.2), and then reach out to fly and worm to study deeply conserved biological mechanisms between vertebrates and invertebrates, as well as their differences (Aim 5.3). 
5.1. Creating an ortholog resource between human, mouse, fly, and worm. Genome comparisons and ortholog finding has been an area of very active research, and several tens of ortholog resources have been developed in the past decade. We have already established close contact with the groups that have developed three of the most frequently used such resources, Inparanoid, OrthoMCL and TreeFam, which all include human, mouse, fly, and worm. Our initial analysis revealed that ortholog resources showed significant incongruence, and less than 20% of called orthologs are common in all three resources. Possible reasons for the discrepancy are methodological differences between best-bidirectional-hits and phylogeny methods, each of which has its advantages and shortcomings. Based on this set, we will work with the community to establish a gold standard set of functional orthologs based on biological function, evaluate the different methodologies, and propose changes to them. Given the difficulty of achieving high quality and high coverage in ortholog mapping, we will provide a smaller high-confidence ortholog set that includes some of the most highly studied genes and perhaps benefits of manual curation by TreeFam, and a larger but lower-confidence set to increase our coverage for studies that need to be genome-wide. 
Using protein domains to identify and evaluate orthologs: In addition to phylogenetic approaches, we will use protein domain annotations to help map orthologous proteins and evaluate ortholog assignments by other methods. We will use the Proteome Folding Pipeline105 to sequentially analyze primary, secondary, and tertiary structures of protein sequences encoded globally in these four genomes. The analysis of potential 3D structures can allow us to recognize very distant homologs, as structural relationships can often be identified well into the “twilight zone” of sequence identity (as low as ~15-25%). Protein domains and structure will also provide testable functional hypotheses at the molecular level for directed experimental studies. We will use these results to help evaluate ortholog assignments, and compare the domain content of orthologous proteins, especially with regard to functional differences between the species.
5.2. Comparison between human and mouse. A unique opportunity with ENCODE comes from the parallel experiments in human and mouse. We will study the relative role of pre- and post-transcriptional regulation in the two organisms, the interplay between orthologous transcription factors and orthologous chromatin marks, and the expression patterns, onset stages, targets, and target expression for orthologous factors and miRNAs. We will also study patterns of alternative splicing and alternative polyadenylation for orthologous genes in corresponding stages, especially with respect to how they affect miRNA targeting and functional protein domains. More generally, we will compare the transcription factor and miRNA inventory of the two species, the relative distributions of target gene counts for orthologous regulators, and similarly the relative distribution and diversity of regulators bound for orthologous gene targets. We will also study whether discovered modules of biologically related genes in Aim 3.5 correspond to orthologous modules across species and for significantly conserved modules we will study the properties of gained and lost components. Using network properties discovered in Aim 4.3 we will compare the two species in terms of determining if similar network motifs are discovered in the regulatory networks of the two species, and the types of feedback loops that are found in mixed TF/miRNA regulatory networks. 
5.3. Comparisons between human, mouse, and modENCODE. For both fly and worm, the modENCODE project generated data on developmental time-course datasets of gene expression and splicing, histone modifications, chromatin state, nucleosome positioning, transcription factor binding, and miRNA expression and targeting. To enable a developmental time-course comparison, efforts were taken to ensure that the same sets of proteins were surveyed in corresponding stages of development in the two species. The DAC will test and compare the general properties and principles emerging from the human and mouse datasets and the fly and worm datasets. We would expect general regulatory and epigenetic principles to be conserved, while the regulation and precise expression patterns of individual genes may diverge more rapidly. However, our initial studies suggest that our assumptions may be too simplistic; epigenetic marks may differ in their significance across species and the expression of individual miRNAs can be conserved across very large distances, even though expression patterns are generally thought to be rapidly evolving. We will perform cross-species comparisons of the degree to which gene expression can be predicted from histone marks and TF-binding.
Aim 6: Facilitate the integration with GWAS community and disease datasets.
A major vision for the ENCODE project is to facilitate the ultimate goal of the Human Genome Project, namely interpreting the molecular basis of human disease. This is an extraordinarily challenging endeavor that will require the involvement of the entire genomics and medical communities, but the ENCODE Project provides many of the foundational tools required to understand the functional elements disrupted by disease-associated variants, providing insight into how sequence variation between individuals leads to functional variation. To accomplish these goals, we will first study variation between individuals, assessed by RNA-Seq and ChIP-Seq, to understand which functional differences between alleles of the same individual and genotypes of different individuals can be attributed to sequence differences between them. We will also seek to integrate ENCODE datasets with GWAS by working closely with scientists specializing in a range of diseases and also members of related consortia such as the GENEVA Consortium.
6.1. Associating sequence variation with functional differences. The sequencing-based nature of ENCODE assays enables the inference of genotype-specific activity across difference cell lines and between alleles of the same cell line. For example the Gerstein, Weng, and Kellis labs have also demonstrated that allele-specific activity can be measured even within a single cell type when the maternal and paternal haplotypes are known6. For individual NA12878 of the GM12878 cell line, both parents were deeply sequenced as part of the 1000 Genomes Project, resulting in 1,409,992 phased heterozygous SNPs in the NA12878 genome. This phasing information provided the power to detect allele-specific activity, aggregated over larger regions where sufficient numbers of heterozygous SNPs enable robust paternal vs. maternal activity calls, resulting in allele-specific activity calls for several hundred loci where allele-specific signals were supported by multiple assays. We found strong genome-wide agreement in the allele of predicted activity, with active marks showing strong correlations to each other and anti-correlations to repressive marks such as H3K27me3. We also correlated the regions showing allele-specific chromatin marks with allele-specific TF binding information and allele-specific RNA-Seq expression information, enabling us to make regulatory predictions. In some cases, we could pinpoint specific cis-acting regulatory motifs that were disrupted in one of the two haplotypes and no longer bound by the corresponding TF, establishing a potential causal relationship with the observed allele-specific activity.
We will carry out such genotype-specific and allele-specific analysis of gene expression using RNA-Seq, chromatin state using ChIP-Seq, and DNA methylation and accessibility using methyl-Seq and DNase-Seq. We will use genotype-linked activity between individuals to study both cis-acting and trans-acting effects, and allele-specific analysis, where the trans-acting factors are by definition identical, to isolate the role of sequence differences in cis-acting elements.
6.2. Interpreting disease-associated loci using ENCODE datasets. A large number of genome-wide association studies have helped detect common, low penetrance variation resulting in numerous success stories for multifactorial disease, validating gene findings in age-related macular degeneration, cardiac repolarization and Type I diabetes108. Higher-density genotyping arrays led to increased discovery power and numerous additional results in cancers, diabetes, and heart disease, and many autoimmune and inflammatory diseases. More recently, computational imputation techniques and meta-analysis of previous studies further increased power beyond individual studies, including Dr. Daly’s pioneering meta-analysis of Crohn’s disease which has become standard practice. This has resulted in a dramatic increase in productivity from GWAS experiments as a whole and nearly 1500 conclusive associations to complex medical phenotypes have to date been identified using GWAS approaches. Dr. Daly himself has led or participated in more than 40 published GWAS studies across a range of immune-mediated, neuropsychiatric, and metabolic disease phenotypes.
Given these advances, the challenge facing the field of human genetics is no longer locus discovery, but the interpretation of the vast majority of statistically robust associations that do not have a clear molecular function, which can be leveraged to gain insight into disease biology. While not all coding variation is contained on GWAS arrays, deep sequence data from the 1000 Genomes Project and imputation techniques allows for straightforward evaluation via conditional logistic regression of whether protein-coding variation in linkage disequilibrium with GWAS hits could possibly explain regional association signals. Consistently across the largest GWAS analyses it is a clear minority of association signals that have an obviously functional variant driving the signal. For example, GWAS has been used to identify 180 variants associated to adult stature and in only 24 of these is the associated variant correlated with a non-synonymous or other protein altering variant. By contrast, nearly twice as many (47) were correlated with expression of a nearby gene in cis, supporting the intuition that the majority of these non-coding associations play a role in gene regulation109.
Our group is ideally situated to integrate ENCODE functional annotation with emerging genetics of disease.  Dr. Daly chairs the International IBD Genetics Consortium, leads the Psychiatric GWAS Consortium analysis core, and the most up-to-date GWAS data and curated lists of confirmed and sub-genomewide significant loci are constantly undergoing analysis in the Daly lab. The Gerstein lab has obtained extensive variant data for the cancers catalogued in the Database of Genomes and Phenotypes (dbGaP) and The Cancer Genome Atlas (TCGA). We will compute the overlaps of this variant data with various types of annotated ENCODE regions including genes, pseudogenes, ncRNA, ncRNA exons, and the TF binding sites of the following TFs: POL 2, CTCF, p300, cMyc, and MAX. These results will guide our future understanding of genome-level disruptions caused by cancer. The Kellis lab has previously demonstrated the power of chromatin state annotations for interpreting disease-associated variants68 (Figure 10) and have recently published a tool that can automate this process for any GWAS110. In addition, Dr. Daly has developed and applied new methods for interpreting disease variants using functional datasets111,112.[image: ]
We will systematically extend, integrate, and apply these methods in a rigorous statistical framework for evaluating whether GWAS results are unusually coincident with polymorphisms interrupting specific functional genomic domains. The analysis will take a set of GWAS polymorphisms (polymorphisms that are contained in the credible set of variants that can explain a significant association) and a set of functional annotations and will calculate the likelihood of chance co-occurrence of polymorphisms within these regions. Because a number of potential biases exist in the association data (e.g., SNP arrays offer slightly better coverage of genic regions, SNPs in LD with many other SNPs are more likely to be truly associated to phenotype) and may also exist in the functional annotations (proximity to genes, relationship to features such as GC% that are correlated with polymorphism rate), these analyses hinge on defining an accurate permutation strategy accommodating the biases in each dataset. We will apply the genome structural correction framework (Aim 2.2) for these statistical analyses.
For each functional annotation, we will define and test both simulation (generation of random annotation segments matched to relevant correlates) and permutation strategies for functional annotation segments in order to assess significance of co-occurrence with GWAS hits. We will make available a public web utility (similar to DAPPLE111, GRAIL113) that will enable users to select from publicly available GWAS data and annotations as well as input their own private GWAS data and annotations. The utility will enable the user to evaluate the significance of these relationships and, for significant individual site-GWAS hit overlap, report an ordered list and individual variant posterior probability for specific polymorphisms that interrupt functional domains and are causally associated to phenotype.  As the Daly lab has recently released a new tool (RICOPILI: http://www.broadinstitute.org/mpg/ricopili/) for browsing the latest public and private GWAS results, these new analyses can be readily integrated and made immediately available to a wide population of human genetics investigators.
6.3. Suggesting biological processes for complex diseases based on functional enrichments in ENCODE datasets. Beyond single-locus analysis (where that locus already reaches genome-wide significance independent of any functional information), we expect to gain valuable insight into the specific functions repeatedly disrupted in different individual and across different loci in the genome (where multiple loci overlap the same types of functions, suggesting an association between that type of function and the disease), as disease-associated loci frequently contain non-random sets of loci involved in the same specific biological pathways and processes. For example, Dr. Daly’s group has spearheaded integrative analyses demonstrating that GWAS hits harbor genes that are closely related in terms of direct protein-protein interactions, common descriptive terms in published literature, and co-occurrence in curated pathway data111,112,114. More than simply a statistical observation, the networks created via these approaches were validated as functionally relevant to disease in two independent fashions: the genes in the network were independently confirmed to be unusually co-expressed in the same tissue types and genes from other genomic regions bound to the network were strongly enriched for association later confirmed in an expanded meta-analysis111,115,116. Starting with only the list of significant SNPs from GWAS, genes in associated regions showed highly significant co-expression in specific cell-types, suggesting subtle changes in numerous loci involved in the same pathway were jointly leading to multiple weak disease associations that could be elucidated based on their functional co-enrichments. 
We will thus use ENCODE information to provide critical insights for unlocking the molecular function of disease-relevant GWAS hits, by focusing on many highly-ranked SNPs, even when these are not individually significant. As GWAS hits clearly point to a major role for regulatory variation in disease biology, the ENCODE datasets provide a unique opportunity to integrate disease associated variation and human polymorphism data more generally, with the full range of functional annotations provided by the ENCODE study groups. In particular, we will search for genome-wide biases in the loci associated with the most strongly associated SNPs, compared to genes expressed in specific cell types, showing specific chromatin marks, specific chromatin states, enrichment in cell-type specific DNAse sites or cell type specific methylation sites, as well as subsets of these that are involved in specific gene ontology functional category. We expect that these unbiased genome-wide datasets will provide many new insights into the molecular pathways and mechanisms involved in complex diseases.
Aim 7. To facilitate writing Consortium papers and assist evaluating ENCODE data
One of the main roles of the DAC is to facilitate the analysis and writing of integrative Consortium papers in addition to other Consortium reports such as data and analysis standards documents. It is important to emphasize that the role is to facilitate this effort by performing various integrative analyses and providing a technological infrastructure. The leadership of these roles naturally springs from the leadership of the AWG and involves the interplay of many different scientists. The DAC is at the service of this leadership. Another task of DAC is to assist the NHGRI in evaluating the quality and utility of ENCODE datasets and prioritizing data production.
7.1. Help coordinate integrative Consortium papers and standards papers. A key end product of a genomics consortium, such as ENCODE, is integrative manuscripts that bring together the data produced by many different production labs and then attempt to reach meaningful biological conclusions from them. In writing these papers the data from many techniques and approaches must be combined in a standardized fashion in order to maximize their utility. The readers of the papers should also be able to see how large-scale genomic datasets have biological and medical utility. Thus, it is essential for the papers to provide a clear linkage between the prose describing the results and the actual data and analyses done. Moreover, clearly connecting the genomics data in a particular freeze to the literature has many scholarly advantages in terms of time stamping, attribution, and future citation117,118.
Aims 2-6 discussed the necessary calculations to enable these integrative analysis papers, and here we focus on the infrastructure that the DAC will provide to enable these papers to be written. There are two aspects of this infrastructure: social and technological. In terms of social infrastructure, the DAC will organize and moderate phone calls as well as setting up and moderating meetings targeting particular analysis papers. For the conference calls and meetings we will handle creation of precise agendas and the recording of detailed minutes and action items. 
There are a number of things to bear in mind regarding setting up a technological infrastructure for enabling collaborative papers. First of all, there is a vast and rapidly evolving industry in developing social media and computational infrastructure for collaboration, including companies such as Google, Facebook, and Twitter. In this regard, the DAC will provide a gateway for the entire Consortium to make use of such computational tools and services. Second, many genomics consortia papers are extremely complex from the perspective of paper writing, often involving many hundreds of authors and tens if not hundreds of main figures and tables as well as supplementary exhibits. Simply keeping track of all figures and supplements is a non-trivial task. 
The DAC will facilitate the use of appropriate technology to help with this. Currently most of the genomics papers written by the ENCODE Consortium make use of mailing lists and conference calls for a lot of these interactions. To handle manuscript preparation addition they make use of resources such as Wikis, Google Docs, and reference managers such as Endnote, Bookends, and Papers. We will continue to use these types of infrastructures, and the DAC will provide expertise and resources in these areas for future Consortium publications. However we will also be aware of newly evolving tools that are currently being developed, including improved solutions for tracking references and figures (e.g., Mendeley and BibTeX). Also, online file sharing services such as Dropbox and SugarSync can be utilized for distribution of files and figures; we also intend to investigate the use of fully-fledged open-source content management systems such as Drupal or Joomla. It is important to keep in mind that while a lot of these technologies might be appealing from a purely computational perspective, they might not be of as much use practically when employed by the various members of the Consortium, and thus we will have to keep track of their usefulness in terms of actual paper writing.
The writing of Consortium standards documents that focus on protocols and methodologies for data analyses and experimental procedures will proceed in a similar way as the writing of integrative Consortium papers. One difference, however, is that the role of the DAC for creating standards documents is sometimes to produce standardized datasets and standardized analyses that illustrate standard practices and provide a better third-party working-knowledge of the standard beyond that from individual production laboratories.
7.2. Connecting Consortium papers to the data. A third aspect of the DAC in writing large Consortium papers and standards documents is carefully connecting the underlying data to the prose. One can conceptualize a big genomics "roll out" (publishing a number of genomics papers commenting on a single underlying data freeze) as a hierarchical information structure, designed to present the Consortium's genomic data and results in an organized fashion. The "main" integrative paper sits at the top, synthesizing everything broadly, which provides pointers to other high-profile companion papers and further, more detailed companions focusing on specific sub-analyses. Each of these individual papers, in turn, often refers to a huge amount of supplementary calculations and datasets. Some of these are in formal paper supplements while others are on project Web sites. Moreover, the datasets most referred to in the papers are usually not the actual raw data but subsidiary analysis products that summarize the data (e.g., peak call lists, transcript structures, and segmentations). At the bottom of the hierarchy is the actual underlying raw data (usually sequencing reads), stored in central repositories (such as the short-read archive). Given that the raw data files and, to some degree the analysis summaries, are usually huge and unwieldy, it makes most sense to approach the information in a particular freeze from the top down, starting with the papers (assuming everything is linked together correctly). In the future one may see some machine readable, “structured” versions of the text of the paper (i.e., the structured digital abstract and structured digital table119,120, which allow authors to make this hierarchy and its linkages even more explicit. 
There is an even more detailed micro-structure to the hierarchy: All of the data tables and figures in each paper rely on a considerable chain of small specific analysis results as well as programming scripts. These, in turn, connect to specific versions of the overall analysis summaries put out on the project website. One of the roles of genome analysts is to link these all together and make sure that it is clear which version of a particular analysis result goes with which version of the underlying data and how these in turn link with a specific paper figure. This can often be done through making available the small subsidiary analysis files underlying each exhibit (such as networks connecting particular genomic entities or Excel files or R data frames) in an organized fashion. (See modencode.org/publications/integrative_worm_2010 and modencode.org/publications/integrative_fly_2010 for examples.) Often in the rush to publish a large manuscript these smaller files are neglected but they are essential for truly reproducible research121. The DAC will strive to make all of these available through the DAC and DCC. It will also push out larger analysis product datasets such as peak calls and segmentations regularly as part of data freezes and we will version these along with the underlying data from the production groups. 
7.3. Provide assessment and recommendations on data usefulness. To guide the Consortium in terms of prioritizing particular datasets for usage, we keep track of which datasets are used for each of the analyses (figures) in every Consortium paper. We will work closely with other members of the AWG to define metrics for evaluating the uniqueness or redundancy of different types of datasets. For analyses whose goal is the definition of a particular type of element, we will use the predictive value of each data type as a way to prioritize datasets and assays. For unsupervised learning analyses, we will use information theory metrics to evaluate the information content of each type of dataset per nucleotide, based on the reproducibility of the dataset, the resolution with which elements are defined for that data type, and the genomic coverage of that data type. We will also compare datasets to each other, to ask how predictable a given dataset is based on the combination of other datasets, and to evaluate and prioritize its added value in the context of the data generated by the entire Consortium. Intuitively, this is like determining if a particular analysis can potentially be reproduced without that dataset or if it is reproduced how inaccurate or how much it changes if that particular dataset is left out. This last type of calculation is particularly useful when one is thinking of repeating the same experiment, say a particular ChIP-Seq experiment, over many different cell lines. That is, one wonders how much incremental information one gets from each additional cell line. We will also study the saturation of coverage for ChIP-Seq and RNA-Seq datasets to provide recommendations on the sequencing depth that should be achieved for different types of chromatin features and different types of transcripts. 

TIMELINE
The DAC is ultimately responsive to the needs of the AWG, which includes the heads of all ENCODE production groups. The AWG and DAC will set priorities and timelines during their weekly interactions, based on data production and availability, based on new results, insights, and technologies, and the aims proposed here may be altered to better fit the analysis needs of the Consortium. 
Tentatively, we have established the following timeline involving two publication cycles during the four years of project: an initial production data freeze is planned by the end of Year 1.5, with coordinated pipelined analyses to be completed in two months, and an initial integrative analysis will begin soon after, focusing on Aims 2 and 3. We will plan an analysis group meeting by the end of Year 2, and we expect an initial analysis results freeze for this initial analysis to be completed by Year 2, and a manuscript to be completed and submitted by the end of 2014. 
We expect a second data freeze in Year 3.5, tentatively set for the end of 2015, with formatted dataset freeze set two months after, to launch a second analysis cycle for a joint paper summarizing findings of the ENCODE Project. Priorities will be on Aims 3-5, to be completed by 2016, and a second manuscript submitted by the end of the project.  
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PI LEADERSHIP PLAN
Leadership and reporting relationships. The ENCODE DAC will be led by the PI, Prof. Zhiping Weng; around 25% of her time will be spent on DAC/ENCODE issues. All major decisions, including hiring of personnel, budgeting, etc., will be made jointly by a three-member leadership committee consisting of Profs. Zhiping Weng, Mark Gerstein, and Manolis Kellis; each will be supported by a project manager, hired at the respective university. The remaining co-investigators (Daly, Guigo, Irizzary, Liu, and Noble) will report to the leadership committee. Finally, individual team members, including research scientists, postdocs, graduate and undergraduate students, will report to their respective co-investigators. The leadership committee as a whole will report to the AWG. This management structure is depicted in Figure 11.
The three project managers (supporting Profs. Weng, Gerstein and Kellis respectively) will be individuals with postdoctoral experience in bioinformatics coupled with good interpersonal skills, ideally with large-consortium experience. There are a number of excellent candidates available currently. Each project manager will spend 50% effort on managing the day-to-day activities of the DAC in the larger context of the AWG, communicating priorities, monitoring results and being accessible to all Consortium members and the NHGRI program officers at short notice. Their other 50% effort will be spent on data analysis. The project managers will be hubs of the communication network of the DAC. 
The Weng, Gerstein, and Kellis groups will each be staffed with the equivalent of four full time persons (FTEs in Figure 11, including the program manager, mostly postdocs with one or two graduate students), and the remaining groups will each be staffed with one postdoc. Roughly 70% of the FTEs will perform directed analysis, handling both “routine” analysis and more development or pipelining tasks, rapidly changing priorities as set by the leadership committee and directed by the project managers. The remaining 30% of the personnel will develop or adapt methods of interest to the DAC. They will be assigned tasks in a longer time frame, with priorities jointly set by the leadership committee and co-investigators. [image: ]
The physical proximity of Weng, Gerstein, and Kellis (~2 hours door-to-door) will greatly facilitate the interactions among the DAC members in these three groups. The groups will have monthly physical meetings, rotating among the three universities. The three program managers will be in constant communication. This close interaction will be particularly beneficial for completing analyses and formulating integration manuscripts.
All members of the DAC are expected to participate in open discussion forums. These include:
1.	Use of a single AWG mailing list for email discussion.
2.	A monthly priority-setting phone conference with the AWG. 
3.	At least two physical meetings per year of the entire group, often coordinated with Consortium-wide programs, but with a day before or after the Consortium meeting dedicated to analysis tasks. In some cases, these analysis meetings will be run in a mini-jamboree mode where intensive collaborative work occurs.
4.	All postdocs, students, and project managers will have Skype-based voice and instant messaging active during their working hours, allowing for quick and spontaneous interactions.
Chairing of AWG calls. We will adopt the current chairing structure of the ENCODE PI calls for the AWG calls, with an incoming, outgoing, and incumbent chair, rotating the chair amongst Weng, Gerstein, and Kellis. This arrangement will ensure continuity between the calls, with a specific PI being responsible for action items raised during the previous call, and those items to be raised during the next call. 
Integration of production efforts.  We will begin the ENCODE DAC activities with a two-day project launch meeting that involves all of the funded members of the DAC, with representation from the funded DCC. This meeting will provide scientific background for new members of the Consortium, establish shared expectations among the co-investigators and the leadership team, and clarify individual roles within the larger AWG effort.
Thereafter, as in the current phase of ENCODE, the project managers of the DAC will organize a weekly, minuted conference call. Scientific presentations will be made by each funded lab on a rotating basis.  Attendance at this conference call will be mandatory for all funded members of the DAC.  
Project documentation will be managed via the ENCODE Wiki, which will include a copy of the chart shown in Figure 11, as well as a list of all funded personnel. The Wiki will include one page dedicated to each participating group. These team-specific pages will serve as the primary reporting mechanism for each subcontract. Each page will be organized chronologically, and will include links to presentations made on the weekly conference calls, results of interim analyses, in-progress or submitted manuscripts, etc.
To maintain clarity about the direction of the DAC and to identify potential problems quickly, the project managers will conduct a survey of the entire AWG every six months.  The survey will be brief, with the aim of gathering feedback for the leadership committee regarding what aspects of the project are working well, what aspects the members would like to see change, specific feedback for the leadership committee, and an overall rating of the effectiveness of the group. This survey will be anonymous, but participation by all funded members of the DAC will be required. A summary of the survey results will be shared with the whole group.
At the start of the project, we will recruit three individuals to form a scientific advisory board for the DAC. The SAB members will attend one DAC/AWG meeting annually and will thereafter provide written feedback to the leadership committee concerning both scientific and managerial issues.  The SAB will also be available to assist in adjudicating disputes that may arise within the DAC.
Conflict Resolution. Most issues will be resolved by calls and meetings between the three members of the leadership committee. We will have a standing weekly 30-minute call where all issues arising will be brought up, discussed and resolved. Each member of the DAC will be able to contact any of the three members of the leadership committee, with the guarantee that any concerns will be brought up anonymously. Similarly, all members of the AWG will be able to address any concern they have anonymously to any member of the leadership committee. Similarly, the NHGRI will be able to raise its concerns with the leadership committee. Contentious issues about which complete agreement is not immediately reached among the three members of the leadership committee will be brought forward to the ENCODE steering committee for discussion. If agreement is not reached, the steering committee will cast an anonymous vote to resolve the issue.
Budget reassignments. Budget adjustments will be made yearly based on productivity of each member of the DAC and shifting priorities of the Consortium. This will only happen will full agreement of all three members of the leadership committee, and after notification of the NHGRI staff.
Allocation of reserved funds for existing and additional investigators. We have budgeted the equivalent funding for 25% of co-investigator effort and three postdoc-level FTEs (the TBN co-investigator box and three unconnected boxes in Figure 11), to be allocated in two ways. First, we envision the need to recruit new investigators as new areas of expertise are required. The decision to recruit additional members will be made upon full agreement of the leadership committee, in consultation with the NHGRI and the head of the AWG. Subcontracts will be made for six-month intervals and will be extended contingent upon successful progress and meeting deliverables. Subcontracts will be terminated only after full agreement of all three members of the leadership committee. Second, the five participating groups (Daly, Guigo, Irizarry, Liu, and Noble) are each staffed with one postdoc, which represents the baseline effort and lower than the effort level per group in the current ENCODE DAC because we do not know yet which production groups are going to be funded in the next round of ENCODE. When we obtain the information of the funded production groups, we will be able to assess the number of data types and amount of data in each type, and provide additional FTEs to the groups with the matching expertise.
Risk assessment and Leadership.
The proposed management structure is designed to achieve multiple aims simultaneously. On the one hand, having a single PI ensures consistency and provides a single point of contact for the NHGRI, the AWG, the DCC, and the production PIs. On the other hand, no single individual has the scientific, computational and statistical expertise to span the entire range of DAC activities. Accordingly, the leadership committee brings together three co-leaders with complementary strengths and very broad expertise. Furthermore, this joint leadership plan will likely provide greater responsiveness to the many partners involved than would a single, overworked PI trying to lead the whole DAC. Indeed, one of the primary goals of the reporting mechanisms and conflict resolution procedures outlined above is to maintain clarity, efficiency, and agility about the changing priorities of the various Consortium members, including the ENCODE data production labs, the AWG, the DCC, the DAC and the NHGRI. In particular, it will be critical to balance the scientific expertise and interests of the various DAC co-investigators with the needs of the Consortium to ensure that we are achieving our aims. 
There are a number of potential risks that a project of this size and complexity could encounter. We have discussed these in the group and feel that all the risks can be mitigated or handled appropriately if they occur.
1.	Inefficient collaboration due to geographical separation. This problem is unlikely to occur, mainly because five of the eight groups are located within 100 miles and six groups (including the two distal groups Noble and Guigo) have been working together in the ENCODE/modENCODE Project. In addition, monthly phone calls (rising in tempo during publication drives) coupled with pervasive VoIP/instant messaging will provide a strong sense of virtual community. If one group is not responsive or integrating with others, we will discuss the issue at the PI level first, followed by personnel visits to encourage networking and integration. If the problem persists, the leadership committee will discuss it with the PIs involved together with the NHGRI program director. In the extremely unlikely scenario that there is a truly intransigent group, which is hard to imagine given the DAC membership, we would consider withdrawing funds from this group upon the NHGRI consent.
2.	DAC groupthink excluding input from other groups. This problem is unlikely to occur because of our track record in working openly with all groups and the genuine collaborative nature we take to solving problems. The presence of the AWG to provide independent input and prioritization is a formal mechanism to ensure the DAC groups do not become a closed club. We are also happy to work with the NHGRI program directors to implement other approaches if desired. Equally important will be informal aspects of our openness to collaboration. All DAC discussions will be open to all members of the Consortium.  
3.	Too many tasks from the AWG or switching of priorities too rapidly. We believe there is an appreciable risk that there will be a far larger task list than the DAC can accomondate, requiring tough prioritization decisions. The transparency of our process is critical here, as the AWG will need to set sensible priorities with some month-to-month consistency. It will be critical to build a high level of trust between the AWG and the DAC early in the project, before complex prioritization becomes an issue. Again, given that six of the groups are existing members of the ENCODE/modENCODE Consortium, there is already considerable trust between these groups and the AWG. 
4.	Too few tasks from the AWG. This is a potential issue at the start of the project, but there is a healthy list of pipelining tasks that will provide infrastructure later. ENCODE datasets are accumulating rapidly, so there are a lot of data to provide input into sensible biological questions early on.
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Figure 2. Integrative analysis of ENCODE ChIP-Seq data on 119 transcription factors. A. Statistics of de novo motif
discovery among 119 TFs. B. Example result for SPI1 in GM12878 cells illustrating the percentage of peaks with the
motif and distribution of motif locations relative to the peak summit. C, D. Most TFs exclude nucleosomes at their
binding sites and position nucleosomes flanking their binding sites. Nucleosome profiles and GC percentages around
TSS-proximal (C) and TSS-distal (D) peak summits of SMC3. Note that the GC% is highest at the peak summit where
the average nucleosome occupancy is lowest. E, F. Position and orientation preferences for co-binding TFs in non-
repetitive (E) and repetitive (F) regions of the human genome. Two motifs connected by an arch denote significant
preferences for the distance between their sites. The thickness of a connection is proportional to the normalized
frequency of the pair. A connection is depicted as blue, orange, or red when the motif pair is discovered in the ChIP-
Seq datasets for different TFs, the same dataset, or both, respectively.
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Figure 3. Overview of the Cistrome analysis pipeline. Cistrome functions
include standard analysis tools for peak calling, quality control, expression
analysis, and integrative analysis. A general workflow using Cistrome is to
upload datasets, preprocess them using peak calling tools to generate peak
locations in BED format and signal profiles in WIGGLE format, upload gene
expression data to produce specific gene lists, and then use various
integrative analysis tools to generate figures and reports. The future direction
is to incorporate more new integrative tools, to link Cistrome with public data
collections and the ENCODE database, and to communicate with other
analysis platforms through GenomeSpace.
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Figure 4. Correlation patterns for a number of
chromatin features in 100 bp bins around the TSS
(+/- 4 kb) and TTS (+/- 4 kb) of transcripts at the
early embryo stage of worm. The Spearman
correlation coefficient of each chromatin feature
with gene-expression levels was calculated for
each bin.
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Figure 5. A. Differential levels of H3K9ac in alternatively spliced (AS) exons.
Using RNA-Seq reads, we identified 200 AS exons that were significantly
more included in H1-hESC cells than in HUVEC cells (in red in the figure), as
well as 150 exons more included in HUVEC cells than H1-hESC cells (in
blue). Using ChIP-Seq data, the differential profile of H3K9ac in H1-hESC
over HUVEC was computed around the acceptor splice site of each exon.
The central panel shows the average and the dispersion of the profile on
these sets of differentially included exons. Exons preferentially included in
H1-hESC have a stronger H3K9ac signal in H1-hESC, while exons
preferentially included in HUVEC in turn have stronger H3K9ac signal there.
As a control, H3K9ac profiles were computed on a set of matched upstream
and downstream exons not differentially included in H1-hESC vs HUVEC,
and there was no difference in the strength of H3K9ac between the two cell
lines. B. Modeling exon inclusion as a function of chromatin marks. Using
general regression models known as Rule Ensembles, the inclusion levels of
internal exons in the HepG2 cell line were predicted based on the levels of a
number of histone modifications measured around the acceptor site. The
scatterplot displays predicted vs measured inclusion levels for each
annotated internal exon. The Pearson correlation between predicted and
observed inclusion levels is 0.60, and the Spearman correlation is 0.46. C.
Relative importance of the different histone maodifications in the predictive
model.
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Figure 6. The dynamic Bayesian network for TF
binding site identification. The network for two
consecutive positions is shown. Observed
variables are represented by shadowed nodes.
The virtual evidence derived from the chromatin
profile is represented by the smaller black nodes.
A dashed edge between two nodes indicates that
the parent node is a switching parent.
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Figure 8. Integrative chromatin state segmentation of 20 chromatin tracks for cell line GM12878
across five ENCODE production groups, including DNase sensitivity, FAIRE, CTCF, Pol2,
histone variant H2A.Z, and both activating and repressive histone modifications. The resulting
chromatin states capture promoters (red), enhancers (yellow), transcribed regions (green),
repressed regions (grey), and insulators (blue), providing a directly interpretable view of the
many chromatin marks and their combinations. For example, the unusual state pattern in the
middle of gene ENC1 in all three segmentations reveals a potential intronic regulatory element,
which overlaps a putative GENCODE processed transcript and is confirmed by H3K4me1,
H3K27ac, DNasel hypersensitivity and transcription factor binding. Two independent
segmentation methods, ChromHMM (Kellis Lab) and Segway (Noble Lab) show strong
agreement across the genome, providing enhanced confidence in the regions of agreement and
enabling a combined segmentation (top row).
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Figure 9. Closeup on TF-miRNA regulation. This panel shows broad
patterns in how TFs and miRNAs regulate each other, and how the
relationship varies at different levels of the TF hierarchy. The inner and
outer circles of hodes contain TFs and miRNAs, respectively. ! is
defined as the number of TF to miRNA interactions minus the number of
miRNA to TF interactions for each node. A | of zero indicates a balance
between these two types of regulation while a large positive | shows a
bias towards TF regulation of miRNA. The nodes in both inner and outer
circles are sorted from highest ! , at 6 o’clock, counter-clockwise to
lowest | . Furthermore the size of each node is determined by the total
number of interactions for that node, while the color of the TFsare on a
gray scale from white to black, from top to bottom of hierarchy height,
respectively. As shown in the figure, miRNAs most involved with TF-
regulation tend either to regulate TFs or to be regulated by them. Many
TFs and miRNAs exhibit this tendency significantly more than expected
at random, as shown in the figure as green-yellow borders around the
nodes. Another observation that can be made from this figure is that
most of the regulatory edges between miRNAs and TFs involve TFs in
the top and middle level of the TF hierarchy, meaning that the master TF
regulators are generally involved with miRNA regulation.
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enables interpretation of disease-associated loci. For example, a chromatin state
segmentation across nine cell types {Ernst et al, 2011} shows significant
enrichments in the top-scoring SNPs in cell-type specific enhancers for several
diseases. For example, out of the 18 SNPs associated with systemic lupus

erythromatosus, six were found wi

hin strong enhancer states in GM12878. Of

them, rs9271100 was strongly linked with two additional SNPs in the same

predicted enhancer region, of whic
predicted GM12878 activator ETS
underlying molecular basis of the d

h rs9271055 disrupted the motif for the
, providing a candidate model for the
isease association.
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Figure 11. Management structure of the ENCODE DAC.
Purple boxes indicate program managers and blue boxes
indicate FTEs.
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Figure 1. Information flow from the AWG into the DAC and
the process of monthly prioritization and decision making.




