Expanding the Encyclopedia of **DNA Elements** (ENCODE) in the Human and Mouse (UM1)

Leading the search for tomorrow's cures

ENCODE in the Human and Mouse (UM1)- Mapping Centers

FOA	Deadlines	Funding Level			
RFA-HG-16-002	LOI: Feb 21, 2016	Budget: \$2-2.5 Million/YR;4 YRS			
	App: Mar 21, 2016	Total: \$15.5-20M for 6-8 awards			

NHGRI's highest priorities:

- Maps of transcribed regions
- Maps of chromatin accessibility
- Maps of histone marks
- Maps of other relevant chromatin proteins
- Maps of sites of DNA methylation
- Maps of long range chromatin interactions

"These centers should employ high-throughput, genome-wide and cost-effective experimental pipelines for a range of genomic assays capable of generating high quality data to map biochemical activities, exhibited by the <u>human</u> and <u>mouse (10%)</u> genomes, that are associated with functional elements."

"to encourage highly focused research projects and streamline data management, projects are sought that propose the use of <u>only one biochemical assay</u> (e.g., ChIPseq, RNAseq, and variations thereof). An additional 1-2 assay(s) per application may be considered if they are strongly justified in terms of how centralizing data production within one group,"

"new or improved assays may be applied across a relatively small set of <u>common samples previously used within ENCODE</u> (for which significant amounts of ENCODE data already exist)"

Scientific questions (theme):

Structure codes for chromatin topology and their functions in human genomes

Genetic code:

- Gene codes (gene-centric views) protein coding sequences, codon usage TSS, exon, intron, splicing site, etc
- 2. Are there structure codes for genome topology? non-coding, distal, regulatory elements insulator, enhancer, repressor, etc

CFCT binding motif is a major kind of S-codes

- abundant, genome-wide, chromatin interactions
- Hi-C data showed CTCF associated w/ TAD (80%)
- ChIA-PET showed CTCF define chromatin topology

CTCF binding/looping defines chromatin topology

Size distribution of loop and domain 1.00 Indiv. CTCF loop 0.75 In situ Hi-C loop 0.50 Hi-C TAD 0.25

1Mb

Genomic span

10Mb

100Mb

100kb

Cumulative density

0.00

10kb

CCD = TAD

CTCF loops define detailed domain and sub-domain structures

CCD

2D mapping data

Structure code variation and what affects it ?

Epigenetic effects,

Genetic effects,

In same genotype (individual) Diff. epigenotypes Diff. cell types

dividual) In same epigenotype (cell type) Diff. genotypes Diff. individuals

Cell type-specific CCD structure

Cell type-specific CCD structure

- 3D genome architecture is dynamic during development and differentiation
- Chromatin topology could be a regulatory mechanism for cell-type specificity

Genetic (SNP) validation of CTCF binding and looping

chr6:31426075-31930740 (504 kb)

GM12878 and HeLa CTCF binding comparison

~20% CTCF bindings are exclusive to one cell type, two possible causes:

- 1.Genetic variation
- 2.Cell-type specificity

Example showing variation of CTCF binding/looping between GM12878 and HeLa

chr1:225296376-226608645 chr1:225920559-226271635 H3F3A RP4-559A3.6 Gencor SDE2 RP4-559A3.7 RP11-145A3.1 SRP EPHX1 Genco DNAH1 PARI H3F3A LIN9 LEFTY1 SDE2 RP4-559A3.7 H3F3/ EPHX1 TMEM63A PYCR2 SRPS SRP9 RP11-145A3.2 LIN9 PARI DNAH1 ENAH H SRP9 TMEM63A H3F3A SDE2 CTC $\langle \rangle \langle$ 1k GM12878 CTCF v 100 GM12878 CTCF \ 100 32 GM12878 U GM12878 CTCF F GM12878 CTCF p -250 -250 -500 -500 -750 -750 100 100 Ц Ц GM12878 PA+ GM12878 PA+ 50 50 MUNIT -50 -100 316 cohe HeLa CTCF cohe 100 НеЦа HeLa CTCF μ HeLa CTCF peak: HeLa CTCF peak -250 -500 -500 -750 x 100 -750 \$ 11 /0 RN. 100 Hela-S3 P ela-S3 PA+ -100

Chromatin topology structure variation in diff. cell types

Chromatin topology structure variation in diff. cell types

B6 Hepatocyte specific CTCF binding and looping surrounding hepatocyte specific genes

Chromatin topology structure variation in diff. genotypes

-100

-150

e Do

Do Do Do Do

€

UCSC Known Ge

F121 CTCF total

F121 CTCF total

F121 CTCF pater

pater

F121 CTCF

F121 CTCF mate

× ‡

F121 CTC

Mouse ES cells of CAST x 129S

binding/looping. Genetic variant affects "on/off" binding/looping.

Genetic variant affects "weak/strong" binding/looping.

Total capacity of structure codes in human genome?

Possible CTCF motifs in a given genome, ~15 millions (by scan the genome for motifs)

Average CTCF peaks/genome, n=40-50K Total unique CTCF peaks, n=127,983

CTCF binding peak shared in different cell lines

Our strategy to study structure codes of chromatin topology

Vertical approach (epigenetic):

Same individual, many different cell types

Horizontal approach (genetic):

Same cell type, many different individuals

Comprehensive Mapping and Elucidating the Structure Codes in Human and Mouse Genomes

Aim 1. Chromatin topology and transcription regulation in ENCODE cells (tie 1 & 2+ cells, \approx 20-30 cell lines)

Aim 2. Mapping structure code in human hematopoietic cells (vertical epigenetic approach, many blood cells from same individuals)

Aim 3. Mapping structure code in 1000 human population (horizontal genetic approach, one cell type, 2500 individuals)

Aim 4. Mapping structure code in mouse models (vertical & horizontal approach, 8 founder lines, 200s DO hybrids)

Aim 5. Mapping structure code in human disease populations (100s lupus patient-derived b-cells, 100s T1D patient primary T-cells)

Experimental approaches

Multiplex ChIA-PET, 10s-100s (8-16 format)

CTCF, RNAPII, cell-specific TFs, RNA-Seq

Multiplex ChIP-Seq, 100s-1000s (96 format)

CTCF, RNA-Seq

Preliminary assessment of the 1000 genomes

1000Genomes SNP at CTCF motif

CTCF motif prohibits SNP in human genome

CTCF motifs	None SNPs	With CTCF-motif SNPs	Chi-Square Test	
CTCF motifs	12058	8708	n < 0.00001	
Random	10317	10449	ρ < 0.00001	
Gene coding regior	ıs ?	?		

chr17:43914683-44373209

CTCF_motif SNP	Location	Functional_SNP	Functional_SNP Types	D-prime	LOD	r-square	SNP function
rs569012614	CTCFboundary	rs11012	GWAS	0.882	15.12	0.654	
rs569012614	CTCFboundary	rs17631303	GWAS	0.919	16.19	0.685	
rs569012614	CTCFboundary	rs2942168	GWAS	1	26.25	0.909	Parkinson disease
rs569012614	CTCFboundary	rs393152	OMIM_GWAS	1	26.25	0.909	Parkinson disease
rs569012614	CTCFboundary	rs12185268	GWAS	1	26.25	0.909	Parkinson disease
rs569012614	CTCFboundary	rs12373124	GWAS	1	26.25	0.909	
rs569012614	CTCFboundary	rs17690703	GWAS	1	20.18	0.722	
rs569012614	CTCFboundary	rs1864325	GWAS	1	26.25	0.909	
rs569012614	CTCFboundary	rs17649553	GWAS	1	25.17	0.882	Parkinson disease
rs569012614	CTCFboundary	rs1800547	OMIM	1	26.25	0.909	Parkinson disease
rs569012614	CTCFboundary	rs1981997	GWAS	1	26.25	0.909	
rs569012614	CTCFboundary	rs63750417	clinVar	1	26.25	0.909	
rs569012614	CTCFboundary	rs62063786	clinVar	1	26.25	0.909	
rs569012614	CTCFboundary	rs62063787	clinVar	1	26.25	0.909	
rs569012614	CTCFboundary	rs10445337	clinVar	1	26.25	0.909	
rs569012614	CTCFboundary	rs1052551	clinVar	1	26.25	0.909	
rs569012614	CTCFboundary	rs62063845	clinVar	1	26.25	0.909	
rs569012614	CTCFboundary	rs1052553	clinVar	1	26.25	0.909	
rs569012614	CTCFboundary	rs17652121	clinVar	1	26.25	0.909	
rs569012614	CTCFboundary	rs8070723	GWAS	1	26.25	0.909	
rs569012614	CTCFboundary	rs9303525	GWAS	1	25.17	0.882	
rs569012614	CTCFboundary	rs17577094	GWAS	1	26.25	0.909	Parkinson disease
rs569012614	CTCFboundary	rs183211	GWAS	1	22.76	0.807	
rs569012614	CTCFboundary	rs199533	GWAS	1	28.89	0.968	Parkinson disease
rs569012614	CTCFboundary	rs199515	GWAS	0.967	26.57	0.936	Parkinson disease
rs569012614	CTCFboundary	rs415430	GWAS	0.966	24.85	0.903	Parkinson disease

chr17:43914683-44373209

Project Schedule (Proposed)

Grant Submission Timeline	Due Date	Days to Complete	<u>e Status Comment</u>
Submit LOI	2/21/2016	5 25	Yijun/Jo Anne
Final Draft Review	3/14/2016	5 47	Red Team (JAX Peers)
Submit	3/17/2016	5 50	OSP
Narrative Preparation Timeline	Due Date	Days to Complete	<u>e Status Comment</u>
Team Meeting (BH)	1/28/2016	5 I	
NIH Meeting (Elise Feingold, Mike Pazen)	2/5/2016	5 9	Jo Anne to organize
Budget	2/11/2016	5 15	Yijun, Team, Jon Maslow
First Complete Draft - ALL Sections	SEE BELOW		
Overall Goals: 6 pages	2/4/2016	8	Yijun
Experimental Assay Section: 12 pages	2/18/2016	5 22	Yijun, Greg, Laura (mouse)
Selection of Biological Samples Section: 6 pages	2/18/2016	5 22	Yijun, JB/VP, Greg/Laura
Data Management Plan: 6 pages	2/18/2016	5 22	Yijun, Greg, Mark
Project Management Plan: 6 pages	2/18/2016	5 22	Yijun
1000 genomes			Yijun
Mouse DO/CC			Greg and Laura
Disease- Lupus			JB and VP
Disease- TID			Derya, Dave
Functional validation			Laura, Albert, Haoyi
Second Draft- ALL SECTIONS- Red team review	2/25/2016	5 29	
and REVIEW FOR INTEGRATION	3/7/2016	4 0	
Final Drafts- ALL SECTIONS	3/14/2016	6 47	
Final Production	Due Date	Days to Complete	<u>Status Comment</u>
Forms Package	3/17/2016	5 50	

GM12878 SNP in CTCF motifs

Article

CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription

Zhonghui Tang,^{1,12} Os Przemyslaw Szalaj,^{4,5,6} Emaly Piecuch,^{1,3} Ping Xiaoan Ruan,¹ Chia-Lii and Yijun Ruan^{1,2,3,*} ¹The Jackson Laboratory (²National Key Laboratory (Hubei 430070, China

