Progress report for week #2

Since last Thursday was working on the following things:

- 1. Got ConSurf evaluations on across-species conservations for morph pairs from MMDB database;
- 2. Combined the torsion angle fluctuation of a protein with its conservation score;
- 3. Finished reading Sam's articles on hinge analysis.
- 4. Currently working on cutting the target proteins pool to only the hinge region and analyzing the torsion angle change of the hinge regions.

For the past week I was able to get the across-species conservation evaluation via ConSurf server with the guide from Declan. The proteins we submitted onto the ConSurf server were morph pairs from MolMovDB, where a ~400 protein morph candidates were available. For those PDBs from the database, around 1/2 were trackable (the PDB ID could be tracked), and around ~80 morphs were covered on ConSurf. There are "holes" in the ConSurf scoring output due to the inaccessibility of certain residues of that PDB stored in ConSurf served, and thus we obtained 76 complete ConSurf analysis for the morphs for analysis.

In order to combine the conservation information to the dihedral angle calculation, a python script was developed that would align the two. Starting from the 4th residue in each PDB file, the conservation information, torsion angle for the two structures for that residue was aligned in the same row. This made the information easier to process in R. In the figure below is what the file looks like. "Resname" is also listed after "resid" for easier tracking.

resid	resname	score	ini_torsion	fin_torsion	difference
4	SER	-0.088	257.005002114	2/1.//1/93808	14.100191/53/
С	ILE	-0.123	204.304/00/05	213.328010/00	8.99331000043
6	ASN	0.631	261.595428401	250.418749822	11.1766785795
7	GLU	-0.132	66.3618750971	71.1878607284	4.82598563121
8	CYS	0.984	50.8057137392	50.3443192349	0.461394504371
9	ASP	0.030	100.45180765	94.258061506	6.19374614393
10	LEU	0.462	234.178516646	232.859352256	1.31916438993
11	LYS	1.435	158.960504324	163.163308119	4.20280379512
12	GLY	0.196	116.456335108	123.119790743	6.66345563461
13	LYS	-0.829	0.502611666139	351.164207152	350.661595486
14	LYS	-0.324	130.91463748	128.205996295	2.70864118515
15	VAL	-0.925	224.365955067	235.731653818	11.3656987514
16	LEU	-0.393	207.545400507	205.004136938	2.54126356861
17	ILE	-0.417	207.310958755	210.873870759	3.56291200365

For analyzing the correlation between dihedral angle changes and conservation, a simple plot was made for quick observation. From the plot below, we could not observe obvious signal o trend simply upon the scattering plot, and further analysis was called for for more insights. One thing I am working on right now is to focus only on the hinge region, taking from the candidate morphs from *Hinge Atlas* database by S. Flores, and analyzing the relationship of torsion angle change with the conversation scores. In this way the noise from the "non-flexible" regions would be reduced.

relationship btw conservation and conformation change