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ABSTRACT 
Identifying highly mutated regions is a key way that scientists can use on population 
scale sequencing to discover key genomic regions associated with complex diseases such 
as cancer. Nevertheless, it is challenging to identify such regions because severe mutation 
rate heterogeneity, across different genome regions of the same individual and also across 
different individuals, gives rise to highly over-dispersed counts of mutations. Moreover, 
it is known that part of this heterogeneity relates to confounding genomic features, such 
as replication timing and chromatin organization. Here, we address these issues with a 
Negative binomial regression based Integrative Method for mutation Burden analysis 
(NIMBus). This approach uses a Gamma-Poisson mixture model to capture the mutation 
rate heterogeneity across different individuals and thus models the over dispersed 
mutation counts by a negative binomial distribution. Furthermore, it regresses the 
mutation counts against 381 features extracted from REMC and ENCODE to accurately 
estimate the local background mutation rate. This framework can be readily extended to 
accommodate additional genomic features in the future. NIMBus was used to analyze 
649 whole-genome cancer sequences. It successfully controlled P value inflation and 
identified well-known coding and noncoding drivers, such as TP53 and the TERT 
promoter. We make NIMBus available and release our results as an online resource 
(nimbus.gersteinlab.org). 

1. Introduction	  
Population level analysis, which looks for regions mutated more frequently than 
expected, is still one of the most powerful ways to identify deleterious mutations for 
diseases [1-3]. The recent development of whole genome sequencing (WGS) and 
personal genomics has provided us unprecedented statistical power to perform such 
analyses. Therefore, an accurate quantification of mutation burden is important to 
uncover the genetic cause of various diseases, which in turn allows for targeted therapies 
in clinical studies. However, mutation burden test for somatic variants remains 
challenging for several reasons. 

First, some of the pioneer work analyzing WGS assumed a constant mutation rate 
across different regions or cancer genomes and ignored that somatic genomes are highly 
heterogeneous [4]. Hence, the positional level mutation counts often demonstrate larger 
than expected variance under such assumption, which is called overdispersion. This 
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assumption results in poor data fitting and generates numerous false positives [5], so it is 
necessary to introduce more sophisticated models to handle mutation rate heterogeneity. 

Second, numerous genomic features have been reported to largely affect the mutation 
process [6], which need to be corrected carefully in burden analysis. Unfortunately, none 
of the few current methods that considered such effects systematically explored these 
genomic features in a tissue-specific way, and their models demonstrated very limited 
extensibility to accommodate new features in the future.  For instance, MutSigCV tried to 
correct the effects of several features, such as expression and replication timing, by only 
using a small neighborhood of genes with similar covariate values. However, as the 
covariate number increases, it is usually difficult to find a meaningful neighborhood in a 
high dimension space. 

Lastly, many state-of-the-art methods are optimally designed for coding regions 
analysis [6], which represents less than 2 percent of the human genome. Nowadays, a 
myriad of studies have shown that noncoding mutations can serve as driver events for 
diseases. One well-known example is that mutations in the TERT promoter were found to 
be associated with cancer progression [7]. Hence, a unified coding and noncoding 
analysis is needed to annotate the discovered hotspots. 

In this article, we propose a Negative binomial regression based Integrative Method 
for mutation Burden analysis (NIMBus) that solves the three problems mentioned above. 
It first intuitively treats mutation rates from different individuals as random variables 
with gamma distribution, and resultantly models the pooled mutation counts from a 
heterogeneous population as a negative binomial distribution to handle the overdispersion. 
Furthermore, to capture the covariate effects, it integrates the most extensive features in 
all available tissues from Roadmap Epigenomics Mapping Consortium  (REMC) and the 
Encyclopedia of DNA Elements (ENCODE) project to create a covariate table to predict 
the local mutation rate with high precision through regression. In addition, it also 
customizes the most comprehensive noncoding annotations from ENCODE to facilitate 
results interpretation. This integrative approach employed in NIMBus enables us to 
effectively pinpoint mutation hotspots associated with disease progression and to better 
understand the biological mechanisms thereof.  

2. Methods	  
2.1	  WGS	  variants	  data	  used	  	  
We collected 649 whole genome variant calls from public resources and our 
collaborators. This data contains a broad spectrum of 7 different cancer types (details in 
Text S1 section 1).  
2.2	  Local	  background	  mutation	  rate	  estimation	  
(A) Human genome gridding and covariate matrix calculation  
First we divided the whole genome into bins with fixed length 𝑙. In this stage, 𝑙 is usually 
large, such as 1mb. Then the bins overlapped with any of the two blacklist regions were 
removed. Then 381 features were extracted from both REMC and ENCODE, and average 
signal in the bins was calculated (details in Text S1 Section S2). Let 𝑥!,! denote the 
average signal strength for the 𝑖!!  bin and 𝑗!!  covariate, where 𝑖 = 1,⋯ ,𝑛  and 
𝑗 = 1,⋯ ,𝑚. 
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(B) Use negative binomial distribution to handle mutation count overdispersion 
Suppose there are 𝑑 = 1,⋯ ,𝐷 different diseases (or disease types) in the collected WGS 
data, and    𝑠 = 1,⋯ , 𝑠! represents sample for disease (or disease type) 𝑑. Let 𝑦!

!,! and  
𝜆!
!,! denote the mutation count and rate for the 𝑖!! bin defined in section 2.2 (A) for 

sample 𝑠 in disease 𝑑. In previous efforts, scientists assume that mutation rate 𝜆!
!,! is 

constant across different regions of the human genome, samples, and diseases, so they 
have 𝜆!

!,! ≜ 𝜆  for ∀  𝑖,𝑑, 𝑠. Hence  𝑦!
!,! follows a Poisson distribution with the probability 

mass function (PMF) given in equation (1). 
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However, somatic genomes are highly heterogeneous because regions from various 
diseases, samples, and regions of the same genome usually demonstrate considerably 
different mutation rates, severely violating the assumption in equation (1). As a result, 
fitting of 𝑦!

!,! is usually very poor because a larger than expected variance, the so called 
overdispersion, is often observed [5]. Simply using the constant mutation rate assumption 
will generate numerous false positives. Instead in our model, we assume that different 
𝜆!
!,! are i.i.d random variables that follow Gamma distribution with probability density 

function (PDF) as 
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                                    (2),  

where 𝑐!! > 0  and 𝜐!! > 0 . In equation (2), 𝑐!!  and 𝜐!!  are the shape and scale 
parameters respectively. Assume that 𝜆!! = 𝜆!

!,!!!
!!!  is the overall mutation rate from all 

samples in bin 𝑖 of disease 𝑑. Its distribution can be readily obtained through convolution 
as  
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Let 𝑦!! = 𝑦!
!,!!!

!!!  represent the mutation counts in region 𝑖 of all the samples from 
disease 𝑑. The conditional distribution of 𝑦!! given 𝜆!! can be written into 

P yi
d λi

d( ) = λi
d( )yi

d

exp −λi
d( )

yi
d( )!                                          (4). 

By integrating (3) into (4), the marginal distribution of 𝑦!!  can be denoted as a 
negative binomial distribution ([8], page 50 in [9]).  
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Equation (5) is the PDF of a negative binomial distribution with 𝐸 𝑦!! = 𝑠!𝑐!!𝜐!! 
and 𝑉𝑎𝑟 𝑦!! = 𝑠!𝑐!!𝜐!! 1+ 𝜐!! . To better interpret (5a), we define 𝜐!! = 𝜇!!𝜎!!  and 
𝑠!𝑐!! = 1/𝜎!!. Then equation (5a) can be rewritten into (5b). 
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The mean and variance of 𝑦!! from (5b) can be described as 𝜇!! and 𝜇!!    1+ 𝜇!!𝜎!!  
respectively. Our model in equation (5b) is convenient with explicit interpretability. First, 
it assumes that the individual mutation rate is heterogeneous by modeling 𝜆!

!,! as i.i.d. 
Gamma distributed random variable. Hence, different from the constant mutation rate 
assumption where 𝐸 𝑦!! = 𝑉𝑎𝑟 𝑦!! , it captures the extra variance of 𝑦!!  due to 
population heterogeneity. Second, our model in (5b) clearly separates the two main 
parameters 𝜇!!  and 𝜎!!  with physically interpretable meanings: the mean and 
overdispersion. Here a larger 𝜎!! indicates a more severe degree of overdispersion, which 
is usually due to larger difference in mutation rates. 
(C) Accurate local background mutation rate estimation by regression  
After modeling 𝑦!!  using negative binomial distribution in 2.2 (B), we then tried to 
estimate the local mutation rate by correcting the covariate table 𝑿 described in 2.2 (A). 
Again 𝑥!,!  denote the average signal strength in the 𝑖!!  bin and 𝑗!!  covariate, where 
𝑖 = 1,⋯ ,𝑛 and 𝑗 = 1,⋯ ,𝑚. We noticed that the genomic features in the covariate tables 
are highly correlated, which may introduce multicollinearity if directly used in 
regression. We first applied principle component analysis (PCA) to matrix 𝑿. Let 𝑿′ 
represent the covariate matrix after PCA and 𝑥!,!!  denote each element in 𝑿′.  

A generalized regression scheme is used here. Suppose 𝑔!  and 𝑔!  are two link 
functions. We then use linear combinations of covariate matrix 𝑿!  to predict the 
transformed mean parameter 𝜇!! and overdispersion parameter 𝜎!! as 

 

g1 µi
d( ) = log µi

d( ) = β0
d + β1

d ′xi,1 +!+ β j
d ′xi, j +!+ β j

d ′xi,m

g2 σ i
d( ) = log σ i

d( ) =α 0
d +α1

d ′xi,1 +!+α j
d ′xi, j +!+αm

d ′xi,m
                    (6). 

Here we used the log function for both 𝑔! and 𝑔!, so the regression model in (6) is 
also called a negative binomial regression. Note that 𝑿 contains 381 genomic features in 
all available tissues. In the following analysis, we used all features to run the regression 
in (6) to achieve better performance. We used the GAMLSS package in R to estimate the 
parameters in (6) as 𝛼!! ,⋯ ,𝛼!! ,𝛽!! ,⋯ ,𝛽!! . There are usually biological reasons to 
explain how 𝜇!! changes with covariates. For example, single-stranded DNA in the later 
replicated regions usually suffers from accumulative damage to have larger 𝜇!!. But it is 
difficult to interpret such relationship on 𝜎!!. Hence, we can simplify equation (6) by 
assuming 𝜎!! is constant in our real data analysis. 
2.3	  Somatic	  burden	  tests	  using	  local	  background	  mutation	  rate	  
(A) Background mutation rate calculation for target regions 
Suppose there are 𝐾 regions to be tested. We used the local mutation rate to evaluate the 
mutation burden. For the 𝑘!! target region (𝑘 = 1,⋯ ,𝐾), optimally we should extend it 
into length 𝑙 (illustrative figure given in Fig. S2). Then we calculate the average signal 
for feature 𝑗 as 𝑥!,! , 𝑗 = 1,⋯𝑚 for this extended bin, and after PCA projection let 𝑥!,!!  
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represent the value for the 𝑗!! PC.  Then the local mutation parameters 𝜇!! and 𝜎!! in the 
extended bin for the 𝑘!! target region can be calculated as 

 

µ̂k
d = exp β̂0

d + β̂1
d ′xk ,1 +!+ β̂ j

d ′xk , j +!+ β̂m
d ′xk ,m( )

σ̂ k
d = exp α̂ 0

d + α̂1
d ′xk ,1 +!+ α̂ j

d ′xk , j +!+ α̂m
d ′xk ,m( )

                        (7). 

In reality, the length of the 𝑘!! test region 𝑙! is much shorter than the length of the 
training bins (up to 1Mb). Hence 𝜇!! need to be adjusted by a factor of 𝑙!/𝑙. Then 𝜎!! and 
the adjusted 𝜇!! can be used to calculate the disease specific P value 𝑝!!. This optimal 
scheme is usually computationally expensive because there are usually millions of target 
regions to be tested. Therefore, we proposed an approximation method to replace the 
optimal 𝜇!! and 𝜎!! in our analysis (details see section S4 in Text S1). 
(B) Combining P values for multiple disease types 
Sometimes it is necessary to analyze several related diseases (or disease types) to provide 
a combined P value. One typical example is the pan-cancer analysis.  In section 2.3 (A), 
we calculated the P value for disease/disease type 𝑑 as 𝑝!! for test region 𝑘, Then Fisher’s 
method can be used to combine P values. Specifically, the test statistic can be calculated 
in  

 
Tk = −2 ln pk

d( )d=1

D∑ ∼ χ 2 2D( )                                 (8).    
Here 𝑇! follows a centered chi-square distribution with 2𝐷 degrees of freedom, where 

𝐷  is the total number of diseases/disease types. Then the final P value 𝑝!  can be 
calculated accordingly. 
2.4	  Noncoding	  annotations	  customized	  for	  NIMBus	  
We customized the full list of noncoding annotations from both ENCODE annotations 
and our previous efforts in the 1000 Genomes Project to make it suitable for burden 
analysis. More details are given in Text S1. 
2.5	  Flowchart	  of	  NIMBus	  

To better illustrate how NIMBus works, its 
workflow is given in Fig. 1. 

3. Results	  
3.1.	   Heterogeneity	   from	   various	  
sources	   leads	   to	   large	  
overdispersion	   in	   mutation	   counts	  
data	  
Pioneer genome wide somatic burden 
analysis usually assumes a homogeneous 
mutation rate per nucleotide, which 
consequently uses binomial tests to 
calculate P values [4]. However, we found 
that mutation count data usually violates 
this assumption because there is severe 
mutation rate heterogeneity from various 
sources. To demonstrate this, we collected 

Figure 1. Flowchart of NIMBus 

 



 6 

WGS variants from 649 cancer patients and 
7 cancer types (Fig. S1).  

First, we found that the mutation count 
per genome varies across diseases and 
samples. For instance, the median number of 
variants can be as low as 70 in Pilocytic 
Astrocytoma (PA) and as high as 21287 in 
Lung adenocarcinoma (LUAD). Even within 
the same cancer type, mutation counts vary 
dramatically from sample to sample (lowest 
at 1743 and highest at 145500 in LUAD, 
Fig. 2A).  In addition, there are also large 
regional mutation rate differences within the 
same sample (Fig. S4). Therefore, 
distributions based on constant mutation rate 
assumption usually fit poorly to the real 
mutation counts data (Fig. 2B, dashed lines 
with +, Fig. S3 in Text S1). In light of these, 
we utilized a two-parameter negative 
binomial distribution to further capture the 
over-dispersed nature of mutation counts data, which improves fitting to real data 
significantly (dashed lines with star in Fig. 2B). 
3.2	  Local	  mutation	  rate	  is	  confounded	  by	  many	  genomic	  features	  
Somatic mutation rate has been reported to be confounded by several genomic features 
[6, 10]. For example, single-stranded DNA during replication usually suffers from 
endogenous DNA damage, such as oxidation and deamination. Therefore, the 
accumulative damage effect in the later replicated regions will result in increased 
mutation rate. We have observed a similar trend in our data. For example, the Pearson 
correlation between normalized mutation counts and replication timing values in BRCA 
is as high as 0.67 in the first 70 1mb bins (Fig. S4A). Another example is that the 
chromatin organization, which arranges the genome into heterochromatin- and 
euchromatin-like domains, has a dominant influence on regional mutation rate variation 
in human somatic cells [10]. Consistently, we also find that mutation counts are 
significantly associated with the DNase-seq signal (Pearson correlation= − 0.61, 
P=1.52×10!!, Fig S4B in Text S1). In light of these, it is important to estimate local 
background mutation rate for accurate mutation burden analysis. 
3.3.	  Negative	  binomial	  regression	  precisely	  estimates	  local	  mutation	  rates	  
by	  correcting	  many	  genomic	  features	  
Features in matched tissues usually provide best prediction accuracy but features in 
unmatched tissue still help 
It has been reported that the most accurate local mutation rate prediction can be achieved 
by using features from matched tissue [11]. Hence, we specifically selected variants in 
two distinct cancer types BRCA and MB and predicted their local mutation rates by a few 
features from matched (or loosely matched) and unmatched tissues (Table S2 in Text S1). 
Relative error, defined by the normalized difference of observed and predicted value 

Figure 2. (A) Disease and sample mutation 
rate heterogeneity; (B) improved fitting by 
negative binomial distribution of mutation 
counts in 1mb bins in breast cancer (BRCA) 
and Medulloblastoma (MB) 
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(equation s3 in Text S1), was used to compare model performance. Consistent with 
previous conclusions, we find that features in matched tissues usually outperform those 
from unmatched tissues. For example, the relative error is only 0.128 by using breast 
related features to predict BRCA mutation rates, noticeably smaller than 0.195 by using 
brain related features (Table S3 in Text S1). Similarly, brain related features are more 
accurate than breast related ones in predicting mutation rates in MB (0.135 VS. 0.183). 

However, biologically meaningful tissue matching remains challenging and usually it 
is not an obvious choice for researchers without enough domain knowledge. Specifically, 
if samples of distinct hidden subtypes were pooled together for a certain disease, tissue 
matching will be more difficult. Furthermore, even after the best-matched tissue has been 
identified, we frequently need to handle missing features in that tissue. We noticed that 
many genomic features are highly correlated both within and across tissues (correlation 
plot in Fig. S6A), which leads to suboptimal but still decent regression performance 
(scatter plots given in Fig. S6B). This is extremely helpful when processing WGS from 
diseases without matched features. For example, there are no prostate related tissues in 
REMC, but features in other tissues still help to estimate the local mutation rates. 
Pooling features from multiple tissues significantly improves local background 
mutation rate prediction 
In light of the correlated nature of covariates, especially those epigenetic features [12], 
we first performed principle component analysis (PCA) on the covariate matrix to 
overcome the multicollinearly problem during regression. The correlation of each PC 
with the mutation counts data varies significantly across different cancer types (boxplots 
in Fig. S7B in Text S1). For example, the first PC demonstrates a Pearson correlation as 
high as 0.653 in LICA, much higher than 0.352 in PRAD. Therefore, it is necessary to 
run the regression model separately for different cancer types. 

Since numerous PCs have been shown to be associated with mutation rates, we tried 
to investigate the collaborative efforts from multiple PCs to jointly predict the local 
mutation rates. Particularly, for each cancer type, we first ranked the individual PCs by 
their correlations with mutation rates, and then selected the top 1, 30, and all PCs to 
estimate the local mutation rate. Fig. 3A shows that using more PCs can noticeably boost 

Figure 3. (A) Regression performance by correcting different number of PCs; (B) 
Regression performance vs. total number of variants used in all cancer types 
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prediction accuracy in all cancer types. For example, in BRCA the Pearson correlation is 
only 0.472 if 1 PC is used in regression, while the correlation coefficient rises to 0.655 
and 0.709 if 15 and 30 PCs are used respectively. And eventually it increases to 0.818 
after using all 381 PCs. As a result, in all the following analyses we used all PCs for 
accurate local mutation rate estimation. 

As it is shown in Fig. 3B, we achieved good prediction accuracy through regression 
against all PCs of the covariate matrix in all cancer types. The Pearson correlations of the 
observed mutation count and the predicted 𝜇!! vary from 0.668 in PA to 0.958 in LICA. 
Scatter plots are given in Fig. S8 in Text S1. It is worth mentioning that although there is 
no feature in prostate tissue in REMC, we can still achieve a very high correlation of 0.81 
with the help of 381 unmatched but correlated features. This indicates that our model 
could still provide acceptable performance even when somatic WGS of a disease is given 
without optimally matched covariates.  

In addition, the number of available variants obviously affects prediction 
performance, but it is not the only factor. As shown in Fig. 3B, limited number of 
variants, such as those in quiet somatic genomes in PA, can usually restrict our prediction 
precision (lowest correlation at 0.668 among 7 cancer types). However, other factors, 
such as number of effective covariates, quality of mutation calls, and molecular similarity 
of pooled samples of the same disease can also influence the prediction performance 
considerably. For instance, although there are fewer variants in MB than those in BRCA, 
our regression in MB still outperforms that in BRCA (0.865 vs 0.818, Fig. 3B). 
3.4.	  Coding	  region	  calibration	  for	  NIMBus	  
Since coding regions have been investigated in more detail than the noncoding regions, 
we first applied NIMBus on coding regions. First, we extracted coding regions from the 
GENCODE annotation v19 and NIMBus was run on both real and simulated datasets 
(details in section S11 in Text S1). We found that in all cancer types analyzed, NIMBus 
effectively controlled P value inflation as compared with the method mentioned in [4]. 
For example, in LUAD the P values for real data follow nicely with the uniform P values 
except a few outliers as the true signals (black dots on the right sides in Fig. 4). After P 
value correction by Benjamini–Hochberg method, only 11 genes has been reported as 
highly mutation in LUAD, while none was discovered on the simulated data (orange dots 

 
Figure 4. Q-Q plots of P values of 
real and simulated WGS data 

 

Table 1. Top genes after P value combination 
Rank Gene Adjust P PubMed ID 

1 TP53 4.33E-139 17401424 
2 DDX3X 3.65E-18 22820256 
3 KRAS 2.56E-06 19847166 
4 MUC4 4.47E-06 19935676 
5 CDH1 3.07E-05 10973239 
6 ARID1A 2.36 E-04 22037554 
7 SMARCA4 3.78 E-04 18386774 
8 FGFR1 7.43 E-04 23817572 
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in Fig. 4). On the other hand, the method with constant mutation rate assumption in [4] 
reported 6023 genes to be significantly mutated, indicating severe P value inflation. 

We also used Fisher’s method to combine P values from all cancer types. In total, 15 
genes were discovered as overly mutated. 12 out of them have been well documented as 
related with cancer progression. The top genes are shown in Table 1 and PubMed ID for 
related reference is given in the last column. These results showed that NIMBus is able to 
find sensible mutational hotspots as cancer drivers. 
3.5.	  NIMBus	  discovered	  a	   list	  of	  highly	  mutated	  noncoding	   regions	   from	  
cancer	  WGS	  data	  
 We applied NIMBus on WGS variant calls on all 7 cancer types to deduce the individual 
somatic burden P values, and compared with the results with those from global and local 
Binomial models (details in Text S1).  

 Similar to the results in the coding region analysis, both global and local Binomial 
models generated too many burdened regions in all noncoding annotation categories, as 
evidenced by the poor fitting in Fig. 2B. For example, in liver cancer after P value 
correction, NIMBus identified 21 promoters as highly mutated, while local and global 
binomial models identified 79 and 641 respectively. Hence, our negative binomial 
assumption in NIMBus effectively captured the overdispersion and controlled the number 
of false positives. To further demonstrate this, we provided the Q-Q plots of P values in 
promoter regions for all 7 cancer types in Fig. 5B as a quality check. In theory, if no 
significantly burdened regions are detected, the P values should follow uniform 
distribution. As shown in Fig. 5B, the majority of our P values follow the uniform 
assumption with a few outliers as the true signals, indicating reasonable P value 
distributions for all cancer types. Similar results were also observed in other noncoding 
annotations (data not shown). We released our burden test results on 
nimbus.gersteinlab.org as an online resource for the whole community. 

Figure 5 (A) number of overly mutated promoter regions in all cancer types; (B) Q-Q 
plots of P values for promoter regions; (c) total number of burdened regions in all 
noncoding annotations after merging P values from 7 cancer types. B_local: local 
Binomial Model, B_global: global Binomial Model  
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To summarize the mutation burdens from all cancer types, we used Fisher’s method 
to calculate the final P values for all three models. Similar to P values from a single 
cancer type, the combined P values are severely inflated in both global and local 
Binomial models, but are rigorously controlled by NIMBus (table C in Fig. 5). For 
example, NIMBus reported only 39 transcription start sites (TSS) as burdened, compared 
with 164 and 263 for the other two methods. Additionally, out of the 39 TSS elements, 
several of them have been experimentally validated or computationally predicted as 
associated with cancer in other work. For instance, TP53 is a well-studied oncogene that 
is involved in many cancer types, and combined P value for TP53 TSS is ranked second 
in our analysis (P=4.26×10!!"). LMO3 interacts with the tumor suppressor TP53 and 
regulates its function, and it is ranked fourth in our analysis (P=3.25×10!!"). Similar to 
previous report, we also identified AGAP5 TSS site as a mutation hotspot that ranked 
third (P=7.07×10!!"). Another important example is the TSS sites in TERT, which is 
ranked fifth in our results (P=1.55×10!!") and has been experimentally validated as 
associated with multiple types of cancer progression [7]. The discovery of such validated 
results proves that NIMBus can serve as a powerful tool for driver events discovery in 
genetic diseases. 

4. Discussion	  
Thousands of somatic genomes are now available due to the fast development of whole 
genome sequencing technologies, providing us increasing statistical power to scrutinize 
the somatic mutation landscape. At the same time, thanks to the collaborative effort of 
big consortia, such as REMC and ENCODE, tens of thousands of functional 
characteristic experimental results on human genomes have been released for immediate 
use to the whole community. Hence, integrative frameworks are of urgent need to explore 
the interplay between WGS data and these functional characteristic data. It will not only 
be important to accurately search for mutational hotspots as driver candidates for 
complex diseases but also to better interpret the underlying biological mechanism for 
clinicians and biologists. 

In this paper, we proposed a new integrative framework called NIMBus to analyze 
somatic genomes. Due to the heterogeneous nature of various somatic genomes, our 
method treated the individual mutation rate as a gamma distributed random variable to 
mimic the varying mutational baseline for different patients. Resultantly, it modeled the 
mutation counts data using a two parameter negative binomial distribution, which 
improved data fitting dramatically as compared to previous work (Fig. 2B). Then it uses a 
negative binomial regression to capture the effect of a widespread list of genomic 
features on mutation processes for accurate somatic burden analysis. 

Unlike previous efforts, which use very limited covariates to estimate local mutation 
rate in very qualitative way, we explored the whole REMC and ENCODE data and 
extracted 381 features that best describe chromatin organization, expression profiling, 
replication status, and context effect in all possible tissues to jointly predict the local 
mutation rate at high precision. In terms of covariate correction, NIMBus demonstrated 
three obvious advantages: 1) It incorporates the most comprehensive list of covariates in 
multiple tissues to achieve accurate background mutation rate estimation; 2) It provides 
an integrative framework that can be extended to any number of covariates and 
successfully avoids the high dimensionality problem of other methods [6]. This is 
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extremely important because the amount of available functional characteristic data is 
growing rapidly as the time and money cost of sequencing technologies drops quickly; 3) 
It automatically utilizes the genomic regions with the highest credibility for training 
purposes, so users are not bothered to perform carefully calibrated training data selection 
and complex covariate matching processes. 

The length of training bins 𝑙 is an important parameter for NIMBus. On one side, a 
shorter bin size will be advantageous in the P value evaluation as it can remove the 
mutational heterogeneity across regions more effectively at a higher resolution. On the 
other side, smaller 𝑙 sometimes will result in worse mutation rate prediction performance 
for two reasons. First, sensible mutation rate quantification is necessary in each single bin 
for the regression purpose. However, somatic mutations are usually sparsely scattered 
across the genome due to limited number of disease genomes available at the moment. In 
the extreme case, when 𝑙 is so small that most bins have zero mutations, it is difficult for 
the regression model to capture the interplay between mutations and covariates. Second, 
some of the covariates are only reported to be functional in a large scale[10], so reducing 
𝑙 will not necessarily boost prediction precision. Optimal bin size selection is still a 
challenging problem that needs further case-by-case investigation. In our analysis, we 
used a 1mb bin size for all cancer types. 

In addition, noncoding regions represent more than 98% of the whole human genome, 
and are less investigated mainly due to limited knowledge of their biological functions. 
NIMBus is also designed to explore the most comprehensive noncoding annotations. 
Therefore, it collects the up to date full catalog of noncoding annotation of all possible 
tissues from ENCODE and our previous efforts from in 1000 Genomes Project. 
Furthermore, it further customizes these annotations specifically for somatic burden 
analysis. All these integrated internal annotations of NIMBus can be either tested for 
somatic burden or used to annotate the user specific input regions. 

We applied NIMBus to 649 cancer genomes of 7 different types collected from public 
data and collaborators. The burden test P values for each cancer type were deduced and 
then Fisher’s method was used to calculate the combined P values. We first evaluated the 
performance of NIMBus on coding regions, which have been investigated with much 
more detail by researchers. Many well-documented cancer associated genes were 
discovered by NIMBus (Table 1 and Table S3). Besides, we also repeated the same 
analysis on simulated dataset and found no significant genes. These results demonstrate 
that NIMBus is able to find overly mutated genes effectively while rigorously controlling 
false positives. Furthermore, numerous non-coding elements were also reported to have 
more mutations than expected by chance (Table C in Fig. 5D). Among these, some well-
known regions, such as the TP53, LMO, and TERT TSS, were also reported in our 
analysis to be overly mutated, proving the effectiveness of NIMBus to identify disease 
associated results. 

It is worth mentioning that although we demonstrate the effectiveness of NIMBus 
mostly on somatic mutation analysis, it can be immediately extended to germline variant 
analysis as well. In summary, NIMBus is the first method that integrates comprehensive 
genomic features to analyze the mutation burdens in disease genomes. Such external data 
does not only help to better estimate the background mutation rate for successful false 
positive and negative control, but also provide the most extensive noncoding annotations 
for users to interpret their results. It may serve as a powerful computation tool to 
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accurately predict driver events in human genetic diseases and potentially identify 
biological targets for drug discovery. 
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