Due to rapid advances in next-generation sequencing technologies1, tens of thousands of disease-associated mutations2 and millions of single nucleotide variants3,4 have been identified in the human population. Previous studies claimed that “the majority (~93%) of disease- and trait-associated variants …...  lie within noncoding sequence”5. This drives an urgent need to develop high-throughput methods to sift through this deluge of sequence data to quickly determine the functional relevance of each noncoding variant. However, it has been shown that only a fraction of noncoding variants are functional; , and among the functional variants, the majority of them show only modest effects6. Therefore, we need to develop highly quantitative assays that can examine a large number of variants. Furthermore, current computational methods (e.g., CADD7 and GWAVA8) widely applied in whole genome/exome studies are designed to prioritize “deleterious and pathogenic” variants, not designed to predict specific molecular phenotypes of these variants (i.e., their effects on enhancer activities). 
To address this issue, we will establish a robust, high-throughput experimental pipeline with three novel technologies (MegaMut, STROBE-seq, and CHAIN-seq) to quickly clone >20,000 noncoding variants, and experimentally and quantitatively examine their impact on enhancer activity. All three assays offer distinct advantages over current state-of-art assays6,9-11, and together the overall pipeline will improve the throughput by at least 1-2an orders of magnitude. Furthermore, the ultra high throughput of the new assays will allow us for the first time to establish a three-stage, computational-experimental-integrated iterative learning scheme (computational-experimental-integrated) with a real-time experimental parameter optimization strategy (i.e. in Year 3, we will carry out 6 rounds of experimental validation and refinement with ~1,000 selected variants cloned and examined per round; see Fig. 1). Finally, we will establish an integrated classifier classifiermodel, ReEnAct, through iterative learning to accurately predict functional molecular phenotypes for all noncoding variants. Our specific aims are:

Aim 1. MegaMut: a massively-parallelmassively parallel en masse site-directed mutagenesis pipeline. 
Building upon our experience in developing Clone-seq12, we will implement an en masse (“pooled”) site-directed mutagenesis pipeline, MegaMut, for introducing tens of thousands of mutations in thousands of enhancers of interest with one and only one pre-determined mutation on each DNA molecule. MegaMut is quite different from current assays: . For instance, MPFD6 uses random mutagenesis to introduce mutations in three enhancers with on average three mutations per 100 bp on each molecule; MPRA9 use synthesized oligos and can only create clones <150 bp (vs. MegaMut has with no length limit); PALS13 is designed to perform saturated mutagenesis for a given gene (two genes tested) and has higher unwanted mutations and WT background, (compared to MegaMut). Clone-seq is currently one of the highest throughput site-directed mutagenesis pipeline. However, Clone-seq requires mutagenesis reactions be carried out individually and multiple single colonies be picked per reaction12, whereas MegaMut eliminate these steps by carrying out all mutagenesis reactions in one a single pool, drastically increasing throughput and decreasing cost.	Comment by Mark Gerstein: No you need to incl. this phase

Aim 2. STROBE-seq: a massively-parallelmassively parallel quantitative assay to measure enhancer activity.
Building upon our experience in developing GRO-seq (subsequently PRO-seq and GRO-cap)14-25, we will integrate GRO-seq with STARR-seq11 to quantitatively measure effects of variants on enhancer activity at a massive scale.  in a new assay called STROBE-seq. For our purpose, STARR-seq has several key limitations (see b.2). Most importantly, STARR-seq In particular, it requires creation of a complex library of unique but overlapping fragments for each enhancer tested11, and thus cannot be directly used to measure enhancer activities from a clone library of enhancer elements, where each element has one and only one clone with defined boundaries. Furthermore, DNA fragments >1 kb does not form clusters effectively in Illumina sequencing, which has been a huge roadblock in studying large enhancers by genomic assays. We designed a new strategy, CHAIN-seq, to sequence STROBE-seq libraries using paired barcodes, essentially eliminating any length limit of STROBE-seq.

Aim 3. ReEnAct: a computational-experimental-integratedan iterative learning framework to prioritize impactful noncoding variants.
[bookmark: _GoBack]Building upon our experience in developing FunSeq (for prioritizing somatic somatic mutations as potential cancer drivers), we will implement the ReEnAct classifier model to prioritize germline noncoding variants with a strong molecular phenotypic effect.that occur within genomic regions under negative selection within the human population. In particular, (a) wWe will enlarge develop a set of DNA-level features associated with strong readout in our assays (e.g. TF motif breaking) and use it to consistently annotate all variants. this approach to consistently annotate all the existing set of DNA-level features. (b(b) We will further prioritize variants that overlap with genomic elements that displaying strong allelic activity (ie demonstrated sensitivity to variants in various assays). (c) We will then use network connectivity from predicted enhancer-gene linkages, microRNA targeting, and other sources to to further prioritize variants.  at hubs and bottlenecks. (d) Finally, wWe will implement for the first time a iterative, three-stage computational-experimental-integrated iterative learning scheme through by coupling ReEnAct training inputs with MegaMut and+ STROBE-seq outputs: . firstIn particular, (i), we will clone and examine ~10,000 enhancer variants to initialize ReEnAct; second,(ii) we will carry out 6 rounds of real-time experimental optimization (~1,000 new variants per /round); (iii) at the end, we will perform a final model assessment by examining ~5,000 new variants. In total, we will generate clones for ~3,000 WT enhancers and >20,000 variants, which will allowallowing for a comprehensive refinement and evaluation of ReEnAct.
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