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a. SIGNIFICANCE 
a.1.  Non-coding variants are significant for disease but less well-studied than coding ones 
Numerous studies have been conducted on the mutations that lie in coding regions1-4. Not as much has been 
done on non-coding ones. However, several initial studies suggest that variants in non-coding regions can 
significantly influence an organism’s phenotype5,6, and they are often implicated in diseases7-9. Many non-
coding variants impact regulatory elements. Such variation in the human genome can modulate gene 
expression10, and changes in this expression have been implicated in cancer and other diseases11-16. 
 
a.2.  Recent progress in annotating non-coding regions of the genome provides new opportunities for 
variant interpretation 
Annotating non-coding regions is essential for investigating genome evolution17, understanding important 
biological functions (including gene regulation and RNA processing)18, and for elucidating how SNPs and 
structural variation may influence disease19. The Encyclopedia of DNA Elements (ENCODE) and the model 
organism ENCODE (modENCODE) Project provide extensive genomic annotation of human20, drosophila21 
and C. elegans22 genomes. Furthermore, the functional landscape of regulatory variations in the human 
genome has been investigated by large-scale mRNA and miRNA sequencing (Fig 1)23-25. Similar efforts have 
also been directed toward annotating human epigenomic data26, as well as understanding the influence of 
genomic variation on the gene expression profiles27. These Expression Quantitative Trait Loci (eQTL) can 
further be utilized to investigate underlying disease mechanisms28.  
 
a.3. Molecular phenotypes help understand epistasis and identify actionable drug targets 
In this proposal, we are interested in the molecular phenotypes of SNVs, because all genetic lesions leading to 
organismal disease phenotypes or affecting overall fitness must have an underlying molecular basis29. We fully 
acknowledge that some SNVs with significant molecular phenotypes will not lead to any disease or traits. This 
can happen due to epistasis between TREs/genes with redundant functions. In fact, epistasis is a major 
roadblock to studying these TREs/genes genetically at the cellular and organismal level7,30. Our approach 
bypasses this limitation by directly examining the effects of variants on gene regulation at the molecular level. 
Even though mutations on one of these functionally redundant TREs/genes may not cause a disease 
phenotype, if these mutations disrupt the function of the corresponding TRE/gene (which can be measured by 
the methods proposed here), they will significantly increase the predisposing risk for disease7,31,32. 
Furthermore, accurate measurement of each SNV’s impact on gene regulation are is essential for generating 
concrete hypotheses about disease etiology based on molecular mechanisms7,33,34. Such specific predictions 
are also vital for selecting actionable drug targets35,36 and ultimately for making tailored therapeutic 
decisions37,38, which are all crucial for the Precision Medicine Initiative39. 

 
 

 
 Fig. 1. Overall flow of the proposed research. 
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Fig. 2. Schematic illustration of STROBE-seq. 
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b. INNOVATION 
b.1. MegaMut: an en masse site-directed mutagenesis pipeline 
MegaMut allows massively-parallel site-directed mutagenesis to generate one and only one specific mutation 
per DNA molecule for thousands of enhancers. It is distinct from what was used in the most closely related 
previous studies: the massively parallel functional dissection (MSFD) approach40 and the massively parallel 
reporter assay (MPRA)41,42.  For MSFD, random mutagenesis was used to generate mutations for three 
mammalian enhancers40. In random mutagenesis, control of the number of mutations generated on each DNA 
sequence is impossible. To improve coverage, most random mutagenesis pipelines generate on average two 
or more mutations on each DNA molecule43 and in the MSFD approach “each synthetic enhancer molecule 
contained, on average, three mutations per 100 bp, randomly distributed along its length”40. This prevents 
assessment of the functional impact of each individual mutation.  

For MPRA, microarray-based oligo synthesis was used to generate mutations41,42. Although specific 
mutations can be generated in this approach, the length limit is <150 bp. However, depending on the definition 
used, mammalian enhancers can be 1 kb or longer40. We have used our MegaMut to generate hundreds of 
mutant TRE clones with an average length of ~500 bp. We will have no problem cloning enhancers (up to 4kb) 
and their mutations in their entirety. 

Furthermore, MegaMut has many advantages comparing with PALS (Programmed Allelic Series)44, a 
recently developed site-directed mutagenesis technique. While MegaMut and PALS share similar goals, PALS 
has only been used to simultaneously generate mutations in one target gene at a time (two genes total). Our 
MegaMut is capable of introducing multiple mutations to hundreds of target genes/TREs in one reaction. More 
importantly, MegaMut demonstrates a much lower background, i.e. much fewer clones with undesired 
mutations or with WT sequences. In addition, MegaMut allows us to evaluate the mutagenesis performance of 
every batch of experiment before sequencing while PALS relies solely on DNA sequencing to examine the 
performance. Last but not least, PALS uses subassembly44,45 strategy to sequence the mutagenesis products 
by Illumina and have difficulty sequencing DNA elements longer than ~1.5 kb. However, our MegaMut + 
CHAIN-seq pipeline has no problem handling full-length sequences of much longer gene/TRE elements.  

Finally, our newly-established Clone-seq is currently one of the highest throughput site-directed 
mutagenesis pipelines, through which we have successfully generated 1,034 mutant clones for 223 different 
genes46. However, Clone-seq requires that an individual mutagenesis PCR reaction be performed and multiple 
single colonies be picked for each mutation, whereas MegaMut allows all mutagenesis reactions are carried 
out en masse in one pool. Therefore, MegaMut offers distinct advantages and enables us (1) to order pooled 
mutagenesis primers (only one primer for each mutation, instead of a pair of primers in Clone-seq) through 
microarray-based oligo synthesis, reducing primer cost by >50×; (2) to perform pooled PCR reactions, instead 
of individual mutagenesis PCRs in Clone-seq; and (3) to avoid colony picking, the rate-limiting step in Clone-
seq. Overall, our novel MegaMut pipeline significantly reduces the cost of large-scale site-directed 
mutagenesis and improve the throughput at least one to two orders of magnitude. 
 
b.2. STROBE-seq: Self-transcribing nuclear run-on with paired barcodes and sequencing assay  
STARR-seq (self-transcribing active regulatory region-sequencing) is a recently established method that can 
identify enhancer elements genome-wide47. Briefly, short genomic fragments are cloned en masse into the 3’ 
untranslated region of a simple transcription unit between paired-end sequencing primers. After transfection of 
this fragment library into cells, enhancer activity is quantified by counting the number of unique fragments from 
a particular genomic locus that give rise to detectable 
mRNA. Importantly, STARR-seq does not quantify the 
enhancer activity of individual candidate fragments, but 
instead requires creation of a complex library of unique but 
overlapping fragments for each candidate region to be 
tested. Thus it cannot be directly used to measure enhancer 
activities from a clone library of enhancer elements, where 
each element has one and only one clone with defined 
boundaries. It also requires that enhancer sequences can 
exist as stable mRNAs, and is thus confounded by post-
transcriptional effects. Furthermore, >98% of sequencing 
reads are discarded because multiple mRNA molecules are 
often produced from a single unique DNA fragment (see 
Sup. Fig. 2E of Arnold et al47).  
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Fig. 3. Schematic illustration of CHAIN-seq. 
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To circumvent these difficulties, we will develop a self-transcribing run-on with paired barcodes and 
sequencing (STROBE-seq) protocol to allow direct quantification of enhancer activity for an individual 
enhancer sequence (Fig. 2). After preparation of an enhancer library and transfection into cells, nascent RNA 
will be captured as in our established GRO-seq protocol. Importantly, candidate enhancer activity will be 
quantified as the number of nascent eRNAs produced per transfected plasmid. This approach offers many 
advantages: (1) reduced bias from post-transcriptional effects, (2) quantification of transcription driven by a 
specific enhancer fragment, (3) more efficient use of sequencing reads, and (4) ability to sequence large 
enhancer elements through CHAIN-seq (b.3). These improvements will significantly simplify high-throughput 
studies of candidate enhancer sequences, and increase assay sensitivity compared with STARR-seq. 
 
b.3. CHAIN-seq: chains of paired barcodes for sequencing of large targets 
A major limitation in many studies of TREs has been the difficulty of sequencing elements larger than 1 kb 
using Illumina. Notably, many large so-called “super” or “stretch” enhancers, whose size is often >3 kb48, have 
recently been found to be particularly relevant throughout development and carcinogenesis49. To study these 
elements, we will develop a novel strategy, called CHAIN-seq, to comprehensively sequence large DNA 
elements by implementing a customized transposase reaction to insert paired barcodes into the sequencing 
target (Fig. 2). The key idea of CHAIN-seq is to perform two separate Illumina runs on the aliquots of the same 
sample: one regular single-end Illumina run to sequence all the barcode-barcode pairs; another regular paired-
end Illumina run to sequence the target fragments 
with barcodes. After the second run, one can 
easily re-assemble the large target sequence by 
connecting all the neighboring reads through the 
barcode-barcode pairs determined by the first 
Illumina run. Using this strategy, we will be able 
to clone and sequence all potential enhancer 
elements through STROBE-seq without size limit. 
In fact, CHAIN-seq strategy could be useful for a 
wide variety of sequencing applications. For 
example, it can be applied to de novo genome 
sequencing and significantly reduce the difficulty 
of sequence assembly. 
 
b.4. ReEnAct: an innovative iterative learning scheme utilizing allelic activity with real-time experiential 
parameter tuning 
Previous studies have identified specific variants using allele-specific activity50,51. However, there has not been 
a scheme that allows us to prioritize variants based on this. In the proposed work, we will prioritize variants 
based on their presence within allelic elements or regions of the genome. Another innovative aspect of this 
proposal is the parameter weighting scheme and iterative tuning. In the first iteration, we will implement a 
weighted scoring scheme by assigning weights to various features based on publicly available polymorphism 
data. Each variant will be assigned a weighted score based on the weight of individual features associated with 
that particular variant. In the subsequent iterations of this workflow, we will apply a Bayesian learning strategy 
to tune weights based on experimental observations on >20,000 SNPs within ~3,000 enhancer elements. 
Because of the high throughput of MegaMut and STROBE-seq, in Year 3 we will for the first time perform real-
time experimental parameter tuning of ReEnAct by cloning and experimentally examining ~1,000 SNPs every 
two months (6 rounds of iterative tuning in one year). We believe this type of truly computational-experimental-
integrated machine learning scheme has never been implemented before, and it is only possible because of 
the development of MegaMut and STROBE-seq with their ultra high throughput. 
 
c. APPROACH 
c.1. Specific Aim 1.  MegaMut: a massively-parallel site-directed mutagenesis pipeline. 
In this aim, we will build upon our experience in developing the Clone-seq pipeline to establish the MegaMut 
pipeline with a much higher throughput (at least one to two orders of magnitude higher). 
 

c.1.1. Preliminary Studies 
c.1.1.1. Clone-seq: a massively-parallel cloning pipeline. Current protocols for cloning require the selection 
of individual colonies and subsequent sequencing of each colony using Sanger sequencing to find the correct 
clone52. The standard approach is both labor intensive and expensive, and does not scale well to high-
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throughput applications. In Clone-seq46, we implement a “smart-pooling” strategy to put single colonies of each 
cloning attempt into one pool and combine multiple pools through multiplexing for one Illumina sequencing run 
such that we can distinguish sequencing reads for each colony of each clone computationally afterwards. We 
have successfully generated 1,034 clones in an optimized high-throughput fashion46. Using our customized 
variant calling software, we identified correct clones free of any other unwanted mutations introduced during 
PCR. We achieved a conservative estimate in cost-savings of at least 10-fold over conventional cloning46, 
which can be further improved with implementation of newer sequencing platforms (e.g., NextSeq 500).  

Clone-seq is very versatile. It can be used to generate wild type gene/TRE clones or specific mutant 
clones46. We have successfully generate ~800 wild type TRE (enhancers and promoters) clones. Our results 
confirm that Clone-seq can successfully generate clones for the ~3,000 wild type enhancers within the 
proposed time frame. 
c.1.1.2 MegaMut, an en masse 
(“pooled”) site-directed 
mutagenesis pipeline. Owing to 
the nature of our STROBE-seq 
assay, there is no need to 
generate separate clones for each 
individual mutant TRE. Here we 
propose to implement an en 
masse (“pooled”) site-directed 
mutagenesis pipeline, MegaMut 
(Fig. 4), for introducing mutations 
in TREs of interest. We developed our MegaMut pipeline by incorporating mutagenesis megaprimers 
(electrochemically synthesized in large scale53) into a previously published method named PFunkel54. 
MegaMut is a high-throughput site-directed mutagenesis pipeline, so only pre-determined mutation(s) are 
introduced to targeted DNA sequences and each mutagenized DNA molecule will only contain those pre-
determined mutation(s). As a preliminary result, we generated 212 specific mutations for 53 different WT 
DNA clones with minimal undesired mutations in one MegaMut reaction and ~20% WT background, consistent 
with previous PFunkel publications54,55. In another preliminary study, we spiked in a particular megaprimer at 
1/1,000 concentration compared to other megaprimers in the pool and were able to detect successful 
mutagenesis products (Fig. 7). Therefore, we are highly confident that we will be able to optimize the MegaMut 
pipeline to perform >1,000 mutagenesis reactions in one pool, and successfully generate >20,000 noncoding 
mutation clones through pooling and multiplexing as proposed. 
 

c.1.2. Research Design 
c.1.2.1. Developing the MegaMut assay. Megaprimer design, synthesis, and trimming. The mutagenesis 
primers (“megaprimers”) are ssDNA oligos electrochemically synthesized on a programmable DNA microarray 
(CustomArrray) and released into solution. The total length of each megaprimer will be 160nt, which includes 
120nt of template (TRE)-priming region flanked by two 20nt adaptors and is 5’-phosphorylated (Fig. 5). The 
template-priming region contains the target mutation and is designed in batch with MutPrimer46. The 5’-adaptor 
contains different pre-determined barcodes and always ends with a thymine. The 3’-adaptor always begins 
with an adenine. PCR with amplification primers complementary to the adaptors will be used to amplify the 
megaprimers. The special design/modification of megaprimers and amplification primers allows for the 
selective amplification of subgroups of primers of interest for “smart pooling” (see c.2.2.4), as well as easy 
removal of both adaptors before the mutagenesis reaction (Fig. 5). In addition, a primer complementary to the 
entry clone backbone sequence (PBB) will be synthesized with 5’-phosphorylation. 

 

 
Fig. 5. Generation of adaptor-free megaprimers. 

 
Fig. 4. Schematic illustration of MegaMut. 
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Preparation of WT TRE templates for mutagenesis. To prepare uracil-containing WT TRE templates, entry 
clones carrying TREs of interest will be propagated in CJ236 E. coli. 

En masse mutagenesis reactions. Uracil-containing WT TRE entry clones and their corresponding 
mutagenesis megaprimers (adaptors removed) will be combined in a single reaction volume. In addition, the 
reaction mixture also contains PfuTurbo Cx hotstart DNA polymerase, dNTPs, Taq ligase, DTT, NAD+, and 
buffer. A two-step PCR will be performed with 12 cycles with megaprimers being gradually added to the 
reaction mixture (preceding Cycle 1, 5, and 9). The PCR reaction will be followed by a ligation step before 
uracil-DNA glycosylase (UDG) and Exonuclease III are added to remove the WT uracil-containing TRE 
templates while leaving the circular, mutation-bearing, and uracil-free ssDNA intact. After heat inactivation of 
the nuclease, the primer complementary to the entry clone backbone sequence (PBB) will be added to the 
reaction mixture and the complementary strand will be synthesized by one cycle of PCR. A ligation step will be 
performed afterwards to generate circular, uracil-free dsDNA with desired mutations, which will be transformed 
into TOP10 E. coli through electroporation. All transformants will be plated on LB-agar plates with appropriate 
antibiotics and all yielded E. coli colonies will be harvested and propagated in liquid culture for plasmid 
extraction. 
c.1.2.2. Optimizing the MegaMut protocol. Reduction of WT background in MegaMut products by pretreating 
uracil-containing WT TRE entry clone plasmids. After being extracted from CJ236 E. coli, the uracil-containing 
WT entry clone plasmids will be subjected to Exonuclease V digestion to remove most fragmented plasmids 
and bacterial genomic DNA.  

“Spiking-in” strategy for 
sequencing-free MegaMut 
performance evaluation. For pre-
Illumina sequencing performance 
evaluation of MegaMut reaction, 
we will use a “spiking-in” strategy. 
We engineered a control plasmid 
(pUC-Double-Null, Fig. 6A) 
carrying a null-mutated lacZα CDS 
and a null-mutated GFP-uv CDS. 
Two megaprimers (LacZα_RES 
and GFPuv_RES) that rescue either null mutation respectively were designed and tested. pUC-Double-Null 
and the two megaprimers will be spiked in each MegaMut reaction with in proportion to the WT TRE plasmids 
and their corresponding megaprimers. The transformants will be plated on LB agar plates supplemented with 
antibiotics, L-arabinose, X-gal, IPTG. By simply examining the colonies on LB plates with our bare eyes under 
regular ambient light and a UV lamp, we can easily identify E. coli colonies that are (1) blue and non-
fluorescent, (2) white and green-fluorescent and (3) blue and green-fluorescent. Quantification of those 
colonies will give us an estimation of the frequencies of desired mutagenesis products (1 & 2) and undesired 
products from double-annealing (3), as depicted in Fig. 6B.  

Optimization of different parameters of MegaMut with the lacZα/GFP-uv assay for higher throughput and 
robust performance. To further increase the throughput of MegaMut, i.e. the number of unique mutant clones 
per reaction volume, we developed a LacZα/GFP-uv assay for estimating the maximal capacity of MegaMut as 
well as for tuning various parameters in the protocol. In lacZα/GFP-uv assay, the two template plasmids are 
pUC-LacZα-Null and pUC-GFPuv-Null. The two plasmids were generated by cloning either a lacZα CDS with a 

null mutation (pUC-LacZα-Null) or a GFP-uv CDS with a null 
mutation (pUC-GFPuv-Null) into the same backbone. 
MegaMut reaction will be carried out with these two plasmids 
and megaprimers LacZα_RES and GFPuv_RES. By 
reducing the percentage of pUC-LacZα-Null and LacZα_RES 
in the reaction volume (100%, 10%, 1%, 0.1%, 0.05%), we 
find that MegaMut can robustly generate ~1,000 mutations in 
one reaction; even at 1:2,000 dilution, we still consistently 
detected blue colonies (Fig. 7). Furthermore, with different 
combinations of pUC-LacZα-Null and pUC-GFPuv-Null, this 
lacZα/GFP-uv assay will be used to adjusting other reaction 
parameters: template/megaprimer ratio, number of PCR 
cycles, and so on. 

 

  A.                                  B. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. (A) pUC-Double-Null vector. (B) MegaMut performance can be 
easily examined without Illumina sequencing 

 
Fig. 7. % of blue colonies yielded as a function 
of % of pUC-LacZα-Null & LacZα_RES. 
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c.1.2.3. High-throughput cloning of ~3,000 WT TREs using Clone-seq. Sequence-specific forward and 
reverse primers containing attB1 and attB2 sequences, respectively, will be synthesized in bulk as “Trumer 
Oligo” plates by Eurofins Genomics46. Using human genomic DNA as template, the selected WT TREs will be 
PCR amplified in 96-well format with high-fidelity Phusion DNA polymerase. We will perform large-scale 
Gateway BP reactions to clone each PCR product into pDONR223 vector. Entry clones containing the 
intended TREs will be identified through our Clone-seq protocol46. The verified entry clones will be used for the 
site-directed mutagenesis by MegaMut. These WT entry clones will also be subjected to Gateway LR reaction 
to transfer TREs in the entry vector to our modified pDEST-hSTROBE destination vectors via recombination. 
The resulting expression clones will be pooled, maxipreped, and subjected to STROBE-seq analysis in K562 
cell line to serve as the baseline control.  
c.1.2.4 Potential pitfalls and alternative approaches. All current en masse mutagenesis techniques tend to 
have a relatively high WT allele background44 and similar problems was also observed in the original Kunkel 
method56 and its derivative, e.g. PFunkel54,55. In Kunkel-based method, the WT background is considered to 
result from WT plasmid fragments priming to circular WT templates during the first round of PCR reaction. To 
further minimizing any residual WT plasmid fragments from serving as “primers” in MegaMut reactions, we will 
perform one round of pre-mutagenesis extension reaction with the presence of Exonuclease V-treated 
plasmids, DNA polymerase, and ddNTPs (Fig. 8). This allows the incorporation of ddNTPs at the end of any 
WT plasmid fragment and prevent further elongation during subsequent mutagenesis PCR cycles. In addition, 
we use megaprimers with 120nt priming region instead of regular mutagenesis primers with ~35nt priming 
region. Such long priming region allows us to use a much higher annealing temperature and thus favors 
annealing of megaprimers over smaller WT plasmid fragments. 

 
Furthermore, based on our preliminary results, we have found that the number of PCR cycles directly 

affects the level of WT background: low PCR cycles lead to significantly high WT background; whereas high 
PCR cycles cause higher unwanted mutations. Our various preliminary experiments confirm that the use of 12 
cycles as described in c.1.2.1 is a good starting point. However, we will further optimize this, together with 
different template/megaprimer ratios, annealing temperatures, extension time, and so on. 

Although unexpected additional mutations (mutations not included in the megaprimers) were shown to be 
rare in our preliminary results, in agreement with previous publications using the PFunkel method54,55, we are 
still prepared to tackle the problem by controlling the three major sources of undesired mutations: (1) errors 
introduced by DNA polymerase during PCR, (2) simultaneous annealing and extension of multiple different 
megaprimers to the same WT template, and (3) non-specific priming. Using PfuTurbo Cx Hotstart DNA 
polymerase for mutagenesis PCR reaction will help minimize the DNA replication error, as it is a high-fidelity 
DNA polymerase that efficiently reads through a uracil base. Using long megaprimers and high annealing 
temperature will help reduce undesired mutations from both source (2) and (3). Last but not least, we gradually 
add small quantities of megaprimers to the MegaMut reaction mixture at different cycles of the PCR reaction, 
maintaining a high template/megaprimer ratio during the whole PCR process, which will further discourage 
different megaprimers from simultaneously annealing to the same template. If simultaneous annealing turns 
out to be more of a concern for certain long target TREs, we will use a “smart pooling” strategy: each 
megaprimer pool (associated with one barcode) will be amplified selectively with corresponding amplification 
primers and added to individual mutagenesis reactions to keep the one-to-one megaprimer-to-TRE relationship 
in each reaction, eliminating undesired simultaneous priming. 

Previous studies all relied on Illumina sequencing to evaluate the performance of en masse mutagenesis 
techniques44,54,55. Such strategy is not only expensive but also time- and labor-consuming. Here we developed 

 
Fig. 8. Pre-mutagenesis extension with ddNTPs will further reduce WT background in MegaMut reactions. 
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a “spiking-in” strategy, allowing for pre-Illumina sequencing evaluation of MegaMut performance with NO 
additional experimental procedure or cost (just need to count colonies under ambient light and UV light). 

Last but not least, if we have difficulty generating certain mutant alleles with MegaMut, we will use our 
robust Clone-seq pipeline to generate these mutant clones. Our Clone-seq pipeline has been optimized and 
used to generate >2,000 mutant clones in our lab and is more than capable of generating >6,000 TRE mutants 
within the proposed timeframe and budget. 
 
c.2. Specific Aim 2. STROBE-seq: a massively-parallel quantitative assay to measure enhancer activity 
With the WT and mutant enhancer clones generated in Aim 1, we will develop the STROBE-seq assay to 
quantitatively measure the enhancer activity of each clone and detect mutations that significantly change the 
enhance activities over the corresponding WT clones. 
 

c.2.1. Preliminary Studies 
c.2.2.1. Identification of TREs by GRO-seq and GRO-cap 
experiments. Global Run-On Sequencing (GRO-seq), identifies the 
location, orientation, and amount of all transcriptionally engaged RNA 
polymerases genome-wide, revealing the transcriptional landscape with 
an order of magnitude greater sensitivity than Pol II ChIP-seq methods. 
A derivative method, Global Run-On Cap sequencing (GRO-cap) maps 
the position of the transcription start-sites (TSSs) with base-pair 
resolution. The Lis lab has already performed genome-wide GRO-seq 
and GRO-cap experiments in GM12878 and K562 cells to identify TREs 
(both promoters and enhancers) defined by characteristic bidirectional 
TSSs57.  
c.2.1.1. Modified Gateway-compatible STROBE-seq vectors. To 
make the STARR-seq compatible with our high-throughput 
cloning/mutagenesis pipeline, we modified the original STARR-seq 
vector by substituting the flanking homology arms with a Gateway 
cassette (attR1-R2) and retaining the Developmental Core Promoter 
(dCP). Our modified vector (called pDEST-hSTROBE-dCP) behaves 
like the original vector in transfection assays.  We generated entry 
clones carrying four genomic DNA fragments (HS001, 002, 005, 006) 
that showed enhancer activity and one (HS018) that did not as 
measured by STARR-seq previously47. We cloned the five fragments in 
pDEST-hSTROBE-dCP by Gateway LR reaction, transfected them into 
HeLa cells, and quantified transcripts from each by qRT-PCR. Additionally, all five fragments were also cloned 
into pGL4.23-DEST-dCP vector and their enhancer activity was also confirmed by the dual luciferase assay as 
described in c.1.2.3. Both experiments (Fig. 3) successfully recapitulated the data published in the original 
STARR-seq paper47. Thus, the Gateway-compatible STROBE-seq vector is compatible with our high-

throughput cloning/mutagenesis pipeline, and provides reliable quantification of the 
enhancer activity of target DNA fragments. To ensure coverage of the main classes 
of enhancers, we will use STROBE-seq vectors representing the two major classes 
of core promoters58: one that is responsive to developmental enhancers (pDEST-
hSTROBE-dCP) and one responsive to housekeeping enhancers (pDEST-
hSTROBE-hkCP). 
c.1.2.3. Purification of transposase for use with custom oligonucleotide 
adaptors. To develop CHAIN-seq, it will be necessary to load transposase with 
custom oligonucleotide adaptor sequences containing random barcode pairs. To 
this end, we followed a recently published protocol59 to express and purify TN5 
transposase in BL21-DE3 E. coli cells. To assay the activity of our enzyme 
preparation, we pre-loaded transposase with the customized Illumina sequencing 
adaptors and incubated this mixture with high-molecular weight human genomic 
DNA (Fig. 10). As expected, we observed dose-dependent tagmentation of the 
target DNA, validating our ability to tagment target DNA with customized adaptor 
sequences. 
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Fig. 9. Our results agree well with 
published data. 
 
 
 
 
 
 
 
   

 
Fig. 10. Our customized 
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c.2.2. Research Design 
c.2.2.1.  Developing the STROBE-seq assay. STROBE-seq library transfection. The WT and mutant entry 
clones generated in Aim 1 will be cloned into both pDEST-hSTROBE-dCP and pDEST-hSTROBE-hkCP 
vectors by Gateway LR reaction. Each resulting STROBE-seq library will be transfected into K562 cells by 
electroporation. 

Self-transcribing run-on reaction. Nuclei will be isolated at 24h post-transfection. Briefly, cells are rinsed 
with ice cold PBS and lysed with a dounce homogenizer. Run-on reactions using 5-bromouridine 5′-
triphosphate (BrUTP) will be performed, as we have previously described60. Nascent RNAs will be captured by 
immunopurification of BrUTP, and plasmids will be harvested from the flow-through of the immunopurification 
using EZNA Plasmid DNA columns (as Input control). Nascent RNAs will be purified by phenol-chloroform 
extraction and ethanol precipitation. Nuclear run-ons have been successfully performed on plasmids 
transfected into human cells61, further supporting the feasibility of this approach. 

Illumina sequencing library preparation. Nascent RNAs captured from the run-on reaction will be reverse 
transcribed from priming sites specific to pDEST-hSTROBE vectors. PCR-amplification will be performed as 
previously described47. Briefly, 1st-strand cDNA will be synthesized with a vector backbone-specific primer 
downstream of the cloning site (Fig. 2). This primer will contain the Illumina adaptor sequence, and a random 
barcode to enable removal of PCR duplicates. We will use multiplex-barcoded PCR primers to enable pooling 
of multiple samples in a single high-throughput sequencing lane.  
c.2.2.2. Use of CHAIN-seq for analysis of large enhancers with STROBE-seq. An 89 nt oligonucleotide has 
been designed to form homodimers, 
allowing extension to form a full, dual-
barcoded palindromic adaptor (Fig 4). The 
134 bp adaptor will be size-selected on a 
1.5% agarose gel and purified with a 
QIAGen Gel Extraction Kit. Full-length 
adaptors will be loaded onto purified TN5 transposase and incubated with target DNA as previously describe59. 
With transposase binding sequences at the 3’ end of both strands, the adaptor will be inserted by transposase 
dimers without creation of a double-strand break. To enable analysis of WT and mutated enhancers up to 4 kb 
long, we will apply CHAIN-seq (Fig. 3) to the transfected plasmids (Input) and PCR-barcoded reverse 
transcription products. Importantly, dosage of the transposase will be necessary to determine a working 
concentration leading to an integration density of approximately one every 400 bp of target DNA. This is well 
above the reported maximum density of ~30 bp59. 

Following insertion of the CHAIN-seq adaptor, the resulting DNA libraries will be duplicated by 4 cycles of 
PCR using backbone-specific primers, purified, and split into two separate aliquots. One aliquot will be 
amplified with primers targeting the Transposase Binding Sequence (TBS), resulting in amplicons containing 
barcode pairs (Fig. 3 3a). These primers will also contain the necessary Illumina flow-cell adaptor sequences. 
This pool will be subjected to high-throughput sequencing using the TBS as a priming site. 

The other aliquot of DNA will be amplified with primers targeting the central adaptor sequences, creating 
amplicons containing sample DNA and 2 random barcodes (Fig. 3 3b). Paired end sequencing of these 
amplicons (HiSeq 2×250 or NextSeq 2×150) will reveal the target DNA sequence flanking the integration site 
and the unique barcode associated with each integration site. Analysis of these sequences, combined with the 
barcode pairings discovered from the first aliquot, will enable reconstruction of large contiguous sequences 
with sufficient coverage for accurate variant calling of large enhancer libraries. 
c.2.2.3. Measuring effects of ~20,000 TRE mutations on enhancer activity by STROBE-seq. The mutant 
TRE entry clones will be subcloned into pDEST-STROBE-dCP and pDEST-STROBE-hkCP vectors by high-
throughput Gateway LR reactions. The enhancer activities of the WT and mutant TREs will be carefully 
examined by our STROBE-seq experiments as described above. A subset of mutations that show significant 
effects on enhancer activity (either up or down) will be further validated by high-throughput Luciferase assays 
as described in c.2.2.4.  
c.2.2.4. High-throughput dual luciferase assay confirmation of STROBE-seq results. The luciferase 
reporter vector pGL4.23 (Promega) was modified into two Gateway compatible vectors, pGL4.23-DEST-dCP 
and pGL4.23-DEST-hkCP. These vectors contain a Gateway cassette upstream of the corresponding core 
promoter (dCP and hkCP) followed by a luc2 (synthetic firefly luciferase) reporter gene. Based on our 
STROBE-seq results with two different core promoters, TREs of interest will be LR-cloned into these reporter 
vectors accordingly. pGL4.75 vector (Promega), which contains a CMV enhancer/promoter and a downstream 
hRluc (synthetic Renilla luciferase) gene, is used as transfection control. TRE-containing reporter vector and 

 
Fig. 11. CHAIN-seq adapter sequence design. 
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control vector will be co-transfected into K562 cells. The enhancer activity of TREs as indicated by the intensity 
of bioluminescence will be measured by with Dual-Glo luciferase assay system. 
c.2.2.5. Detailed validation of selected noncoding variants at native loci in CRISPR knock-in cell lines 
using high-resolution and high-sensitivity assays: PRO-seq, 4C, and ChIP. Although STROBE-seq and 
the related STARR-seq are powerful high-throughput methods that enable one to test potential enhancer 
activity of DNA fragments of interest, we are well aware of its limitations. Most importantly, the enhancer 
activity measured by these assays are not subject to chromatin state, histone marks, and the native 3D-
contacts, all of which may mask or enhance the measured enhancer activity of the DNA fragment in vivo41,47. 
To address this issue, we plan to generate homogenous cell lines containing specific variants of a set of TREs 
(i.e., a few dozen that show effects, either up- or down-regulation, on enhancer activity in Aim 2) using the 
CRISPR/Cas9 system in K562 cells62. Once verified, these mutant TRE cell lines will be compared to 
unmodified K562 cells. We will confirm the activity of selected variants of enhancers (from Aim 2) at native loci. 
In these engineered cells, we will perform PRO-seq to examine with high sensitivity the transcription at the 
variant TREs as well as all TREs and transcription units genome-wide. This will enable us to assess in an 
unbiased manner the role of elements of enhancers and promoters in the regulatory crosstalk between nearby 
and distant gene promoters and enhancers. To obtain an unbiased analysis of long-distance interactions of 
these enhancers, we will perform 4C experiments with the enhancer in question as the anchor site to measure 
broadly its interactions.  Finally, we will test effects of these mutant enhancers on transcription factor binding 
and local histone marks at these genomic points of enhancer interaction by performing targeted ChIP-qPCR 
experiments. This approach rigorously examines our mutated TREs that show the most robust phenotypes in 
STROBE-seq, and thereby will define critical features of enhancers in executing their functions, and provide 
insights on how noncoding variants can impact gene regulation. 
c.2.2.6. Potential pitfalls and alternative approaches. K562, though derived from a leukemia patient, is a 
lymphoblastoid Tier 1 cell line in the ENCODE project and it also has all necessary data available in the pattern 
of divergent transcription by GRO-cap57, histone modifications63, and DHS64. Moreover, >70% transfection 
efficiency can be achieved by electroporation in K562 cells, which makes it one of the best options for our 
proposed study. We have extensive experience with GRO-seq57,65-75; therefore, we are highly confident that 
our STROBE-seq experiments, an integration of STARR-seq and GRO-seq, will be successful. If we run into 
an unforeseen problem, we can always fall back on the standard STARR-seq protocol. 

Furthermore, recent public patent applications suggest that Illumina is exploring long-read sequencing 
strategies related to the CHAIN-seq approach described here that may offer an alternative solution to studying 
large enhancer elements with STROBE-seq. 

A confounding factor in STARR-seq and related applications, including STROBE-seq, is the interplay of the 
candidate enhancer, which is embedded in the transcription unit, and the core promoter used to drive the 
transcription of the transgene. Active enhancers are themselves transcribed, and the relative strength of 
transcription emanating from the enhancer (divergent transcription going away from the enhancer in both 
directions) and the promoter (towards the downstream enhancer fragment) may interfere with the enhancer 
activity. This interference may arise through modifications of histones that put elongation marks on site of 
transcription initiation76. In STARR-seq and STROBE-seq the enhancers are intragenic and therefore subject 
to promoter crosstalk, while native intergenic enhancers are immune from this crosstalk. High-throughput 
luciferase assays with an intergenic cloning site will be used to screen for such confounding effects, as will 
analysis at native sites of the most interesting mutation phenotypes in c.2.2.5. 
 
c.3. Specific Aim 3. ReEnAct: a computational-experimental-integrated iterative learning framework to 
prioritize impactful non-coding variants 
We plan to convert and extend the current FunSeq prototype from its focus on somatic variants to allow the 
identification of germline variants associated with large gene expression changes. Our new approach called 
ReEnAct (Regulation of Enhancer Activity) will iteratively create a model to predict high impact variants within 
regulatory regions of the genome (Fig. 11). It will have several features tailoring it to germline analysis, 
including 1) identifying functional sites among the conserved regions of the human genome and 2) 
investigating allelic elements. We will iteratively train and test our model on the results of the STROBE-seq 
experiments to refine its parameters.  
 
c.3.1.  Preliminary Studies 
c.3.1.1. We have experience in annotating non-coding regions of the genome, including both TF-
binding sites and non-coding RNAs. Our proposed work is based on our past experience in non-coding 
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genome annotation, as part of our 10-year 
history with the ENCODE and modENCODE 
projects. Our TF work includes the 
development of methods to define the 
binding peaks of TFs77, prediction of a TF’s 
target genes78, and new machine learning 
techniques79. Furthermore, we developed 
methods that integrate ChIP-seq, chromatin, 
conservation, sequence and gene 
annotation data to identify gene-distal 
enhancers80, which we have partially 
validated81. We also constructed linear and 
non-linear models that utilize TF binding and 
histone modification signals to accurately 
predict the transcriptional output of a gene in 
different cell types of several organisms 
including yeast, worm, fly, and human22,82-85. 
We have also constructed regulatory 
networks for human and model 
organisms86,87, and completed many 
analyses on them22,81,86,88-101.  
c.3.1.2.  We have experience in allelic 
analyses. A specific class of regulatory 
variants is one that is related to allele-
specific events. These are variants that are 
associated with allele-specific binding (ASB), 
particularly for transcription factors or DNA-
binding proteins, and allele-specific 
expression (ASE)102,103. We have previously 
developed a tool, AlleleSeq,99 for the 
detection of candidate variants associated 
with ASB and ASE. Using this we have generated comprehensive lists of allelic variants for ENCODE and 
1000 Genomes and found that allelic variants are under differential selection from non-allelic ones86,97,104. By 
constructing regulatory networks based on ASB of TFs and ASE of their target genes, we further revealed 
substantial coordination between allele-specific binding and expression86. Furthermore, we have constructed a 
personal diploid genome and transcriptome of NA12878105. 
c.3.1.3. We have experience in relating annotation to variation: the FunSeq pipeline. We have 
extensively analyzed patterns of variation in non-coding regions, along with their coding targets81,86,106. In 
recent studies97,107, we have integrated and extended these methods to develop a prioritization pipeline called 
FunSeq (Fig 2). It identifies sensitive and ultra-sensitive regions (i.e., those annotations under strong selective 
pressure, as determined using genomes from many individuals from diverse populations). FunSeq links each 
non-coding mutation to target genes, and prioritizes such variants based on scaled network connectivity. It 
identifies deleterious variants in many non-coding functional elements, including TF binding sites, enhancer 
elements, and regions of open chromatin corresponding to DNase I hypersensitive sites. Integrating large-
scale data from various resources (including ENCODE and The 1000 Genomes Project) with cancer genomics 
data, our method is able to prioritize the known TERT promoter driver mutations. Using FunSeq, we identified 
~100 non-coding candidate drivers in ~90 WGS medulloblastoma, breast and prostate cancer samples97. 
Drawing on this experience, we are currently co-leading the ICGC PCAWG-2 (analysis of mutations in 
regulatory regions) group. 
 
c.3.2. Research Design 
c.3.2.1. Prioritizing non-coding elements from polymorphism data. In order to identify variants that have a 
significant impact on gene regulation, we will use both intra-human variation data (from The 1000 Genomes 
Project) as well as cross-species evolutionary conservation (using classical measures such as GERP score108). 

We will first update the TF binding non-coding elements from the original FunSeq approach. Due to the 
development of a number of massively parallel assays for identifying regulatory regions in the genomes, we 

 
Fig. 11. Description of ReEnAct workflow & data context. 
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have been able to identify the epigenetic signatures underpinning active enhancers.  We will use this 
information to make better enhancer predictions and utilize information provided by the Epigenome Roadmap 
109-111, and more recently from ENCODE projects. In particular, 
we will develop a new machine-learning framework that 
combines pattern recognition within the signal of various 
epigenomic features and transcription of enhancer RNA (eRNA) 
with sequence-based features to predict active enhancers 
across different brain regions and other tissues in the 
Epigenome Roadmap project.  
c.3.2.2. Identifying high-impact mutations: breaking & 
creating motifs. We will use motif breakers and formers to 
define loss-of- and gain-of-function events, respectively, as 
these events are more likely to have deleterious 
consequences12,13,41,97,106,112,113. Variants altering the position-
weight matrix (PWM) scores for TF binding sites could 
potentially either decrease (loss-of-function) or increase (gain-
of-function) the binding strength of TFs. A key improvement that 
we plan to utilize is to employ ancestral alleles to get a more 
accurate determination of these events. 
c.3.2.3.  Variant prioritization based on allelic activity. Allele-
specific variants potentially provide the most direct readout of 
the functional impact of a variant. For example, if we can 
associate the differential binding effect of a particular 
transcription factor with different alleles of an SNV, then we can 
identify loci that have potential functional impacts in regulation. 
However, because allelic variants are enriched for rare 
variants23, it will be difficult to match the specific variants in a 
personal genome of interest to prioritize against those earlier 
determined to be allelic in a functional genomics experiment on 
a cell line. Hence, instead of prioritizing by the direct overlap of 
allelic variants, we need to prioritize by the presence of allelic 
variants within 'allelic elements', or allelic regions in the genome 
(Fig. 12). 
c.3.2.4.  Identifying likely target genes for distal regulatory elements & assessing the impact of variants 
on network connectivity. To interpret the likely functional consequences of non-coding variants, we will 
comprehensively define associations between many non-coding regulatory elements and their target protein-
coding genes. The correlation between enhancer and promoter activity across the ENCODE cell-lines and 
different tissues will be used to identify significant associations between regulatory elements and candidate 
target genes, as done by Yip et al80. A single regulatory variant may affect the expression of multiple genes, 
either because it directly regulates multiple genes or because the target gene is itself a regulatory factor. 
c.3.2.5.  We will use a unified weighted scoring scheme for combining all ReEnAct features to prioritize 
variants. To integrate the various features mentioned above, we plan to elaborate the weighting system in 
FunSeq107. Constrained by selective pressure, common variations tend to arise in functionally unimportant 
regions. Thus, features that are enriched with common polymorphisms are less likely to contribute to the 
deleteriousness of variants and are weighted less. In general, features can be classified into two classes: 
discrete (e.g., within or outside of a given functional annotation) and continuous (e.g., the PWM change in 
‘motif-breaking’). We will weigh these two sets of features with different strategies. 

For each discrete feature 𝑑, we calculate the probability 𝑝! that it overlaps with common polymorphisms. 
We then calculate the information content to denote the value of discrete features 𝑠! = 1 + 𝑝! ∗ 𝑙𝑜𝑔!𝑝! + (1 −
𝑝!)   ∗ 𝑙𝑜𝑔!(1 − 𝑝!). 

The situation is more complex for continuous features, as different feature values have different 
probabilities of being observed in natural polymorphisms. Thus, one weight cannot suffice for varied feature 
values. For a continuous feature 𝑐, which is associated with a value 𝑣!, the probability 𝑝!

!! is firstly estimated 
using common variants: 𝑝!

!! = #!"##"$  !"#$"%&  !!!!
#!"!!"#  !"#$"%&

. The score of continuous feature is defined as 𝑠!
!! = 1 + 𝑝!

!! ∗
𝑙𝑜𝑔!𝑝!

!! + (1 − 𝑝!
!!)   ∗ 𝑙𝑜𝑔!(1 − 𝑝!

!!).  

 
Fig. 12. Workflow for generating allelic 
variants and elements. 
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The ReEnAct score (𝑹𝑺) is calculated as 𝑹𝑺 = 𝜃!𝑠!! + 𝜃!𝑠!
!!

! = 𝜽, 𝑆 . We will also incorporate the 
feature dependency structure when calculating the scores by removing redundant features using feature 
selection or by performing dimensionality reduction. 
c.3.2.6. Three-stage Computational-Experimental-integrated Iterative learning with real-time 
experimental parameter optimization. Let 𝜽(𝟎) =(𝜃!

(!), 𝜃!
(!),… , 𝜃!

(!)) represent the initial feature parameters 
chosen randomly, where 𝑚 is the number of features.  𝜽 will be optimized using an iterative learning scheme by 
incorporating new experimental information produced in Aims 1 and 2. Because of the high throughput of 
MegaMut and STROBE-seq, our strategy is to implement for the first time a three-stage iterative learning 
scheme: the first stage initial learning, the second stage real-time experimental parameter optimization, and 
the third stage final assessment (Fig. 1).  

In the first stage, we will randomly select ~2,000 active enhancers in K562 cells as defined by histone 
modifications63, DNase I Hypersensitivity mapping64, and GRO-cap signal57. We will first generate the WT 
clones of these enhancers using Clone-seq. Then, we will select 5 random variants on each enhancers and 
generate all ~10,000 variant clones through MegaMut. Their effects on enhancer activities will be quantified by 
STROBE-seq. Starting from the initial tuned 𝜽(𝟎), we tune 𝜽(𝟏) according to STROBE-seq results of ~10,000 
variants in the first stage. For a specific variant 𝑣, we define 𝑦! as Bernoulli distributed random variable with 
𝑦! = 1 indicates that 𝑣 is functional. Then expectation of 𝑦! can be predicted through a logistic regression. 
Specifically, logit(𝑃 𝑦! = 1 ) =   −𝑘   ∗    𝑹𝑺𝒗 − 𝑎 = −𝑘   ∗    𝜃! ∗ 𝑠!,!! − 𝑎  (𝑘, 𝑎  are scaling parameters). To 
update  𝜽(𝟎) with experimental validation results 𝒀, we implement Bayes’ rule:  𝑃(𝜽|𝒀)   ∝   𝑃(𝒀|𝜽)𝑃(𝜽). We will 
use MCMC (Monte Carlo Markov Chain) sampling to search over the parameter space and find the most 
probable 𝜽(𝟏). We will predict the functional impact of all variants, 𝑃 𝑦! = 1 , using 𝜽(𝟏). 

To select the variants for the first round of experimental optimization in the second stage, we will clone 200 
untested enhancers and choose 1,000 variants (400 with predicted high impact, 200 with medium impact, and 
400 with low impact). We will use MCMC to find the most probable 𝜽(𝟐_𝟏) and update all the 𝑃 𝑦! = 1  scores. 
In subsequent rounds of the second stage, we will choose the top 200 enhancers (untested enhancers will be 
cloned through Clone-seq first) that contain variants v with the largest change in absolute logarithm odds ratio 

(AOR): log OR = logit P 𝑦!
! = 1|𝜽(𝟏) − logit P 𝑦!

! = 1|𝜽(𝟎) = −𝑘 𝑹𝑺 ! − 𝑹𝑺 ! . We will clone 
and test 1,000 top AOR variants in these enhancers, and perform parameter optimization through MCMC. After 
the 6th round, we will obtain the final parameter 𝜽(𝟐)  for ReEnAct. Depending on the results, we may add more 
rounds to this stage, or continue to the third stage.  

In the third stage of final assessment, we will select 1,000 variants (400 with predicted high impact, 200 
with medium impact, and 400 with low impact) on previously cloned enhancers and 4,000 variants (1,500 high 
impact, 1,000 medium impact, and 1,500 low impact) on 800 untested enhancers. We will measure their 
impact on enhancer activities quantitatively through STROBE-seq, which will be used to comprehensively 
evaluate the performance of ReEnAct. Overall, we will generate >3,000 WT enhancer clones and 
examine >20,000 noncoding variants using MegaMut + STROBE-seq. 
c.3.2.7.  Potential pitfalls and alternative approaches. The “three-stage” iterative learning structure provides 
a way to iteratively include experimental information into the machine-learning framework. However, since 
there are several rounds of iterative refinement, the final model may become overfit to the training data. To 
identify possible overfitting, we will use a learning curve (training error and validation error as functions of the 
number of training points). Since the iterative refinement is performed only on the training data, a traditional 
learning curve cannot be drawn. However, this can be circumvented by performing an internal cross-validation 
on each of the rounds of iterative refinement: we randomly assign a subset of the 1,000 variants tested in any 
round as training and the rest as validation just to compute the learning curve. If the training error rate 
(computed only on the subset of the 1,000 variants) is significantly lower than the validation error rate 
(computed using the rest of the 1,000 variants) even after including a large number of training points, the 
model is likely overfitted. If that is the case, we will attempt to avoid overfitting by a) including only a random 
subset of points per run; b) using a L1 regularization term to decrease the variance118. 

It is also possible that our model will be underfit after 6 rounds in the second stage. Our initial proposal is to 
test 1,000 variants per run over 6 runs in Year 3. However, if the learning curve shows that our model is 
underfitted (both training and validation error rate are high), we can fit a better model by a) using a L2 
regularization term and/or reducing the penalty of the regularization term to decrease the bias;;b) doing more 
runs in the second stage if necessary118.  
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