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ABSTRACT 
It is challenging to identify recurrently mutated regions associated with diseases because 
background mutation rate is usually heterogeneous and severely confounded by many 
known genomic features. Limited noncoding annotation information further hinders the 
result interpretability in such population analysis. Here, we address these issues with a 
Negative binomial regression based Integrative Method for mutation Burden analysis 
(NIMBus). It first treats mutation rates as a random variable and therefore models the 
over dispersed mutation count data by a negative binomial distribution. Then, to remove 
the confounding effect, we regress the mutation counts against 381 features extracted 
from REMC and ENCODE in all available tissues to accurately estimate the local 
background mutation rate. Such integrative framework in NIMBus can be immediately 
extended to accommodate new features conveniently in the future. In addition, we also 
customize all the noncoding annotations from ENCODE for somatic burden analysis and 
integrate them inside NIMBus to help users to better interpret the underlying biological 
mechanisms for the discovered targets. We applied NIMBus on 649 whole-genome 
cancer sequences and it successfully identified well-known noncoding drivers, such as 
the TERT promoter. We make NIMBus available as a software tool, and release our 
results as an online resource (nimbus.gersteinlab.org). 

1. Introduction	
  
Population level analysis is still one of the most powerful ways to identify deleterious 
mutations for diseases[1-3]. Nowadays, the development in whole genome sequencing 
(WGS) and personal genomics has provided unprecedented statistical power to perform 
such analysis. The burden test basically looks for recurrent variants, no matter germline 
or somatic, associated with diseases that occur more frequently than expected, which is 
called the burden test. Therefore, an accurate quantification of mutation burden is 
important to uncover the genetic cause of various diseases, which in turn allows for 
targeted therapies in clinical studies. However, the mutation burden test for somatic 
variants remains a challenge for several reasons.  

First, some of the pioneer work analyzing WGS assumed a constant mutation rate 
across different regions or cancer genomes and ignored that somatic genomes are highly 
heterogeneous [6]. Hence, , the positional level mutation counts often demonstrate larger 
than expected variances under such assumption, which is called overdispersion. This 
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assumption results in bad fitting and generates numerous false positives [7], so it is 
necessary to introduce more sophisticated models to handle such mutation heterogeneity. 

Second, numerous genomic features have been reported to largely affect the mutation 
process [4], which need to be corrected carefully in burden analysis . Unfortunately, none 
of the few current methods that considered such effects systematically explored these 
genomic features in a tissue specific way, and their models demonstrated very limited 
extensibility to accommodate new features in the future.  For instance, Lochovsky et al 
only corrected replication timing at relatively low resolution [7]. MutsigCV tried to 
correct the effects of several features, such as expression and replication timing, by only 
using a small neighborhood of genes with similar covariate values to estimate local 
background mutation rate. However, as the number of covariates increases, it is usually 
difficult to find a meaningful neighborhood in high dimension space. 

Lastly, many state-of-the-art methods are optimally designed for coding regions 
analysis [4], which represents less than 2 percent of the human genome. Nowadays, a 
myriad of studies have shown that noncoding mutations could serve as driver events for 
diseases. One well-known example is that mutations in TERT promoter were found to be 
associated with cancer progression [5]. Hence, a unified coding and noncoding analysis is 
needed to annotate the discovered hotspots. 

In this article, we propose a Negative binomial regression based Integrative Method 
for Mutation Burden analysis (NIMBus) that solves the three problems mentioned above. 
It intuitively treats mutation rates as a random variable by scaled gamma distribution, and 
resultantly models the mutation counts as a type I negative binomial distribution to 
handle overdispersion. To capture the covariate effects, we integrate the most extensive 
features in all available tissues from Roadmap Epigenomics Mapping Consortium  
(REMC) and the Encyclopedia of DNA Elements (ENCODE) project to create a 
covariate table to predict the local mutation rate with high precision through regression. 
In addition, we also customized the most comprehensive noncoding annotations from 
ENCODE to facilitate our results interpretation. Such integrative approach employed in 
NIMBus enables us to effectively pinpoint mutation hotspots associated with disease 
progression and to better understand the biological mechanisms.  

 

2. Methods	
  
2.1	
  WGS	
  variants	
  data	
  used	
  	
  
We collected 649 whole genome variant calls from public resources and our 
collaborators. This data set contains a broad spectrum of 7 different cancer types (details 
in Text S1 section 1).  
2.2	
  Local	
  background	
  mutation	
  rate	
  estimation	
  
(A) Human genome gridding and covariate matrix calculation  
First we divided the whole genome into bins with fixed length 𝑙. Then the bins that are 
overlapped with any of the two blacklist regions will be removed (details in Text S1 
Section S2).  Then 381 features were extracted from both REMC and ENCODE, and 
average signal in the bins were calculated (details see Text S1 Section S2).  Let 𝑥!,! 
denote the average signal strength in the 𝑖!! bin and 𝑗!! covariate, where 𝑖 = 1,⋯ ,𝑛 and 
𝑗 = 1,⋯ ,𝑚. 
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(B) Use negative binomial distribution to handle mutation count overdispersion 
Suppose there are 𝑑 = 1,⋯ ,𝐷 different diseases (or disease types) in the collected WGS 
data, and    𝑠 = 1,⋯ , 𝑠! represents samples for a specific type of disease 𝑑. Let 𝑦!

!,! and  
𝜆!
!,! denote the mutation counts and rate for the 𝑖!! bin in section 2.2 (A) for sample 𝑠 in 

disease 𝑑. In previous efforts, scientists assume that mutation rate 𝜆!
!,! is constant across 

different regions of the human genome, samples, and diseases, so they have 𝜆!
!,! ≜ 𝜆  for 

∀  𝑖,𝑑, 𝑠 [6]. Hence  𝑦!
!,! follows a Poisson distribution with the probability mass function 

(PMF) given in equation (1). 

 
p
Yi
d ,s yi

d ,s( ) = e
−λi

d ,s

λi
d ,s( )yi

d ,s

yi
d ,s !

!
e−λλ yi

d ,s

yi
d ,s !

                                          (1) 

However, somatic genomes are highly heterogeneous because regions from various 
disease, samples, and regions of the same genome usually demonstrate considerably 
different mutation rates, severely violating assumptions in equation (1) [4]. As a result, 
the fitting of 𝑦!

!,! is usually very poor using (1) since a larger than expected variance, the 
so called overdispersion, is often observed [7]. Simply using the constant mutation rate 
assumption in (1) will generate numerous false positives. Instead in our model, we first 
pool all the samples from the same disease 𝑑 together and count the mutations in region 𝑖 
as 

yi
d = yi

d ,s
s=1

Sd∑                                               (2). 

Then we try to model 𝑦!! to better handle overdispersion.  Assume that 𝜆!! = 𝜆!
!,!

!  
represent the overall mutation rate from all samples in region 𝑖  of disease type 𝑑 . 
Different from the constant mutation rate assumption in (1), we instead assume that 𝜆!! is 
a random variable with a scaled gamma distribution (Γ ) with parameter 𝜇!! and 𝜎!! in 
equation (3). 

λi
d = µi

dγ i
d,     γ i

d ∼ Γ 1, 1
σ i

d

⎛
⎝⎜

⎞
⎠⎟

                               (3) 

Then the conditional distribution of 𝑦!!  given 𝜆!!  can be represented as a Poisson 
distribution with PMF in (4). 
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d
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d
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                                         (4) 

By integrating (3) into (4), the marginal distribution of   𝑦!! can be represented by a 
type I negative binomial distribution with PMF in (5). 
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                  (5) 

The mean and variance of 𝑦!! can be described as 𝜇!! and 𝜇!!    1+ 𝜎!!  respectively. 
Our model in equation (5) is convenient with explicit interpretability. First, the gamma 
distribution in equation (3) conveniently models the mutation rate variability from two 
sources: i) for each position 𝑝,𝑝 = 1,⋯ , 𝑙 within bin 𝑖, we allow 𝜆!,!!  (mutation rate for 
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position 𝑝 in bin 𝑖 for disease 𝑑) to vary from position to position in a small scale, and 
each 𝜆!,!!  can be considered as a point on the gamma distribution in (3). ii) We can also 
interpret that the contribution of from 𝜆!

!,!  each sample 𝑠 to 𝜆!!   is different and such 
variation can be described by a gamma shape.  Second, our model in (5) clearly separates 
the two main parameters 𝜇!! and 𝜎!! with physically interpretable meanings: the mean and 
overdispersion. Here a larger 𝜎!! indicates a more severe degree of overdispersion, which 
is usually due to larger difference mutation rate. 
(C) Accurate local background mutation rate estimation by regression  
After modeling 𝑦!!  using negative binomial distribution in 2.2 (B), we then tried to 
estimate the local mutation rate by correcting the covariate table 𝑿 described in 2.2. 
Again 𝑥!,!  denote the average signal strength in the 𝑖!!  bin and 𝑗!!  covariate, where 
𝑖 = 1,⋯ ,𝑛  and 𝑗 = 1,⋯ ,𝑚 . Because we noticed that the genomic features in the 
covariate tables are highly correlated, which may introduce multicollinearity if directly 
used in the regression model. We first applied principle component analysis (PCA) to 
matrix 𝑿. Let 𝑿′ represent the covariate matrix after PCA and 𝑥!,!!  denote each element 
in 𝑿′.  

A generalized regression scheme is used here. Suppose 𝑔!  and 𝑔!  are two link 
functions. We then use linear combinations of covariate matrix 𝑿!  to predict the 
transformed mean parameter 𝜇!! and overdispersion parameter 𝜎!! as 

 

g1 µi
d( ) = log µi

d( ) = β0 + β1 ′xi,1
d +!+ β j ′xi, j

d +!+ βm ′xi,m
d

g2 σ i
d( ) = log σ i

d( ) =α 0 +α1 ′xi,1
d +!+α j ′xi, j

d +!+αm ′xi,m
d

                    (6). 

Here we used the log function for 𝑔! and 𝑔! since 𝑦!! follows a negative binomial 
distribution, so the regression model in (6) is also called a negative binomial regression. 
We used the GAMLSS package in R to estimate the parameters in (6) as 
𝛼!! ,⋯ ,𝛼!! ,𝛽!! ,⋯ ,𝛽!!  . 

 
2.3	
  Somatic	
  burden	
  tests	
  using	
  local	
  background	
  mutation	
  rate	
  
(A) Background mutation rate calculation for target regions 
Suppose there are 𝐾 regions to be tested. They can either be internal noncoding elements 
such as promoters or enhancers, or elements designed by users. We used the local 
mutation rate to evaluate the mutation burden. For the 𝑘!! target region (𝑘 = 1,⋯ ,𝐾), 
optimally we should extend this target region into the length of the training bins (sketch 
given in Fig. S2 in Text S1). Then within this extended bin, we calculate the average 
signal for feature 𝑗 as 𝑥!,!! , 𝑗 = 1,⋯𝑚, and after PCA projection, 𝑥!,!!!  represents the value 
for the 𝑗!! PC.  Then the local mutation parameters 𝜇!! and 𝜎!! in the extended bin for the 
𝑘!! target region can be calculated as 

µ̂k
d = exp β̂0 + β̂1 ′xk,1

d +!+ β̂ j ′xk, j
d +!+ β̂m ′xk,m

d( )
σ̂ k

d = exp α̂0 + α̂1 ′xk,1
d +!+ α̂ j ′xk, j

d +!+ α̂m ′xk,m
d( )

                        (7). 

In reality, 𝑙!, the length of the 𝑘!! test region that could be an enhancer or promoter 
is, for example, much shorter than the length of our training bins (𝑙 in section 2.2 (A), 
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might be up to 1Mb). Hence 𝜇!! need to be adjusted by a factor of 𝑙!/𝑙 for the length 
effect. Then 𝜎!! and the adjusted 𝜇!! can be used to calculate to 𝑝!! to indicate how likely 
it is for this this test region to have more than expected mutations through negative 
binomial distribution. This optimal scheme is usually computationally expensive because 
in a typical test there are millions of functional elements to be tested, and to calculate the 
average signal for all features in the extended target bin takes a long time. Therefore, we 
proposed an approximation method to approximate the optimal 𝜇!! and 𝜎!! in our analysis 
(details see section S4 in Text S1). 
(B) Combining P values for multiple disease types 
Sometimes several related diseases (or disease subtypes) needs to be analyzed together to 
provide a combined P value. One typical example is the pan-cancer analysis.  In section 
2.3 (C), we calculated the P value for disease/disease type 𝑑 as 𝑝!! for test region 𝑘 and 
used to the Fisher’s method to combine P values. Specifically, the test statistic can be 
calculated in (8) 

 
Tk = −2 ln pk

d( )d=1

D∑ ∼ χ 2 2D( )                             (8).    

Here 𝑇! follows a centered chi-square distribution with degree of freedom 2𝐷, where 
𝐷  is total number of diseases/disease types. Then the final P value for 𝑝!  can be 
calculated accordingly. 
2.4	
  Noncoding	
  annotations	
  customized	
  for	
  NIMBus	
  
We customized the full list of noncoding annotations from both ENCODE annotations 
and our previous efforts from our experience in 1000 genomes projects. More details are 
given in Text S1. 
2.5	
  Flowchart	
  of	
  NIMBus	
  
To better illustrate how NIMBus works, its workflow is given in Figure 1.  

Figure 1. Flowchart of NIMBus 
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3. Results	
  
3.1.	
  Heterogeneity	
   from	
  various	
   sources	
   leads	
   to	
   large	
  overdispersion	
   in	
  
mutation	
  counts	
  data	
  
Pioneer genome wide somatic burden 
analysis usually assumes a homogeneous 
mutation rate, which consequently uses 
binomial or Poisson tests to evaluate P 
values [6]. However, we found that mutation 
count data usually violates such an 
assumption because there are various 
sources of heterogeneity in the mutation 
rate. To demonstrate this, we collected WGS 
variants from 649 cancer patients and 7 
cancer types (Fig. S1).  

First, we found that mutation count per 
genome varies from disease to disease. For 
instance, the median number of variants can 
be as low as 70 in PA and as high as 21287 
in LUAD. Even within the same disease, 
mutation rates vary dramatically from 
sample to sample (lowest at 1743 and highest at 145500 in LUAD, Fig. 2A).  In addition, 
there are also large regional mutation rate differences within the same sample (Fig. 3). 
Therefore, a binomial or Poisson distribution usually provides poor fitting to the real 
mutation counts data (Fig. 2B, dash lines with +, Fig. S3 in Text S1). In light of these, we 
utilized a two parameter negative binomial distribution to further capture the over-
dispersed nature of mutation counts data, which improves fitting to real data significantly 
(dash lines with star in Fig. 2B). 

 
3.2	
  Local	
  mutation	
  rate	
  is	
  confounded	
  by	
  other	
  genomic	
  features	
  
Somatic mutation rate has been reported in literature to be confounded by several 
genomic features [4, 8]. For example, single stranded DNA during replication usually 
suffers from endogenous DNA damage, such as oxidation and deamination. Therefore, 
the accumulative damage effect in the later replicated regions will result in elevated 
mutation rate. We observed a similar trend in our data. For example, in breast cancer 
samples, the Pearson correlation between normalized mutation counts and replication 
timing values is as high as 0.670 in the first 70 1mb bins (Fig. S4 A). Another example is  
the chromatin organization, which arranges the genome into heterochromatin- and 
euchromatin-like domains and has a dominant influence on regional mutation-rate 
variation in human somatic cells [8]. We also find that mutation counts are significantly 
associated with the DNASeq signal in breast cancer (Pearson correlation=−0.614, P 
value=1.524e-08, Fig S4 D in Text S1).  

Figure 2. (A) Disease and sample mutation 
rate heterogeneity; (B) improved fitting by 

negative binomial distribution 
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3.3.	
  Negative	
  binomial	
  regression	
  precisely	
  estimates	
  local	
  mutation	
  rates	
  
by	
  correcting	
  a	
  list	
  of	
  genomic	
  features	
  
Features in matched tissues provides best prediction accuracy but features in 
unmatched tissue still helps 
It has been reported that most accurate local mutation rate prediction can be achieved by 
using the matched tissue [9]. Hence, we specifically selected variants in two distinct 
cancer types BRCA and MB and predicted their local mutation rate by features from 
matched (or loosely matched) and unmatched tissues (Table S2 in Text S1). Relative 
error, defined by the normalized difference of observed and predicted value (equation s3 
in Text S1), was used to compare model performance. Consistent with previous 
conclusions, we observed that features in matched tissues usually outperform those from 
unmatched tissues. For example, the relative error is only 0.128 by using breast related 
features to predict BRCA mutation rates, noticeably smaller than 0.195 by using brain 
related features (Table S3 in Text S1). Similarly, brain related features is more accurate 
breast related ones in predicting mutation rates in MB (0.135 VS. 0.183). 

However, biologically meaningful tissue matching remains challenging and usually it 
is not an obvious choice for researchers without enough domain expertise. Furthermore, 
even after the best-matched tissue has been identified, we frequently need to handle 
missing features in that tissue. We noticed that many genomic features are highly 
correlated both within and across tissues (correlation plot in Fig. S6A), which leads to the 
suboptimal but still decent performance during our regression (scatter plots given in Fig. 
S6B). This is extremely helpful when processing diseases without matched features. For 
example, there are no prostate related tissues in REMC, but features in other tissues still 
help to estimate the local mutation rates. 
Pooling features from multiple tissues significantly improves background mutation 
rate prediction 
In light of the correlated nature of covariates, especially those from epigenetics 
experiments [10], we first performed principle component analysis (PCA) on the 
covariate matrix to overcome the multi-collinearly problem during regression. The first 
principle component (PC) could explain up to 55.69% of variance in the covariate matrix.  
It takes at least 15 and 106 PCs to capture 90% and 99% of variance respectively (Fig. 
S7A in Text S1). The correlation of each PC with the mutation counts data varies 
significantly across different cancer types (boxplots in Fig. S7B in Text S1). For 
example, the first PC demonstrates a Pearson correlation as high as 0.653 in LICA, much 
higher than 0.352 in PRAD. Therefore, it is necessary to run regression model separately 
for different cancer types. 

Since numerous PCs have been shown to be associated with mutation rates, we tried 
to investigate the collaborative effect of multiple PCs to jointly predict the local mutation 
rates. Specifically, for each cancer type, we first ranked the individual PCs by their 
correlations with mutation rates, and then only selected the top 1, 30, and all PCs to 
predict the local mutation rate. Fig. 3A shows that to use more PCs can boost prediction 
performance noticeably in all cancer types. For example, in BRCA the Pearson 
correlation is only 0.472 if 1 PC is used in regression. However, correlation coefficient 
can rise to 0.655 and 0.709 if 15 and 30 PCs are used respectively, and it can eventually 
be increased to 0.818 after using all PCs. As a result, in all the following analysis, we 
suggested to use all PCs for accurate local mutation rate estimation. 
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As it is shown in Fig. 3B, we obtained good prediction accuracy through regression 

against all PCs for the covariate matrix in all cancer types. The Pearson correlations of 
the observed data and the predicted value vary from 0.668 in PA to 0.958 in LICA. 
Scatter plots are given in Fig. S8 in Text S1. It is worth mentioning that although there is 
no prostate tissue related data in REMC, we can still achieve a very decent correlation of 
0.81 with the help of 381 unmatched but still correlated features. It indicates that even 
when somatic WGS of a disease is given without optimally matched covariates, our 
model could still achieve acceptable performance.  

In addition, the number of available variants obviously affects prediction 
performance, but it is not the only effective factor. As shown in Fig. 3B, limited number 
of variants, such as in quiet somatic genomes like PA, usually restricts our prediction 
precision (lowest correlation at 0.668 among 7 cancer types). However, other factors, 
such as number of effective covariates, quality of mutation calls, and molecular similarity 
of pooled samples of the same disease could also influence the prediction performance 
considerably. For instance, although there are a smaller number of variants in MB than in 
BRCA, our regression in MB still outperforms that in BRCA (0.865 VS. 0.818, Fig. 3B). 
3.4.	
  Coding	
  region	
  calibration	
  for	
  NIMBus	
  
Since coding regions have been investigated in more detail than the noncoding regions, 
we first applied NIMBus on coding regions to check its performance. First coding regions 
were extracted from the genecode annotation v19 and NIMBus was run on both real and 
simulated datasets (details in Text S1). We found that in all cancer types analyzed, 
NIMBus provided reasonable P values in real WGS data as compared to the simulated 
data. For example, in LUAD the P values for real data follows nicely with the uniform P 
values with a few exceptions as the true signals (black lines in Fig. S4). However, in the 
simulated data no highly mutated genes were discovered (orange lines in Fig. S4). 

We also used Fisher’s method to combine P values from all cancer types. In total 15 
genes has been discovered to be hyper-mutated and 12 out of them are well documented 
as related with cancer progression. The top genes are shown in Table 1 and Pubmed ID 
for related reference was given in the last column. These results showed that NIMBus is 

Figure 3. (A) Regression performance by correcting different number of PCs; (B) 
Relationship of regression performance against total number of variants used. 
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able to find sensible mutational hotspots and disease drivers but at the same time 
effectively control the number of false positives. 

3.5.	
  NIMBus	
  discovered	
  a	
  list	
  of	
  highly	
  recurrent	
  noncoding	
  regions	
  from	
  
cancer	
  WGS	
  data	
  
 We applied NIMBus on WGS variant calls on all 7 cancer types to deduce the individual 
somatic burden P values, and compared with the results from global and local Poisson 
models (details in section 2.4).  

 As expected, both global and local Poisson models generated obviously too many 
burdened regions in all noncoding annotation categories because of the poor fitting of 
Poisson distributions to the mutation count data (Fig. 2B). For example, in the promoter 
regions, after P value correction, NIMBus provided 8 promoters as highly mutated, while 
local and global Poisson models identified 47 and 406 respectively. It is very unlikely 
that in a single tissue, all these 47 or 406 promoters are all linked with tumor progression. 
Hence, our negative binomial assumption in NIMBus effectively captured the 
overdispersion and controlled the number of false positives. To further demonstrate this, 
we provided the Q-Q plots of P values from all 7 cancer types were provided in Fig. 5B 
as quality check. In theory, if no significantly burdened regions are detected, the P values 
should follow uniform distribution. As it is seen in Fig. 5B, in all cancer types the 
majority of our P values for all cancer types follows the uniform assumption with a few 
outliers as the true signals, indicating reasonable P value distributions. Similar results 
have also been seen in other noncoding annotations (data not shown). 

To summary the mutation burdens from all cancer types, we used Fisher’s method to 
calculate the final P values for all three models. Similar to P values from a single cancer 
type, the combined P values are severely inflated in both global and local Poisson 
models, but are rigorously controlled by NIMBus (table C in Fig. 5). Take the TSS as an 
example, NIMBus reported only 65 sites as burdened, as compared with 273 and 465 for 
the other two methods. Additional, out of the 65 TSS elements, several of them have been 
experimentally validated or computationally predicted as associated with cancer in other 
work. For instance, TP53 is a well-studied oncogene that is related in many cancer types, 
and combined P value for TP53 TSS is ranked second in our analysis (P=4.26e−14). 
LMO3 interacts with the tumor suppressor TP53 and regulates its function, and it is 
ranked fourth in our analysis (P=3.25e−13). We also found that the fifth ranked gene 
RMRP (p=1.36e−10), which is the RNA component of mitochondrial RNA processing 
endoribonuclease, has been claimed to be associated with colorectal and breast cancers 

Fig. 4. Q-Q plots of P values 

 

Table 1. Top genes after P value combination 
rank gene Adjust P PubMed ID 

1 TP53 4.50E-139 17401424 
2 DDX3X 3.79E-18 22820256 
3 KRAS 2.66E-06 19847166 
4 MUC4 4.64E-06 19935676 
5 CDH1 2.65E-05 10973239 
6 ARID1A 2.10E-4 22037554 
7 SMARCA4 3.43E-4 18386774 
8 FGFR1 6.86E-4 23817572 
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[11]. Another important example is the TSS sites in TERT, which is ranked sixth in our 
results (p=1.55e−10) and has been experimentally validated as associated with multiple 
types of cancer progression [5]. The discovery of such validated results proved that 
NIMBus could serve as an powerful tool for driver events discovery in diseases. 

 

4. Discussion	
  
Thousands of somatic genomes are now available due to the fast development of whole 
genome sequencing technologies, providing us with increasing statistical power to 
scrutinize the somatic mutation landscape. At the same time, thanks to the collaborative 
effort of big consortiums, such as REMC and ENCODE, tens of thousands of functional 
characteristic data on human genomes has been released for immediate use to the whole 
community. Hence, integrative frameworks are of urgent need to explore the interplay 
between WGS data and the functional characteristic data. It will not only be important to 
accurately search for mutational hotspots as driver candidates for complex diseases but 
also to better interpret the underlying biological mechanism for clinicians and biologists. 

In this paper, we proposed a new integrative framework called NIMBus that uses a 
negative binomial regression to capture the effect of a widespread list of genomic 
features on mutation processes for accurate somatic burden analysis. Due to the 
heterogeneous nature of various somatic genomes, our model treated the mutation rates 
as a scaled gamma distribution to mimic the varying mutation baseline for different 
patients or disease subtypes. Resultantly, it modeled the mutation counts data using a two 
parameter negative binomial distribution, which improved the mutation counts fitting 
dramatically as compared to previous work (Fig. 2B). 

Unlike previous efforts which use very limited covariates to estimate local mutation 
rate in very qualitative way, we explored the whole REMC and ENCODE data and 
searched for 381 features that best describe chromatin organization, expression profiling, 

Fig. 4 (A) number of detected prompter regions in all cancer types; (B) Q-Q plots 
of P values for promoter regions; (c) total number of over burdened regions in our 
noncoding annotations after merging P values from 7 cancer types. P_local: local 
Poisson Model, P_global: global Poisson Model  
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replication status, and context effect in all possible tissues to jointly predict the local 
mutation rate at high precision. In terms of covariate correction, NIMBus demonstrates 
three obvious advantages: 1) it incorporates the most list of comprehensive covariates in 
multiple tissues that provides the most accurate, at least to our knowledge, background 
mutation rate estimation; 2) it provides an integrative framework that can be extended to 
any number of covariates and successfully avoids the high dimensionality problem as in 
other methods [4]. This is extremely important since the amount of available functional 
characteristic data is growing rapidly as the time and money cost of sequencing 
technologies drops quickly; 3) it automatically utilizes the genomic regions with highest 
credibility for training purposes so potential users are not bothered to perform carefully 
calibrated training data selection and complex covariate matching processes. 

In addition, we also put a lot of effort on NIMBus to explore the most extensive 
noncoding annotations that is customized for somatic burden analysis. Noncoding regions 
represent more than 98% of the whole human genome, and are less investigated mainly 
due to limited knowledge to understand its biological functions. NIMBus collects the up 
to date full catalog of noncoding annotation of all possible tissue from the ENCODE 
project and our previous efforts from population genetics efforts in 1000 Genomes 
Project. All these included internal annotations of NIMBus can be either tested for 
somatic mutation burden or used to annotate the user specific input regions. 

We applied NIMBus on 649 cancer genomes of 7 different types collected from 
public data and collaborators. The individual burden test P values for each cancer type 
have been deduced and then Fisher’s method has been used to calculate the combined P 
values. We evaluated the performance of NIMBus on coding regions, which were 
investigated with much more detail by researchers. A list of well-documented cancer 
related genes has been discovered by NIMBus (Table 1 and Table S3). Besides, we also 
repeated the same analysis on simulated dataset and found no significant genes. There 
results demonstrate that NIMBus is able to find hyer-mutated genes effectively while 
controlling false positives. Furthermore, a list of non-coding elements has been reported 
to have more than expected mutations (Table C in Fig. 5D). A list of already well-known 
regions, such as TP53, LMO, and TERT TSS, has also been reported in our analysis to be 
hypomutated, proving the effectiveness of NIMBus to identify functionally associated 
results. 

It is worth mentioning that although we demonstrate the effectiveness of NIMBus 
mostly on somatic mutation analysis, it can be immediately extended to germline variant 
analysis as well. In summary, NIMBus is the first method that can integrate thousands of 
functional characteristic experimental data to analyze the mutation burdens in disease 
genomes. Such external data does not only help to better estimate the background 
mutation rate for successful false positive and negative control, but also provide the most 
extensive noncoding annotations for users to interpret their results. It may serve as a 
powerful computation tool to accurately predict driver events in human genetic disease 
and potentially identify biological targets for drug discovery. 
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