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Supplementary	  Material	  for	  NIMBus	  

S1. WGS	  data	  collection	  
We collected 649 whole genome variant calls from public resources and our 
collaborators. This data set contains a broad spectrum of 7 different cancer types, 
including breast cancer (BRCA), gastric cancer (GACA), liver cancer (LICA), lung 
cancer (LUAD), prostate cancer (PRAD), Medulloblastoma (MB), and Pilocytic 
Astrocytoma (PA).  Fig. S1 gives the pie chart of sample numbers for these cancer types. 

 

Among these samples, 100 stomach cancer samples were from Wang et al [1] and 95 
prostate cancer samples were obtained from our collaborators. The remaining comes from 
samples published by Alexandrov et al [2]. 

Table S1. Summary of WGS data 

cancer median sd 
BRCA 3705 7300.526 
GACA 14429.5 71372.080 
LICA 8706.5 5522.917 
LUAD 21287 35610.839 
MB 965 1196.036 
PA 70 114.414 

PRAD 4927 2764.873 
 

Figure S1. Pie chart of sample numbers of the 
WGS data 
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S2. Covariate	  table	  generation	  
Numerous studies showed many genomic features severely affect the mutation process, 
and such covariate effect should be removed for somatic burden analysis [3, 4].  We 
created the covariate table in three steps. 

Step	  1.	  Covariate	  collection	  and	  bigWig	  file	  generation	  
We first collected all the signal track files from major histone modification marks, 
chromatin status, methylation, and mRNA-seq data from the REMC. Only the 
experimental real data, as opposed to the imputed data, was used at this step. For each 
feature, we then processed these signal files into bigWig format 
(https://genome.ucsc.edu/goldenpath/help/bigWig.html) at 20nt resolution. If some file, 
for example the chromatin accessibility, is missing in a specific tissue, we skipped it in 
our feature selection step. If multiple replicates were found in their original data, the 
averaged signal after normalization was used in the final bigWig file. 

 Since replication timing has been proved to be associated with mutation rate in 
several articles [3-5], we also collected 8 replication timing bigWig files from the 
ENCODE project. Lastly, as researchers have observed elevated mutation rates in regions 
wither lower GC content in certain diseases, we also include the GC percentage files in 
our covariate list and generated its corresponding bigWig files. 

Step	  2.	  Genome	  gridding	  
In step two, we aim to provide effective training of our model that is convenient for users. 
Different from the calibrated training data selection mentioned in [6], we divided the 
whole genome into bins with fixed length, such as 1mb, 100kb, 50kb, etc. Only 
autosomal chromosomes and chromosome X were included in our analysis to remove the 
gender imbalance in mutation data or covariates.  

Repetitive regions on human genome are known to generate artifacts in high 
throughput sequencing analysis mainly due to their low mappability. We downloaded the 
mappability consensus excludable table used in the ENCODE project from 
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/wgE
ncodeDacMapabilityConsensusExcludable.bed.gz. Any generated fixed length bins that 
overlap with this table would be removed from the training process. We also downloaded 
the gap regions of hg19 from the UCSC genome browser, which include gaps from 
telomere, short_arm, heterochromatin, contig, and scaffold. The fixed length bins that 
intersect with these gap regions were also removed in our analysis. 

Step	  3:	  covariate	  table	  creation	  	  	  
All the bigWig files generated in step one were used to calculate the average signal using 
the bigWigAverageOverBed tool for each fixed length bin we generated above. When 
calculating the GC percentage, if the sequence information is not available at a certain 
position (such as the Ns), such position will be excluded in the averaging process. In the 
end, we summarized all the covariates values in each bin into a covariate table, with 
columns indicating different features and rows representing different training bins. 



 3 

S3. Noncoding	  annotations	  
We collected the full list of noncoding annotations to the best of our knowledge and 
customized it suitable for burden analysis. This list includes promoter regions, 
transcription start sites (TSS), translated regions (UTR), transcription factor binding sites 
(TFBS), enhancers, ultra-conserved, and ultra-sensitive sites. Promoters and TSS sites 
were defined as the 2500 and 100 nucleotides (nt) before the transcripts annotated by 
GENCODE v16. We also collected all the TFBS and enhancers from all tissues that are 
uniformly processed through the ENCODE pipeline. In addition, the ultra-conserved and 
ultra-sensitive sites were defined as those under positive selection during transcription 
regulations in our previous method FunSeq [7]. 

S4. Optimal	  and	  approximate	  local	  background	  mutation	  rate	  estimation	  
After the training process through equation (6) in the main manuscript, the estimates of 
parameters for negative binomial regression can be represented by 𝛼!! ,⋯ ,𝛼!! ,𝛽!! ,⋯ ,𝛽!! . 
To obtain the optimal local mutation rate for test region 𝑘, which may be either an 
internal noncoding annotation such as enhancer or a user-defined element, we should first 
extend this region into the training bin length 𝑙 centered at the center of test region 𝑘 
(blue parts in Fig. S2). Then the covariates values after PCA projection in this extended 
bin should be calculate as 𝑥!,!!! ,⋯ , 𝑥!,!!! . Hence in this scheme, the local mutation 
parameters should be calculated as  

µ̂k
d = exp β̂0 + β̂1 ′xk,1

d +!+ β̂ j ′xk, j
d +!+ β̂m ′xk,m

d( )
σ̂ k

d = exp α̂0 + α̂1 ′xk,1
d +!+ α̂ j ′xk, j

d +!+ α̂m ′xk,m
d( )

                          (s1). 

Figure S2. Sketch of optimal and approximate local mutation rate estimation 
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However, in real data analysis there are usually millions of test regions to be tested 
and for each region 381 features need to processed, the above optimal scheme is usually 
computational expensive. Here we proposed an approximation scheme to calculate 𝜇!! 
and 𝜎!!. Instead of using covariates for the extended bin centered at target region 𝑘, we 
used the values for the nearest training bins 𝑥!,!!! ,⋯ , 𝑥!,!!!  to target region 𝑘 (magenta 
parts in Fig. S2), and burden tests are performed after length adjustment. Since 
𝑥!,!!! ,⋯ , 𝑥!,!!!  has already been pre-calculated during the training process, our 

approximation scheme significantly reduced the computation burden for tests.  

S5. Kolmogorov–Smirnov	  (KS)	  statistic	  to	  compare	  mutation	  counts	  in	  1mb	  
bins	  again	  fitted	  ones	  using	  Poisson	  distribution	  

In order to check the degree of overdispersion in the mutation counts by Poisson 
assumption, we compared the observed and fitted mutation count data by Poisson 
distribution and provided the KS statistic in each cancer type. Specifically, we counted 
the number of mutations 𝑦!! in the 𝑛 1mb bins generated in section S2 step 2. Then the 
maximum likelihood estimate of mutation rate 𝜆!  under the Poisson assumption 
(equation (1) in the main manuscript) are calculated for cancer type 𝑑. Then we randomly 
generated 𝑛 simulated mutation counts 𝑦!! with 𝜆! and calculated the KS statistic. We 
repeated the above process 100 times and plot the cumulative density function (C.D.F) of 
these KS statistics. A large KS statistic near 1 indicates larger overdispersion in the 
mutation count data. From Fig. S3, we showed that in all 7 cancer types, Poisson model 
provides poor fitting.  

  

Figure S3. KS statistic of the observed and fitted mutation counts using Poisson 
distribution 
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S6. Local	  mutation	  rates	  are	  highly	  correlated	  with	  many	  genomic	  features	  
It has been reported that local mutation rates are associated with many well-known 
genomic features, such as mRNA expression, GC content, replication timing, and 
chromatin organization [3]. We found that the WGS data in our datasets also 
demonstrated similar characteristics. For example, Fig. S4 shows how mutation counts at 
a 1mb resolution (the first 70 bins on chromosome 1) are correlated with several genomic 
features. 

 

  

Figure S4. Mutation rates are severely affected by many genomic features in Breast Cancer. 
The first 70 1mb bins on chromosome 1. Mutation counts (black line and left y axis) and 
other genomic features (red line and right y axis) are normalized in a genome-wide way. 
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S7. Toy	  example	  of	  how	  the	  regression	  runs	  with	  multiple	  features	  
 In order to illustrate how the negative binomial regression works, we provided a toy 
example in Fig. S5. Suppose in a specific disease 𝑑, let 𝜇!! represent the mean values of 
mutation counts in the 𝑖!! bin, and 𝑥!,!!  and 𝑥!,!!  denote the GC content replication timing 
in the same bin. In this example, we suppose that  

𝑙𝑜𝑔 𝜇!! = 0.670𝑥!,!! − 0.683𝑥!,!! + 𝜀!                     (s2), 

where 𝜀!  is a Gaussian random variable with 0.6 mean and 0.1 standard deviation. 
Suppose 𝑥!,!!  and 𝑥!,!!  are two uniformly distributed random variable between 0.1,0.9 , 
we generated 1000 points and shows how 𝑥!,!!  and 𝑥!,!!  jointly affect the local mutation 
rate through Fig. S5 

S8. Regression	  Performance	  comparison	  using	  features	  from	  matched	  and	  
unmatched	  tissues	  

Specifically, we represented mutations rates in BRCA and MB as 𝜇!! and  𝜇!! for the 𝑖!! 
bin 1mb bin. 7 genomic features in breast related features were extracted from REMC, 
including DNASeq, H3K27me3, H3K36me3, H3K4me3, H3K9me3, mRNA-seq and 
methylation data (features start with B_ in Fig. S6A), denoted by 𝑥!,!! ,⋯ , 𝑥!,!! . Similarly 
we also got 8 unrelated features in brain related tissues for MB denoted by 𝑥!,!! ,⋯ , 𝑥!,!!  
(H3K27me3, H3K27ac, H3K36me3, H3K4me3, H3K9me3, mRNA-seq and methylation, 
features start with M in Fig. S6A). We found that these features are highly correlated 
both within and across tissues (as shown in the correlation plot in Fig. S6A).  

Figure S5. Toy example of how two parameters jointly affects the mutation 
rate. (A-B): scatter plot of mutation rate and covariates. Red line is the fitted 
line using only one covariate; (C) 3D scatter plot of mutation rates and two 
covariates 
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To compare the performance of regressions using (loosely) matched and unmatched 
tissues, four regression models can be run as shown in Table S2. The scatter plots of the 
observed and predicted values were given in Fig. S6B.  To compare model performance, 
we defined the the relative error 𝑒!! as  

𝑒!! =
!!
!!!!

!

!!
!                                                         (s3). 

Relative errors for these four models were given in Table S3. 

 

 
 

Figure. S6. (A) Features in breast and brain related tissues are highly 
correlated; (B) scatter plot of observed and predicted mutations by 
regression for all four models. Red line represents the regression line and 
Pearson correlations are given. 

 
Table S2. Four regression models using matched and unmatched genomic 
features 

Mutations Covariates BRCA MB 

BRCA   

MB   

 

Table S3. Relative error for models using matched and unmatched genomic features 

Mutations Covariates BRCA MB 

BRCA 0.128 0.135 
MB 0.195 0.183 
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S9. PCA	  analysis	  of	  the	  covariate	  matrix	  
It has been reported that many genomic signal tracks demonstrate noticeable correlations 
both across features and tissue [8]. Hence we first centered and scaled the covariate 
matrix 𝑋 and then performed PCA on it to obtain 𝑋. Then the cumulative proportion of 
variance explained by the PCs were given in Fig. S7 A. As expected, there is lots of 
redundancy in the covariate table. The first PC may explain as much as 55.69% of 
variance. And it takes up to 15 and 106 PCs to capture 90% and 99% of variance. 

We also calculated the Pearson correlation of PC 𝑗 with mutation counts in cancer 
type 𝑑 as 𝜌!!. Then the absolute correlate value 𝜌!!  were averaged over different cancer 
types 𝜌! to rank the PCs. The top 20 PCs with highest 𝜌! were selected boxplot for each 
of the PCs were given in Fig. 7B. 

 

S10. Performance	   of	   local	   background	   mutation	   rate	   estimation	   by	  
correcting	  all	  PCs	  for	  the	  covariate	  matrix	  

Figure S7. (A) Cumulative proportion of variance explained by the number of PCs; (B) 
Boxplot of Pearson correlations of top PCs to mutation counts data in different cancer 
types. 
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For each cancer type, we tried to predict the local mutation rate by correcting the 
covariate matrix after PCA projection. Then the Pearson correlation of the predicted and 
observed mutation rates are given in Fig. S8. 

 

Figure S8. Scatter plot of observed and predicted mutation rate. Red line represents 
the diagonal line. 
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S11. Coding	  region	  analysis	  on	  both	  real	  and	  simulated	  data	  	  

Coding	  region	  extraction	  
We first extracted all the coding regions from the Gencode v19 annotation. For the 
annotation accuracy, we only selected the protein coding genes with gene_status labeled 
as “KNOWN” from the annotation. Then all the protein coding transcripts of the selected 
genes were selected. We merged multiple transcripts to get the final protein coding gene 
annotation as shown in Fig. S9. 

Simulated	  variants	  for	  all	  cancer	  types	  
For each variant in a set of whole genome sequencing data, we tried to find a new 
position in a 100kb neighboring region (50k and 50k up and downstream each). Then we 
tested all the coding genes defined above on the original and simulated data set. Since the 
permuted size 100kb is relatively large as compared to the test region, a better method is 
supposed to give less or even no positives on the permuted data set. The P values were 
given in the updated Fig. S10.  

Significant	  genes	  after	  multi-‐test	  correction	  for	  the	  combined	  P	  values	  
Table S4 significant genes after P value combination 

rank gene Adjust P PubMed ID 

1 TP53 4.50E-139 17401424 

2 DDX3X 3.79E-18 22820256 

3 KRAS 2.66134E-06 19847166 

4 MUC4 4.64139E-06 19935676 

5 CDH1 2.65443E-05 10973239 

6 ARID1A 0.00021044 22037554 

7 SMARCA4 0.000343463 18386774 

8 FGFR1 0.000686205 23817572 

9 OTOP1 0.003154951 NA 

Figure S9. Example of protein coding gene merging 
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10 SPOP 0.00366921 22610119 

11 STK11 0.00366921 15021901 

12 PTEN 0.004000536 9697695 

13 SMO 0.010709663 9422511 

14 TAS2R31 0.029083574 NA 

15 TBC1D29 0.029683484 NA 

 

 
  

Figure S9. Q-Q plots of gene regions on real and simulated data 
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