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Abstract 
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Background 
Over the last two decades, genome-wide analysis of nucleic acids has rapidly advanced to the 
point where we can routinely survey the entire genome, epigenome, and RNA transcriptome of 
every imaginable cellular system. Ambitious projects such as 1000 Genomes, The Cancer 
Genome Atlas (TCGA), and the Genotype-Tissue Expression project (GTEx) have performed 
deeply integrative analyses of the genome and transcriptome to better understand the impact of 
DNA variants on human health and disease. While these efforts focus on breadth over a large 
number of individuals, other high profile projects such as the Encyclopedia of DNA Elements 
(ENCODE), the Roadmap Epigenome Project, and BrainSpan have attempted deeper 
characterisation of the multi-omic landscape of specific cell types, tissues, and species.  Thanks 
to ever simpler and cheaper sample preparation, RNA analysis remains the de-facto approach 
for a genome-wide survey of gene expression and as such features heavily in all of these 
projects. Biologically however, RNA is far from the end of the story. 
 
Protein levels arguably most closely reflect the biosynthetic state of the cell but, compared to 
nucleic acids, are much more difficult to measure in a high-throughput assay thanks primarily to 
complex chemistry of amino acids and our current inability to amplify polypeptides.  For this 
reason mass-spectrometry proteomics would greatly benefit from the type of deep analytical 
integration seen in studies of the transcriptome and the genome [REF any ASE/RDD paper] or 
epigenome [REF ENCODE-nets?]. The handful of studies claiming integrated analysis of the 
transcriptome generally refer to having obtained RNA and protein in parallel from the same 
samples, and comparing results post hoc. [24290761, etc, etc]. While it is undoubtedly powerful 
and important to perform multi-omic experiments on the same samples/tissues the potential 
insights from a fully integrated analysis are often lost. 
 
Studies that include a direct comparison of mRNA expression and protein abundance typically 
report poor correlation, as post-transcriptional regulation often leads to differential synthesis and 
turnover of both RNA transcripts and proteins. Recently, studies of the translatome as a whole 
have started to bridge the gap between transcriptome and proteome. By measuring the dynamic 
profiles of ribosomes as they are translating mRNA to protein, as well as steady state mRNA 



and protein levels, we get an additional and often crucial [REFs Ingolia, Piccirillo, etc] insight 
into expression regulation within a cellular system. The potential benefits of a principled 
integration of every level of the experiment (from sample extraction, to alignment, to 
quantification) of these highly complementary data modalities are very enticing. 
 
To date the majority of high-throughput studies probing translational dynamics have been in 
‘lower’ organisms such as bacteria and yeast, with a few recent studies moving via cell-culture 
to more complex eukaryotes.  The main problem with studies of the mammalian translatome is 
the splicing complexity of the transcriptome; current estimates are that over 90% of human 
multi-exon protein coding genes transcribe alternatively spliced mRNAs [18978772]. However, 
several recent observations suggest that in fact the majority of human cell-types, tissues, or 
even organs tend to predominantly express a single isoform of each gene [22955620, 23815980]. 
Identification of these principal isoforms by RNA-sequencing can yield important functional 
insights, such as the absence or presence of protein-protein interaction (PPI) domains and the 
use of alternative splice and promoter sites that may be specific to an experimental condition. It 
is further possible that due to post-transcriptional regulation and the presence of non coding 
RNAs, the principle RNA transcript may not in fact be the dominant protein isoform, however 
most proteomic analysis is performed at the abstracted level of the gene and does not 
distinguish between individual isoforms.  Here, multi-modal profiling of the various levels of the 
translatome is well positioned to resolve such isoform ambiguity with parallel measurements of 
mRNA, ribosome occupancy, and protein abundance. 
 
In this study we combine extraction of total-RNA, purified transcripts engaged by the ribosome, 
ribosome footprints, and proteomics with a novel analytic approach to integrating these data at 
the isoform level.  Our software tool, miBAT (multi-modal isoform-level Bayesian Analysis of 
the Translatome), employs an expectation-maximisation algorithm to resolve transcripts 
producing ribosome footprints and protein isoforms producing peptides.  We show that use of a 
‘biologically informative’ mRNA prior is extremely effective at resolving isoform ambiguity and 
that footprints obtained by immunoprecipitation of ribosomes provide significantly cleaner data 
compared to standard sucrose-cushion based purification. 

Results 

Multi-modal profiling of the transcriptome and translatome 
Given the potential scope for post-transcriptional regulation in any given cellular system, we 
designed a series of assays to be run in parallel on the same sample (Figure 1a).  For this proof 
of principle we used a human cell-line (HEK293), collecting RNA-sequencing (RNA-seq) data at 
two levels, total cellular RNA (‘totalRNA’) as well as only those transcripts engaged by the 
ribosome (ribosome associated RNA, ‘raRNA’).  We also obtained ribosome footprinting through 
two methods of purification, the standard sucrose cushion and a novel immunoprecipitation 
based approach.  Finally we obtained proteomic data in both ‘discovery’ and ‘quantification’ 
mode, where the former relies on heavily fractionated runs to be able to identify the maximum 



number of peptides while the latter is a more standard proteomic prep focussing on providing 
quantitative measurements of a smaller number of peptides and proteins. 
 
Each of these assays differs not only in their molecular target but also their sensitivity.  The 
depth of coverage, in terms of genes detected at various levels of expression, is unsurprisingly 
by far the greatest in totalRNA and raRNA (Figure 1b), extending deep into the poorly 
expressed non-coding transcriptome.  The sensitivity and specificity of raRNA to selecting 
protein coding genes is extremely high, with over 90% of the protein coding genes detected in 
totalRNA also reflected in the raRNA-seq data (Figure S1a-b). Ribosome footprints cover 
around two-thirds of the genes in the expression regimen typically reported as producing 
protein, in our dataset this constitutes the 11,268 protein coding genes expressed above 5 
transcripts per million (TPM).  Fractionated ‘discovery’ proteomics hits 39.5% of these genes, 
while standard quantitative proteomics represents only 10.2% of the most highly abundant 
genes (Figure 1b and Figure S1a). 

IP is superior to sucrose cushion for collecting ribosome footprints 
We observed a marked difference in data quality resulting from the two methods of purifying 
ribosomes for footprinting.  Compared to the footprints obtained by sucrose cushion, the 
footprints obtained by immunoprecipitation (IP) contained a larger fraction of ribosomal RNA 
(rRNA) which was carefully removed (see Methods), however the remaining reads were of 
substantially higher quality and purity. Notably, 74% of the IP footprint reads were in the 
expected 28-32nt size range (compared to an average of 51% from the cushion) and 79% of 
those 28-32nt reads could be uniquely mapped to the genome (compared to an average of just 
48% from the cushion; Figure S1c).  Finally, of the uniquely mapped reads the vast majority 
(97%) of IP footprints mapped to the coding sequence (CDS) compared to 75% of the sucrose 
cushion footprints; even after explicitly removing nuisance small-RNA genes this fraction 
remained at 86% for the cushion footprints (Figure S1d).  This last point especially, reflecting a 
relatively high level of nuisance contamination in footprint samples obtained by sucrose cushion, 
may have resulted in the recent burst of academic activity with several papers claiming [REFs], 
then refuting [REFs], widespread ribosome occupancy and potential translation of non-coding 
transcripts. 
 
The IP sample also substantially outperformed the cushion samples in terms of frame fidelity, in 
which multiple footprint reads aligned to the same mRNA agree on the same frame of 
translation.  Of the IP footprint sizes, 81% of the 28nt and 90% of the 29nt reads were in-frame 
with each other, compared to just 45% and 57%, respectively, for the cushion reads (Figure 
S2a-b). Here, we calculated the frame using the offset of the mid-point of the footprint read to 
the start of the middle-nucleotide of the closest codon triplet.  Using this metric and the resulting 
position-weight-matrix (PWM) of the footprint size vs. codon offset we can do two things; first we 
can infer that the result of incomplete RNase digestion, which will likely differ between footprint 
preps, tends to leave additional nucleotides at the 3’ end of the footprint (Figure S2c).  Second, 
we can use the PWM of read-mids to codon-offsets to allow the reads to decide for themselves 
the optimal translation frame for each coding sequence and then ask, as a function of the 
number of reads mapped to a transcript, what fraction of transcripts are called in the correct 



frame (see Methods). Resulting from this, we observe that again the IP footprints substantially 
outperform the sucrose cushion in that a transcript with just three footprints is called in the 
correct frame 75% of the time, rising to over 90% accuracy in transcripts with at least 10 
footprint reads (Figure S2e). Equivalent values for the sucrose cushion footprints show that 3 
footprints can call the correct frame in only 55% of transcripts and 10 footprints only manage 
65% accuracy (Figure S2d). 

Challenges and opportunities in quantifying transcripts and isoforms 
One of the major challenges of these frame analyses, and analyses of ribosome footprints and 
mass-spec peptides in general, in complex eukaryotic systems is the issue of alternate isoforms 
of a given gene.  For the analysis above, as is commonly the metric used to select the likely 
isoform in footprint analyses [REFs], the mRNA transcript selected for each gene was that with 
the largest number of footprints.  One can easily envision a situation where a gene was 
producing multiple mRNA transcripts at different abundances, which would lead to incorrect 
frame calculations for genes with isoforms resulting from frame shifting. Fortunately, several 
recent publications have found that the majority of human genes tend to predominantly express 
a single isoform in a given cell-type, tissue, or even organ [REF ENCODE + gencode folks]. The 
major challenge in studies of the translatome, i.e. ribosome footprinting and mass-spec 
proteomics, is reliably determining, for each gene, what this major isoform actually is. 
 
According to current attempts to annotate the human genome, the average protein coding gene 
has been observed to express 4 distinct mRNA transcripts, with more complex genes containing 
between 10 and 61 mRNAs. Discrimination of these different splice variants relies largely on 
observations (be they peptides, footprints, or RNA-seq reads) that span one or more exon-exon 
boundaries. Unfortunately for mass-spec proteomics, identifying the correct isoform from the 
peptides alone is problematic due to the small size of the peptides (on average 13 amino-acids), 
their low abundance, and their confinement to the CDS of the gene. These factors contribute to 
giving any random peptide an average probability of 30% to hit an exon-exon junction (Figure 
S3). Despite their increased number, ribosome footprints fare even worse due to their smaller 
size (on average 28-29nt) leading to an average probability of just 23% to hit an exon-exon 
junction (Figure S3). However RNA-seq reads, which are much longer (especially in modern 
paired-end data) have a much higher probability (on average 85%) of spanning at least one 
exon-exon junction (Figure S3).  Our goal is to exploit the vastly greater power of RNA-seq to 
study the translatome at isoform resolution by identifying the major isoform(s) for each gene 
using the RNA-seq data  to assist the assignment of footprints and peptides to these same 
isoforms, while still allowing them to diverge from the RNA-seq prediction if there is sufficient 
evidence against that particular mRNA. 
 
One of the major confounders to transcript quantification by RNA-seq is intronic reads, i.e. reads 
that align either from an exon across into an intron or reads that align entirely inside an intron 
(Figure S4a). A likely source of these reads is from pre-spliced transcripts in the nucleus and we 
find that RNA-seq reads derived from raRNA indeed contain far fewer intronic reads than the 
totalRNA data (Figure S4b). We hypothesised that poly-A purification may bring a similar benefit 



over total RNA, but inspection of data from an ENCODE K562 cell-line shows no such reduction 
in intronic reads (Figure S4c). 
 
This ‘cleaner’ exonic signal from the raRNA does in fact lead to more consistent transcript 
quantification across our three biological replicate samples. If we define agreement as the same 
major isoform identified in all three replicate samples, raRNA provides a slight improvement in 
the fraction of genes that agree on the major isoform compared to totalRNA (Figure 2a). This 
agreement is clearly dependent on the expression of the gene and on the magnitude of the 
dominance of the major isoform (Figure 2b).  By selecting realistic/sensible lower thresholds on 
expression and major isoform dominance we can substantially improve the fraction of genes 
that agree between all three replicate samples on the major isoform (Figure 2c).  Selecting 
genes with a major isoform that is expressed above 5 TPM (an expression range that includes 
96% of genes with footprint reads and/or peptides) and that accounts for more than 50% of the 
total number of RNA molecules produced by the gene, agreement increases to 97% for raRNA 
and 93% for totalRNA. 

Bayesian approach to isoform-level integration of transcriptome and 
translatome 
In order to exploit the higher resolution of RNA-seq, we designed an expectation maximisation 
(EM) algorithm that uses transcript specific RNA-seq expression values to be input as 
biologically informed prior expectations.  These informed priors are used to update the likely 
abundance of each transcript, and assign footprint reads or peptides to their most likely 
transcript of origin.   In Figure 3, we compare the iterations the algorithm progresses through 
when trying to assign ribosome footprints in POLDIP3 using a naive prior (assumes equal 
likelihood of all transcripts) compared to an RNA-seq prior (detailed browser tracks for these 
data - Figure S5a).  Use of the naive prior results in a three way tie between three equally likely 
isoforms.  Use of an RNA-seq prior overwhelmingly suggests the presence of a two fold 
abundant dominant transcript, 001, with a minor transcript of 002, an outcome which is fully 
consistent with both footprint read locations (Figure 3,S5a) and peptide data (Figure S5b). 
 
We have implemented both the EM algorithm and the footprint frame prediction software into a 
novel software tool, miBAT (multi-modal isoform-level Bayesian Analysis of the Translatome; 
https://github.com/gersteinlab/Thunder).  The tool can be run on any combination of RNA-seq, 
ribosome footprint, and mass-spec proteomics data (Methods and Figure S6) although, as we 
discuss below, use of RNA-seq to set isoform priors greatly improves the ability of the algorithm 
to assign footprints and peptides to specific isoforms.  
- by default, restricts footprints/peptides to the CDS, but can be run on whole transcripts for 
potential identification of uORFs or novel translated peptides 



Biologically informed prior substantially improves footprint and 
MS/MS isoform assignments 
The majority of multi-isoform genes still have an ambiguous major isoform following EM using a 
naive prior (Figure S7a). In 58% of genes neither footprints or peptides alone can distinguish a 
single major isoform, instead settling on two or more equally likely isoforms. In genes for which 
the naive EM does converge on a single major isoform, this isoform is typically extremely 
dominant and at least 5-fold more likely than the ‘next-best’ isoform (Figure S7b). Use of a 
biological prior (RNA-seq for footprints; RNA-seq or RNA-seq+footprints for mass-spec) 
resolves this ambiguity for a large fraction of these genes, reducing the ambiguity to less than 
20% (Figure S7c-d). 
 
We can define clusters of genes that behave similarly in terms of the ability to resolve a major 
isoform with different priors.  Using an unsupervised hierarchical clustering and dynamic tree-
cut (see Methods) we define 8 clusters of genes in each of the footprint EM and the proteomic 
EM that behave similarly based on the prior (Figure S8 and Figure 4a-b). These clusters can be 
further generalised into genes for which the biological prior is necessary or beneficial for major 
isoform identification (footprint EM: 57.1% of genes, proteomic EM: 54.7%), whether it has no 
effect compared to the naive prior (footprint EM: 41.3% of genes, proteomic EM: 33.7%), or is 
inconsistent, picking a different major isoform with different biological priors (footprint EM: 1.6% 
of genes, proteomic EM: 11.6%).  As a brief validation exercise, we selected a variety of genes 
with isoforms containing a single skipped exon, for which the naive EM was unable to identify a 
major isoform but the biological priors resolved this ambiguity.  We designed PCR primers to 
amplify the region containing the prospective skipped exon, resulting in products of different 
sizes dependent on the presence or absence of the exon (See Methods for primer design).  
POLDIP3 shows evidence of a major transcript at 563 bp, the product size for transcript 001, 
with a minor product at 476 bp (transcript 002).  For the remaining four cases, there is no 
evidence of a PCR product equating to the non-dominant transcript, which is consistent with the 
RNA-seq (Figure 4c-d). 
 
There are a substantial number of genes for which the major isoform becomes clearer following 
the addition of footprint and/or proteomic data.  The major isoform in genes in footprint EM 
clusters 3, 4, 6, and 8 in particular (Figure 4a and S8a) gets stronger with the addition of the 
footprint reads, as does the major isoform in clusters 1, 6, 7, and 8 (Figure 4b and S8b) 
following addition of the proteomic data.  Therefore there is the potential for the footprints and/or 
peptides to assist RNA-seq with isoform quantification, or at least major isoform identification 
which may be of benefit to some studies, especially in organisms with a less complete 
annotation than human. 
 
Post analysis of our complete data sets, there are two interesting outcomes to note.  Firstly, 
when analysing the footprints, we see that the vast majority (>98%) of IP reads are assigned to 
mRNA transcripts by the EM compared to only ~85% of the sucrose cushion reads (Figure S9).  
Potentially nuisance biotypes including lincRNA, miRNA, snoRNA, and retained intron 
transcripts are clearly present in the cushion while completely absent from the IP sample, 



suggesting these are artefact of sample preparation rather than reflective of real biology.  
Second, quantification of mRNA abundance, ribosome density, translational efficiency, and 
protein abundance at the gene- (Figure S10a) and isoform-level (Figure S10b) reveals little 
difference beyond the increased resolution of the set of expressed isoforms.  In these rapidly 
dividing cells therefore, the major determinant of protein abundance is transcription, not 
translation, as has been reported by others in similar cell-systems [REF Biggin etc]. 
 
Finally, in order to assess the stability of the assignment of footprints to transcripts in a broader 
context, we applied both the naive EM and the RNA-seq prior to a recent large-scale ribosome 
footprinting analysis of 54 Yoruban individuals from the 1000 Genomes project [REF Battle] with 
complementary RNA-seq data [REF Pickrell].  We see that in this dataset, even though the 
footprint sequencing is substantially newer and, in most samples, contains between 2-5 times 
more reads than the single-end RNA-seq, the RNA-seq prior still significantly reduces the 
variation in major isoform fraction across the 54 individuals (p<1E-16; Figure S11). 

Discussion 
To our knowledge this approach represents the first experimentally and analytically integrated 
analysis of the translatome. We and others have previously reported on sequence-level 
integration of transcriptome and proteome [REFs] and related software tools; for example our 
‘RNAseq Translator’ app on BaseSpace, a collaboration with ABSciex and Illumina, for mapping 
mass-spectra to a transcriptome derived directly from a Cufflinks [REF] RNA-seq transcriptome 
assembly. However our miBAT algorithm is the first to fully leverage the power of multi-level 
transcriptome and translatome profiling of the same cells by integrating abundance 
measurements in a statistically rigorous way through the transcriptome-translatome-proteome 
part of the central dogma. 
 
For this integration we find that the profiling of mRNA by RNA-seq is critical for overcoming 
isoform ambiguity in ribosome footprints or mass-spec peptides; principally because RNA-seq 
reads are longer, but also because footprints and peptides are blind to differences in the 5’ or 3’ 
UTR of transcripts.  Our analysis also highlights the benefit of clean data, both in terms of the 
reduced intronic contamination from raRNAs to the reduction of nuisance smallRNA 
contamination in the ribosome footprinting data. 
 
Our enhanced, immunoprecipitation-based ribosome footprints also support a lack of evidence 
published by others [REF] for association of ribosomes with non-coding RNAs. In fact the 
transcript-level results from our analysis with miBAT suggests only a very small number of 
footprint reads cannot be explained by an annotated coding sequence, and it is highly likely that 
the remaining ~1% of reads result either from coding sequences that are not fully annotated or 
from upstream open reading frames.  In non-transgenic systems it is still possible to obtain 
ribosomes via IP through the use of antibodies against endogenous ribosomal components, 
such as the Y10B antibody first discovered in Lupus patients [REF Joan-y-baby] that targets the 
5.8S ribosomal-RNA. 
 



Finally, it is worth noting that in these cultured, rapidly dividing cells, transcription is clearly the 
major determinant of protein abundance, as seen by others [REFs- biggin 25745146 etc].  It is well 
established however that translational control is very important in a large range of complex 
cellular systems.  Aberrant control of protein translation may contribute to every stage of cancer 
cell transformation, through mechanisms including commandeering of initiation factors, 
decreased IRES-dependent translation of critical tumor suppressors, and cap-independent 
translation of angiogenic factors.  [PMID:22767671,20332778].  In the immune system, 
translational control allows specific cell types to respond differentially to the same stimulus, 
through activation of mTOR signaling, phosphorylation of initiation factors, and synthesis of 
ribosome binding proteins [PMID:24840981]. In the nervous system, rapid non-transcription-
dependent translation of proteins is responsible for synaptic plasticity, the process that underlies 
formation of long-term memories, and protein translation may be disrupted in 
neurodegenerative, neurodevelopmental, and psychiatric conditions as wide ranging as 
Alzheimer’s disease, autism, and major depressive disorder [25032491].  In all these systems, it 
is clear that translation control mechanisms must be specific to certain cell types, but little 
progress has been made towards elucidating targets on a genome wide scale.  Successful 
investigations are currently underway to investigate the translatomes of specific groups of cells 
in the nervous systems (BACTRAP, Ribotag) and immune systems (FACs sorting).  For this 
purpose, all of the IP methods presented in this paper are fully compatible with transgenic 
systems which allow for specific ribosome IPs to enable deep investigation of targets of 
translation control which are specific to certain cell types. 

Figure Legends 
Figure 1 | experimental approach to integrated analysis of the transcriptome and 
translatome 
a: Schematic diagram of the experimental approach to multi-modal profiling of the translatome 
in Human Embryonic Kidney (HEK293) cells.  Total-RNA and protein are obtained from lysing 
whole cells, raRNA and ribosome footprint RNA are obtained by immunoprecipitation of intact 
ribosomes from the cytosol. 
b: RNA-seq of both totalRNA (dark blue) and raRNA (light blue) capture a large range of 
molecules that vary widely in abundance and biotype.  Genes with at least two ribosome 
footprints (green) are generally expressed above ~1 transcript per million (TPM).  Standard, 
unfractionated mass spectrometry can detect only the most abundant proteins (with at least two 
peptides per protein) while highly fractionated MS/MS, where peptides are separated and run 
over serial injections, delves much deeper into the lower-abundance proteome. 
 
Figure 2 | major isoform identification is consistent across biological replicates 
a: The majority of multi-isoform genes from both totalRNA-seq and raRNA-seq agree on the 
same major isoform in all three biological replicate samples.  Grey = single isoform genes.  
Black = all three replicates agree, red = at least one replicate shows a different major isoform. 
b: Agreement on the same major isoform across the three replicate samples increases with 
both increasing dominance of this isoform (as a fraction of the gene expression explained by 
this isoform; x-axis) and absolute expression of the gene (y-axis; log10 transcripts per million).  



The lower the TPM and the lower the dominance, the more likely it is that there will be a 
disagreement on the major isoform between samples. 
c: Heat maps show the effect of varying minimum thresholds of gene expression and major 
isoform dominance on this agreement between replicates. Greater consistency is evident in 
raRNA compared to totalRNA, represented by the increased area of white in the upper right 
quadrant.  However, in both cases, more than 90% of genes with at least a 50% dominant major 
isoform expressed at more than 5 transcripts per million will consistently call the same major 
transcript. 
 
Figure 3 | analytical approach to integrated analysis of the transcriptome and 
translatome 
Schematic diagram depicting the expectation maximisation process for the POLDIP3 gene 
using the 11 ribosome footprint reads that map to the coding sequence (CDS) of one or more of 
its mRNA transcripts. The uninformative ‘naive’ prior, in which each transcript is equally likely to 
generate these observed footprints, converges on three equally likely transcripts which the 
footprint reads cannot discriminate between.  The use of a biologically informed prior, obtained 
directly from the relative transcript abundances from totalRNA-seq or raRNA-seq, overcomes 
this ambiguity as the footprint reads are fully consistent with the transcript abundances for this 
gene.  The biological prior supports POLDIP3-001 as the greater than two fold dominant 
isoform, with a minor secondary isoform of POLDIP-002. 
 
Figure 4 | a biologically realistic prior dramatically improves isoform level interpretation 
of ribosome footprints and MS/MS peptides 
a) Genes with at least three ribosome footprint reads cluster into 8 main groups based on the 
result of the EM.  Each plot shows the major isoform fraction before (prior) and after the EM.  
The results based on the three available priors are illustrated by the three columns of plots 
(naive, left; totalRNA, centre; raRNA, right).  Genes fall into three main groups, those that are 
aided by the use of a biologically informed RNA-seq prior (green), those for which the major 
isoform is decided entirely by the footprints (blue), and those in which the major isoform is 
unstable (red). 
b) As a) following EM using peptides obtained from mass-spectrometry.  Here the priors are 
naive (left), raRNA (centre), and raRNA+footprints (right); where the latter is the isoform 
abundances output by the ribosome footprint EM using the raRNA prior - the right column in a). 
Generally the use of the biologically informative prior is more useful as the peptides are less 
capable of resolving the major isoform than the more abundant ribosome footprints. 
c) Detailed illustration of the EM result for five selected genes showing differences in the relative 
isoform abundances of each.  In all cases, the biological prior is necessary to resolve the major 
isoform (red) and the second isoform (blue) where applicable.  To the right, the isoform names 
are shown along with the relative abundance (as a percent of the gene expression) and 
expected product size for the PCR validation in d) (see also supplemental methods). 
d) PCR validation of the five genes selected in panel c) show that, at least at the mRNA level, 
all agree with the major isoform inferred by RNA-seq. POLDIP3 (left) also shows evidence for 
the expression of the second isoform predicted by RNA-seq. 
 



 
 
Figure S1 | summary of totalRNA, raRNA, and ribosome footprint data 
a) Comparison of totalRNA and raRNA in terms of detecting low-abundance non-coding 
transcripts (ncRNA); Low abundance ncRNA are depleted in raRNA suggesting these 
transcripts are not engaged by the ribosome (top graph), however raRNA still detects the 
majority of mRNAs at every level of expression (bottom graph). 
b) Further comparison of the RNA [gene] biotypes detected by totalRNA and raRNA-seq. 
Detection is liberally defined as any gene with a non-zero mean average expression over the 
three biological replicate samples.  The number of genes detected by totalRNA (dark blue bars) 
is compared to the number of genes in the annotation (light grey bars) for each biotype. The 
overlaid line shows the percent of genes observed in totalRNA samples also detected as 
raRNA;  >95% of mRNAs (‘protein_coding’) detected in totalRNA are also observed as raRNA.  
This fraction decreases for non-coding other RNA biotypes such as lincRNAs, where 65% of 
those observed in total RNA are detected as raRNA, and processed pseudogenes, where 53% 
of those observed in totalRNA are present in raRNA data. 
c) Comparison of biochemical methods for obtaining ribosome footprints reveals 
immunoprecipitation (IP) by eGFP-L10a produces much cleaner profiles of reads as assessed 
by read length and multi-mappability to the genome (left histogram).  The standard method of 
purifying footprints (by sucrose cushion density gradient; middle and right histograms) produces 
a much wider range of ‘off-target’ (28nt < L > 32nt) read lengths (L) and a much lower fraction of 
reads that can be uniquely mapped to the genome (green bars) than IP. 
d) Of the reads that can be uniquely mapped to the genome, the IP sample shows slightly 
reduced yield but far greater purity in terms of coding sequence mapped reads compared to the 
two sucrose cushion samples (left plot). The purity of the cushion samples improves a little after 
explicitly removing likely-contaminant genes based on biotype: snRNA, snoRNA, miRNA, tRNA, 
Mt_rRNA, Mt_tRNA, misc_RNA. 
 
Figure S2 | ribosome footprints obtained by IP have increased fidelity to the coding frame 
a) In a perfect footprint preparation, all reads would be 28 nucleotide in length (the exact 
number of nucleotides physically protected by a cycloheximide halted ribosome), and the read 
midpoint would sit a predictable nucleotides from the start of the nearest codon.  In reality, due 
to the variations inherent in the technique such as incomplete RNase cleavage, a range of 
fragment lengths is obtained.  Rather than discard these “imperfect” reads, it is possible to 
compute a position-weight matrix (PWM) showing the fraction of reads of a given length at each 
of the three possible read-mid-point to nearest codon offsets. Here is plotted the PWM for the 
ribosome footprint reads obtained by sucrose cushion, showing that 57% of 29nt reads and 61% 
of 30nt reads lie a predictable distance from the nearest codon. 
b) As a), however showing the PWM for ribosome footprint reads obtained by eGFP-L10a IP.  A 
much greater fraction of 28-32nt reads are in frame with each other following IP compared to 
the sucrose cushion, again reflecting the superior quality of this method of preparation. 
c) Graphical summary of the PWMs in a) and b), where the implication is that incomplete 
RNase digestion tends to leave uncleaved nucleotides at the 3’ end of the footprint.  Given that 



this digestion is likely specific to each preparation we use experiment-specific PWMs as a 
means to determine the quality of a ribosome footprint experiment. 
d) Using the footprints obtained by sucrose cushion and the PWM in a) we show that the 
fraction of transcripts called in the correct frame (compared to the annotation, see methods) 
increases with increasing number of observed footprints. 
e) As d), except using the footprints obtained by eGFP-L10a IP and the PWM in b). Far fewer 
reads are required to correctly determine the frame of a transcript compared to sucrose cushion; 75% of 
transcripts with ≥3 IP footprint reads are called in the correct frame, compared to just 55% by sucrose 
cushion. This percentage rises rapidly for the IP reads and with ≥10 reads it is possible to accurately 
predict the correct frame for >90% of transcripts. 
 
Figure S3 | probability distribution, over all ~80,000 mRNA transcripts, of a randomly 
selected RNA-seq read, ribosome footprint, or mass-spec peptide overlapping a junction 
between two or more coding exons 
Paired-end RNA-seq produces reads from each end of a ~200nt insert sequence and, as such, 
it is possible to infer the presence of an exon-exon junction anywhere within the insert, even if 
the reads themselves do not contain the junction.  As a result, the likelihood of any given 200nt 
insert sequence spanning an exon junction within the CDS of an mRNA is extremely high for the 
vast majority of transcripts (~85%; dark blue bars).  Reading 75nt from only a single end of the 
insert, a la older RNA-seq experiments, leads to a marked reduction in the likelihood of 
observing an exon junction (~52%; light blue bars) as the insert size can no longer be imputed 
without the read’s mate. With an average length of 13 amino-acids, mass-spectrometry 
produces observations of peptides with a much lower likelihood of spanning a CDS exon 
junction (~30%; red bars).  Finally, the 28nt ribosome footprints are the least likely to produce 
exon-spanning reads (~23%; green bars). 
 
Figure S4 | RNA-seq of raRNA suffers much less intronic ‘contamination’ than totalRNA 
a) Exonic signal is calculated as a ratio: number of exonic reads per gene / total exonic + 
intronic reads per gene.  In this example 36 exonic reads out of a total 48 reads gives an exonic 
signal of 0.75.  A value of 1 indicates all reads derived from a selected gene are exonic.  
b) Density plot comparing exonic signal from totalRNA (x-axis) with exonic signal from raRNA 
(y-axis).  Data is skewed towards a higher exonic signal from raRNA, reflecting capture of 
mature, cytosolic mRNAs by the ribosome. 
c) Density plot comparing exonic signal from between whole-cell totalRNA (x-axis) and whole-
cell poly-A+ RNA-seq (y-axis), both data from the ENCODE K562 cell-line [REF]. Poly-A+ 
capture does not show anywhere near the same reduction in intronic signal compared to the 
raRNA capture in a), likely due to the presence of nuclear polyadenylated pre-mRNA fragments. 
 
Figure S5 | More detailed summary of alignments and EM performance for POLDIP3 
a) Browser track of totalRNA-seq, raRNA-seq, and ribosome footprints alignments to the 
POLDIP3 gene in genome coordinates.  As shown in the schematic in Figure 3, the totalRNA 
and raRNA reads clearly support two transcripts, POLDIP3-001 and POLDIP3-002, while the 
ribosome footprints are unable to discriminate between these isoforms. 



b) Expanded EM results highlight the necessity of the RNA prior (either totalRNA or raRNA) to 
be able to resolve the difference between these isoforms for both ribosome footprinting and 
MS/MS proteomics. 
 
Figure S6 | Schematic diagram showing the variety of ways of using the miBAT tool for 
experiments with any combination of RNA-seq, ribosome footprinting, and MS/MS 
a) Isoform prediction and assignment for experiments using ribosome footprints can be 
performed without (top) or with (bottom) an RNA-seq informed biological prior.  Here, RNA-seq 
transcript quantifications are produced by the eXpress tool [REF Robertson] and all footprint 
alignments are in transcriptome coordinates. 
b) As a), but for mass-spectrometry experiments with peptide alignments (produced by 
X!Tandem [REF]) in transcript coordinates. The top row is simple peptide input with no prior and 
the middle is the RNA-seq informed biological prior for experiments with RNA-seq and MS/MS. 
The last row shows the tool in use as here where RNA-seq, footprint, and MS/MS proteomics 
are available from the same samples; in this situation the output from the EM in a) is directly 
input to the MS/MS EM and can also support the less common situation where no RNA-seq 
data are available for a given experiment. 
 
Figure S7 | use of a biologically informative prior reduces isoform ambiguity in footprint 
and MS proteomic data 
Using an RNA-seq prior robustly decreases the ambiguity of footprint and peptide assignment to 
the major isoform in multi-isoform genes.  
a) Histogram showing the number of genes where the naive EM is unable to break a tie 
between multiple equally-likely (‘best’) isoforms.  Single isoform genes are shown as zero on the 
x axis.  EM on footprint data (grey bars) with a naive prior is able to settle on a single isoform for 
over 2000 genes (shown at 1 on the x axis); the remaining 58.2% of multi-isoform genes are 
tied between 2 or more equally-likely isoforms.  For MS/MS peptide data (blue bars), naive EM 
is ambiguous as to the likely major isoform in 58.1% of multi isoform genes.  
b) Re-plotted major isoform ambiguity for naive EM on ribosome footprint data (left) and MS/MS 
peptides (right) in terms of fold-dominance of the major isoform over the second most abundant 
isoform. On these histograms, a value of 1 reflects a gene in which a single major isoform 
cannot be determined. For clarity, major isoforms more than 5-fold more abundant than the 
second isoform are capped to 5-fold dominance.  
c) Using totalRNA- or raRNA-seq as a prior substantially improves our ability to resolve a 
dominant major isoform from ribosome footprint EM. 
d) Using RNA-seq and/or ribosome footprint data as a prior greatly improves ability to resolve a 
dominant major isoform from MS/MS peptides. 
 
Figure S8 | use of a biologically informative prior can dramatically improve isoform level 
interpretation of ribosome footprints and MS/MS peptides 
Heatmaps show the effect of using different priors on the dominance of the major isoform 
following the miBAT EM. In each doublet row, the top row represents assignment of 
reads/peptides before EM, the second row represents updated ratios after iterations of EM with 



a naive or biological prior. Clusters of major isoforms (x-axes) are indicated by dendrogram 
colours (top) and numeric IDs (bottom), the latter matching the IDs in Figure 4. 
a) The heatmap plots the major isoform fraction for the 6,650 multi-isoform genes with at least 3 
footprint reads. Using a biological prior improves our ability to resolve the major isoform in 3,795 
genes (57.1%) and converges on the same isoform as the naive prior in 2,747 genes (41.3%); 
in the remaining 108 genes (1.6%) the different RNA priors (totalRNA and raRNA) disagree on 
the major isoform. 
b) The heatmap plots the major isoform fraction for the 1,212 multi-isoform genes with at least 2 
peptides. Using a biological prior improves our ability to resolve the major isoform in 663 genes 
(54.7%) and converges on the same isoform as the naive prior in 408 genes (33.7%); in the 
remaining 141 genes (11.6%) the different RNA priors (raRNA and raRNA+footprints) disagree 
on the major isoform. 
 
Figure S9 | ribosome footprints obtained by IP are more reliably assigned to coding 
transcripts 
Following the EM, >98% of reads from ribosome footprints obtained by IP are assigned to 
protein coding (mRNA) transcripts.  Compared to ~85% of reads from footprints obtained by 
sucrose cushion, this again reflects the superior purity resulting from this method of footprint 
extraction.  Transcript biotypes that are over-represented in the cushion reads include miRNA, 
lincRNA, and snoRNA; these likely represent non-specific small-RNA contaminants rather than 
useful ribosome-protected fragments. 
 
Figure S10 | quantification of RNA expression, translational efficiency, and protein 
abundance 
Comparison of expression at each level, RNA expression vs. ribosome density (left), RNA 
expression vs. protein abundance (middle), and translational efficiency vs. protein abundance 
(right) at both a) the gene-level, and b) the isoform-level shows that in this system the 
abundance of protein is largely driven by the RNA expression rather than any wide scale 
regulation of translation. 
 
Figure S11 | data from 54 Yoruban individuals shows a biological prior from RNA-seq 
improves major isoform consistency even with very deep footprint sequencing 
a) Major isoforms determined from a public ribosome footprint data derived from 54 Yoruban 
individuals in the 1000 Genomes project [REF Battle] show lower variability when the EM is run 
with RNA-seq data from the same individuals [REF Pickrell].  This dataset is particularly 
interesting as the ribosome footprint sequencing is of substantially higher quality than the older 
RNA-seq data.  Despite this, the use of the RNA-seq data as priors for the EM performed by 
miBAT significantly reduced the variability in transcript fraction across the 54 biological replicate 
samples. The plots show the distribution of major transcript fractions for all genes (x-axis) 
across all 54 individuals in terms of median/IQR (top) and mean/stddev (bottom). The 
variability across the individuals is noticeably lower with the RNA prior (right) compared to the 
naive prior (left). 



b) Boxplots of the major isoform fraction standard deviations (grey vertical error bars from the 
bottom row of plots in a)) show that the RNA-seq prior significantly reduces the variability across 
these 54 individuals (p<1E-16). 


