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Abstract: The rapidly growing volume of data being produced by next-generation sequencing
initiatives is enabling more in-depth analyses of conservation than previously possible.
Deep sequencing is uncovering disease loci and regions under selective constraint,
despite the fact that intuitive biophysical reasons for such constraint are sometimes
absent. Allostery may often provide the missing explanatory link. We use models of
protein conformational change to identify allosteric residues by finding essential
surface cavities and information flow bottlenecks, and we develop a software tool
(stress.molmovdb.org) that enables users to perform this analysis on their own proteins
of interest. Though fundamentally 3D-structural in nature, our analysis is
computationally fast, thereby allowing us to run it across the PDB and to evaluate
general properties of predicted allosteric residues. We find that these tend to be
conserved over diverse evolutionary time scales. Finally, we highlight examples of
allosteric residues that help explain poorly understood disease-associated variants.
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Dear Editors of Structure, 
 
Thank you for considering our work titled “Identifying allosteric hotspots with dynamics: 
application to inter- and intra-species conservation” (previously titled “Identifying 
allosteric hotspots with dynamics: application to conservation in deep sequencing”). 
Enclosed is a revised version of our manuscript, as well as a response letter to the 
reviewers of our work, in which we address each point raised in detail. Wherever 
applicable, we also include revised or newly introduced text within the response letter. 
We note that the reviewers (especially reviewer 2) did not suggest a lot in the way of new 
analysis, but rather pointed out a need for clarification in certain sections. We have 
clarified these points and provided greater detail accordingly. In addition, we have also 
moved a number of figures from the supplementary material into the main text. A 
graphical abstract is also included as part of our resubmission. Thank you again for 
considering our work, and we look forward to hearing from you soon. 
 
 
 Yours sincerely, 
 
 Mark Gerstein 
 Albert L. Williams Professor 
 of Biomedical Informatics 
 

Yale University 

Cover Letter



RESPONSE LETTER 
 

We thank the reviewers for carefully reading through our study, as well as for 
valuable feedback on how this work may be improved. Below, we respond to the various 
issues raised. Before addressing each of these points individually, however, we highlight 
some of the more global changes that have been introduced to better conform to the 
format guidelines in Structure, as well as to improve readability overall. These changes 
include:  
 

• the introduction of more main text figures (these figures were originally in the 
Supplement) 

• more details regarding some of the methods and their implementation 
• more contextual language and perspective around the methods described within 

the Supplement 
• numbered sub-headings within the Supplement (as well as a more localized sub-

headings scheme), thereby making it easier to find information and reference 
other parts of the Supplement; the overall layout is given in the first page of the 
Supporting Information 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Response to Reviewers



Reviewer #1 
-- Ref 1.0 – Emphasis on Deep Sequencing -- 

Reviewer 
Comment 

This manuscript presents what seems to be a useful method. 
Even though the authors highlight deep sequencing, in 
practice it is a 3-D method. To predict 
allostery/allosteric residues one needs structures … I 
would also suggest to the authors to reconsider their 
title. Even though I understand their wish is to highlight 
"deep sequencing", some readers may find this title 
confusing, since eventually the authors use structures. 

Author 
Response 

We thank the reviewer for this observation, and we agree that the 
method is fundamentally 3-D structural in nature. Indeed, we feel that 
readers would have the same reaction as the reviewer. Thus, we have 
changed our title accordingly. 

 

-- Ref 1.1 – General Comments Regarding Novelty and Value -- 
Reviewer 
Comment 

The approach itself is not novel. It is a modified version 
of an earlier one (by Berezovsky et al), with the 
modifications appearing to efficiently filter and trim the 
output. Modeling the protein as a network, with residues 
representing nodes and edges representing contacts between 
residues is not new either, and neither is the analysis of 
residue conservation in the networks. The finding that 
allosteric residues are significantly conserved over both 
long and short evolutionary time scales is also not new 
and indeed expected, as is the observation that not all 
conserved residues can be explained by protein-protein 
interactions or in close-packed hydrophobic core. 
 
Despite this lack of conceptual novelty, the usefulness of 
the paper whose main thrust is the efficient streamlined 
method, its broad application and its availability can 
merit its publication. Allostery and allosteric residues 
and their identification is gaining increasing interest in 
the community. Having the atlas that they produced along 
with an efficient accessible method is important. 

Author 
Response 

We thank the reviewer for these comments. It is true that the allosteric 
prediction methods themselves are not fundamentally novel. It is our 
expectation, however, that our datasets, streamlined pipeline, and 
publically available server and source code will facilitate the 
identification of allosteric residues throughout the protein surface and 
interior. We anticipate that the atlas provided may further motivate other 
studies into allosteric residues on a database scale. 
 
In addition, we have now done more to highlight our tool and workflow 
by including its associated images within the main text (now Fig. 3 in 
the main text). 

 
 



-- Ref 1.2 – Citing Early Work on Network Analysis -- 
Reviewer 
Comment 

I have only a couple of minor comments. With regard to 
conserved residues, networks, information and 
communication, it would be appropriate to cite an early 
paper in this direction, Mol Syst Biol. 2006;2:2006.0019. 
Residues crucial for maintaining short paths in network 
communication mediate signaling in proteins.(PMID: 
16738564). 
Additionally, though a different implementation, still the 
papers by S. Vishveshwara (e.g. Biochemistry. 2008 Nov 
4;47(44):11398-407. doi: 10.1021/bi8007559) also deserve 
citing. 

Author 
Response 

We thank the reviewer for bringing these studies to our attention, and 
we now introduce these works within the main text. Specifically, we 
mention the study by Ghosh et al. as part of our introduction to 
previously developed methods, and we discuss some of the key 
findings of interest by del Sol et al. within the discussion. 

Excerpt From 
Revised Manuscript 

… Ghosh et al. (2008) have taken a novel approach of combining MD and 
network principles to characterize allosterically important communication 
between domains in methionyl tRNA synthetase.. 
 
… In one of the early studies employing network analysis, del Sol et al. 
conduct a detailed study of several allosteric protein families (including 
GPCRs) to demonstrate that residues important for maintaining the integrity of 
short paths within residue contact networks are essential to enabling signal 
transmission between distant sites (del Sol et al., 2006). Another notable result 
in the same work is that these key residues (which match experimental results) 
may become redistributed when the protein undergoes conformational change, 
thereby changing optimal communication routes as a means of conferring 
different regulatory properties. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Reviewer #2 
-- Ref 2.1 – Selection of 12 Canonical Systems -- 

Reviewer 
Comment 

How were the 12 'canonical' systems chosen? A quick check 
of a couple of them indicated to me that the functional 
role of the ligands in allostery has been established. If 
this is the case for all of them, I think it would be of 
benefit to the reader to indicate this. 

Author 
Response 

We thank the reviewer bringing this ambiguity to our attention. We have 
clarified the motivating factors behind our choice of canonical systems, 
and this clarification is now provided in the caption of Table S1, where 
we fully list the proteins and their ligands (a pointer to this rationale is 
also given in the main text). 

Excerpt From 
Revised Manuscript 

Table S1, related to Table 1. Set of 12 canonical proteins, organized by 
state (apo or holo) 
These 12 proteins were chosen to constitute the canonical set for several 
reasons: the allosteric mechanisms of their natural ligands are well understood, 
and both the holo and apo states for each system are available and clearly 
distinguishable; in addition, these proteins have been extensively investigated 
in the contexts of both binding leverage and allostery in general. Ligands are 
given in parentheses (those in bold text designate the ligands used to define 
residues involved in ligand-binding interactions). 

 
-- Ref 2.2-1 – Parameterization Values -- 

Reviewer 
Comment 

In the supplementary methods for the MC search, although 
an attractive potential in the -0.05 to -0.75 range is 
sampled, it is unclear what the repulsive and strongly 
repulsive energies were. The same as the Mitternacht and 
Berezovsky values (3 and 10)? These are not stated, but 
would have a significant effect on the sampling. 

Author 
Response 

We thank the reviewer for bringing it to our attention that these details 
were missing, as the parameters and the means of optimizing them are 
essential to how surface-critical residues are identified. We have now 
clarified these items in Supplementary Methods Section 3.1-a-i. 

Excerpt From 
Revised Manuscript 

...the optimized set of parameters were as follows (here, Dlig-prot designates the 
distance, in Angstroms, between a ligand atom and a protein atom): 

 
             widths      depths & heights 

 ∞   >  Dlig-prot  ≥  4.5: Energy = 0 
4.5  >  Dlig-prot  ≥  3.5: Energy = - 0.35 (attractive) 
3.5  >  Dlig-prot  ≥  3.0: Energy = +10 (repulsive) 
3.0  >  Dlig-prot  ≥  0.0: Energy = +10000 (strongly repulsive: 

effectively prohibited) 
 
 
 
 



-- Ref 2.2-2 – Parameters being optimized -- 
Reviewer 
Comment 

I am also a little confused as to what else is being 
optimized in the MC scheme. As far as I can tell it is 
just one parameter, the depth of the well, but the text 
refers to an "optimal set of parameters" and a 
"combination of parameters" which best identifies known 
ligand binding sites. 

Author 
Response 

We thank the reviewer for pointing out that this was not clear. This is an 
essential aspect in our search for surface-critical residues. We have 
now clarified these items in what is now Supplementary Methods 
Section 3.1-a-i. 

Excerpt From 
Revised Manuscript 

Specifically, the parameters to be optimized include (1) the ranges of favorable 
and unfavorable interactions (i.e., the widths of the potential function) and (2) 
the attractive and repulsive energies themselves (i.e., the depths and heights of 
the potential function)… 
 
… In addition to optimizing these parameters within the potential function, we 
also determined that setting the number of MC steps to 10,000 times the size of 
the simulation box (see above) provided the best convergence across multiple 
simulations on the same protein – that is, this number of steps better enabled us 
to recapture the same set of sites when running the simulations multiple times. 

 

-- Ref 2.3-1 – List of Sites from MC -- 
Reviewer 
Comment 

There appear to be a couple of important steps missing 
from the supplementary methods. For instance, how is the 
MC ensemble turned into a list of sites? 

Author 
Response 

We thank the reviewer for bringing this to our attention as well. This 
information is now provided in Supplementary Methods Section 3.1-a. 

Excerpt From 
Revised Manuscript 

After all candidate sites are identified by these MC simulations, pairs of sites 
with extremely high overlap are merged by combining any pair of sites that 
have a Jaccard similarity of at least 0.7, where the Jaccard similarity between 
sites i and j is |i∩j|/|i∪j|. After merging sites in this way, the residues of a 
given site are listed by their local closeness, and no more than 10 residues for a 
site are used. Local closeness (LC) is a geometric quantity that provides a 
measure of the degree of a residue in the residue-residue contact network; see 
(Mitternacht and Berezovsky, 2011b) for further discussion of LC. This entire 
process results in a list of sites on which binding leverage calculations can be 
performed. 

 

-- Ref 2.3-2 – Calculating Binding Leverage Scores -- 
Reviewer 
Comment 

How are the leverage scores for these sites calculated? 

Author 
Response 

We thank the reviewer for pointing this out. This information is now 
provided in Supplementary Methods Section 3.1-a-ii. 

Excerpt From 
Revised Manuscript 

Specifically, the binding leverage score for a given site is calculated as 
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Here, the outer sum is taken over the 10 modes, and the pair of inner sums are 
taken over all pairs of residues (i,j) such that the line connecting the pair lies 
within 3.0 Angstroms of any atom within the simulated ligand. The value 
∆dij(m) for each residue pair (i,j) represents the change in the distance between 
residues i and j when this distance is calculated using mode m. Thus, one may 
think of binding leverage as qualitatively predicting the extent to which a 
surface pocket is deformed when the protein undergoes conformational 
transitions… 
 
…when using ACT vectors, the binding leverage score for a given site is 
simply calculated as: 
 

 
 
where the sum is taken over all pairs of residues (i,j) such that the line 
connecting the pair lies within 3.0 Angstroms of any atom within the simulated 
ligand, and the value ∆dij for each residue pair (i,j) represents the change in the 
distance between residues i and j when this distance is calculated in alternative 
crystal structure. Thus, for each residue, the 10 vectors provided by the normal 
modes are simply replaced by the single ACT vector that defines the change in 
position of that residue when going from the protein conformation given by 
one representative structure to the conformation given by the other 
representative. 

 

-- Ref 2.4 – Table with Statistics on Surface Residues -- 
Reviewer 
Comment 

It is difficult to gauge the strength of the predictions 
in Table S2. For instance, for 2hnp, 67% of the residues 
are predicted as surface-critical, but over 20% of the 
residues are buried. Although this is the extreme case, it 
seems odd to include the interior residues when 
calculating the fraction of predicted residues and the 
fraction of ligand-binding residues, when these residues 
are a priori excluded from both lists. I think it would be 
more meaningful to report the fraction of surface residues 
predicted within critical sites, the fraction that are 
known ligand-binding residues, and the overlap between 
these two sets, as well as the number of critical sites 
identified, number of binding sites and the number of 
strongly overlapping sites. This would make table 3 
redundant, put all the relevant information in the same 
place, and greatly aid interpretation. 

Author 
Response 

We thank to reviewer for raising these important points. We agree that 
only the surface residues should be included in these calculations, our 
presentation of this information can be clarified by keeping all of the 
information within one table, and more statistics would aid in 
interpretation. Along these lines, we have done the following: 

• Our analysis has been revised to consider the surface residues 
specifically (we define surface residues by using NACCESS to 
select those residues with a relative solvent accessibility 
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exceeding 50%). 
• These two tables have been merged and expanded, and 

additional data (such as the number of known ligand-binding 
sites) is now included. 

• We have also moved this merged Table from the Supplement 
into the main text of the manuscript (now available as Table 1). 

Excerpt From 
Revised Manuscript 

 
Table 1.  Statistics on the surfaces of apo structures within the canonical 
set of proteins 
For each apo structure within the canonical set of proteins, statistics relating 
surface-critical sites to known ligand-binding sites are reported. The surface of 
a given structure is defined to be the set of all residues that have a relative 
solvent accessibility of at least 50%, where relative solvent accessibility is 
evaluated using all heavy atoms in both the main-chain and side-chain of a 
given residue. Mean values are given in the bottom row. NACCESS is used to 
calculate relative solvent accessibility (Hubbard and Thornton, 1993). Column 
1: Protein name and PDB IDs for each structure; Column 2: among these 
surface residues, the fraction that constitute surface-critical (SC) residues; 
Column 3: among surface residues, the fraction that constitute known ligand-
binding (LB) residues (known ligand-binding residues are taken to be those 
within 4.5 Angstroms of the ligand in the holo structure; Table S1); Column 4: 
the Jaccard similarity between the sets of residues represented in columns 2 
and 3 (i.e., surface-critical and known-ligand binding residues), where values 
given in parentheses represent the expected Jaccard similarity, given a null 
model in which surface-critical and ligand-binding residues are randomly 
distributed throughout the surface (for each structure, 10,000 simulations are 
performed to produce random distributions, and the expected values reported 
here constitute the mean Jaccard similarity among the 10,000 simulations for 
each structure); Column 5: the number of distinct surface-critical sites 
identified in each structure; Column 6: the number of known ligand-binding 
sites in each structure; Column 7: the number of known ligand-binding sites 
which are positively identified within the set of surface-critical sites, where a 
positive match occurs if a majority of the residues in a surface-critical site 
coincide with the known ligand-binding site; Column 8: The fraction of ligand-
binding sites captured is simply the ratio of the values in column 7 to those in 
column 6. See also Figure S1, Table S1, and Table S2. 

Table 1.  Statistics on the surfaces of apo structures within the canonical set of proteins

Phosphofructokinase (3pfk)      51.0            20.4          0.255 (0.155)     19            3             3                              100.0
Adenylate kinase (4ake)              45.4            17.8           0.274 (0.154)     29            2             2                             100.0
G-6-P deaminase (1cd5)             58.9            10.0          0.153 (0.096)      24            2             1                             50.0
cAMP-dep. prot. kin. (1j3h)        6.6              8.0            0.25 (0.041)          2               1             1                              100.0
Trp synthase (1bks)                      34.3            9.7            0.079 (0.079)     24            4             1                              25.0
Thr synthase (1e5x)                      20.7            9.3            0.139 (0.077)     17            3              2                             66.7
Hum. malic enzyme (1efk)          5.5               8.6            0.03 (0.036)        10            10             0                             0.0
Glu dehydrogenase (1nr7)         14.9            17.5          0.187 (0.102)      45            24            6                             25.0
P-ribosyltransferase (1xtt)          29.8            19.6          0.295 (0.154)      31            5              5                             100.0
Tyr phosphatase (2hnp)             73.9            13.3          0.16 (0.134)         25            2               2                             100.0
Asp transcarbamoylase (3d7s)  26.7            13.7          0.054 (0.064)       26            9              0                             0.0
Arg kinase (3ju5)                           1.6               3.9            0 (0.013)             1               2              0                             0.0

% Surf 
(SC res)

% Surf
(LB res)

SC-LB
overlap

# SC
sites

# LB
sites

# Overlapping
sites

% LB sites
identi!ed

mean                                                    30.8            12.7          0.156 (0.092)     21.083    5.583    1.917                      55.6

Protein name
(pdb ID)



-- Ref 2.5 – GN vs. Infomap for Network Analysis -- 
Reviewer 
Comment 

"... the mean fraction of GN-identified interior-critical 
residues that match Infomap-identified residues is 0.30 
(the expected mean, based on a uniformly-random 
distribution of critical residues throughout the protein, 
is 0.21, p-value=0.058), further justifying our decision 
to focus on GN)" - I am unclear how this adds to the 
justification for choosing GN over Infomap. 

Author 
Response 

We thank to reviewer for highlighting this ambiguity. Here, the important 
issue is the fact that GN is far more selective than Infomap in identifying 
important network elements (i.e., interior-critical residues), as 
evidenced by the data presented in Table S3 (previously Table S4). 
Furthermore, not only does GN provide a more selective set of 
residues, but the network modularity given by GN is somewhat better 
than that provided by Infomap (these statistics on the modularity are 
also provided in Table S3). These issues have been clarified in 
Supplementary Methods Section 3.1-b-ii. 

Excerpt From 
Revised Manuscript 

              Although the critical residues identified by GN do not always 
correspond to those identified by Infomap, the mean fraction of GN-identified 
interior-critical residues that match Infomap-identified residues is 0.30 (the 
expected mean, based on a uniformly-random distribution of critical residues 
throughout the protein, is 0.21, p-value=0.058). Furthermore, we observe that 
obvious structural communities are detected when applying both methods: a 
community generated by GN is often the same as that generated by Infomap, 
and in other cases, a community generated by GN is often composed of sub-
communities generated by Infomap. In addition, the modularity from the 
network partitions generated by GN and Infomap are comparable. For the 12 
canonical systems, the mean modularity for GN and Infomap is 0.73 and 0.68, 
respectively. GN modularity values are consistently at least as high as those in 
Infomap because GN explicitly optimizes modularity in partitioning the 
network, whereas Infomap does not. 

Together, these results suggest that both GN and Infomap generate 
similar partitions. Roughly, the set of interior-critical residues identified by 
GN partially constitute a subset of those identified with Infomap. If these sets 
of residues were completely different, then the choice between GN and 
Infomap would be difficult, as the results in our downstream conservation 
analyses would then be highly sensitive to our community detection method of 
choice. Given that the two residue sets are not disjoint, our choice of GN over 
infomap was largely guided by the fact that GN is far more selective in 
identifying important network elements (i.e., interior-critical residues), as 
evidenced in Table S3. In contrast, Infomap generates a much less selective set 
of interior-critical residues. 

 
 
 
 
 
 



-- Ref 2.6-1 – Overemphasis on structural clustering scheme -- 
Reviewer 
Comment 

The paper appears unbalanced. An unusually large effort is 
dedicated to explaining, illustrating and analysing the 
structural clustering scheme, including a section in the 
main text, figure 2C-E, supplementary figures S8, S9, S10, 
S21, S22, S23, and over three pages of supplementary 
methods… 

Author 
Response 

We thank the reviewer for this observation, and we agree that we had 
devoted a large amount of our discussion to what is more of a 
preliminary protocol. Accordingly, we have tried to de-emphasize some 
of the content related to the structural clustering. Specifically, we have: 

• moved Fig. 2C-E out of the main text and into the SI (now in Fig. 
S3) 

• merged what was previously SI Figs. S8, S9, and S12 (along 
with what was previously Fig. 2C-E) into one SI item (now Fig. 
S3) 

• condensed much of the relevant text in the Supplement (now SI 
Methods sections 3.2-a and 3.2-b) 

• completely removed Figs S10, S21, S22, and S23, which may 
be somewhat extraneous. 

 
We note, however, that because the structural clustering scheme is not 
a previously established method, considerable care had to be devoted 
to ensuring that it was working as intended. Our discussion regarding 
the clustering scheme and its importance in this study might be clarified 
in our response to Comment 2-6.2 below. 

 

-- Ref 2.6-2 – Clarifications Regarding ANMs & ACT Vectors -- 
Reviewer 
Comment 

…The purpose of all this [structural clustering scheme], 
it seems, is to apply the interior and surface critical 
methods using these motions instead of the ANM modes. 
However, how this in done is barely described. How is a 
set of representative cluster members turned into the 
equivalent of NMA eigenvectors? Both the surface- and 
interior-critical method use 10 eigenvectors, but it 
appears that there are always fewer than 10 cluster 
members for all proteins investigated, with the reader 
left to speculate on how this discrepancy is resolved. The 
results of this extended application only appear in the 
main text as a pointer to supplementary figure S17. 

Author 
Response 

We thank to reviewer for highlighting these ambiguities. In our response 
here, we try to clarify these protocols by first providing the motivating 
factors behind the clustering scheme. In addition, within the box below, 
we highlight the text that we have added in order to clarify the 
implementation of these methods. 

 
The purpose of developing and implementing the clustering scheme is 
three-fold: 

1) We are primarily interested in those structures that exhibit 
distinct conformations, as we are focusing on cases for which 



pronounced global conformational change play essential roles in 
allosteric mechanisms. 

2) The clustering scheme ultimately enables us to perform an 
important control. Namely, it enables us to address the 
question: are the results robust to alternative methods of 
inferring information about conformational change? ANMs 
provide only one means of defining the vectors for modeled 
conformational change. However, another approach is to use 
the displacement vectors from the crystal structures of 
alternative conformations. This alternative constitutes a method 
that we term “absolute conformational change” (ACT). 

3) Because ANMs constitute the bulk of our analysis (see below), 
we must be confident that the structures being analyzed with 
ANMs are suitable for normal modes analysis: if a given protein 
is not believed to undergo significant conformational change, it 
may not be appropriate to apply ANMs, as the ANMs can 
incorrectly predict large-scale conformational change where no 
such change is likely to occur. 

 
Excerpt From 
Revised Manuscript 

3.2-c  Models of Conformational Change via Displacement 
Vectors from Alternative Conformations 

Unless otherwise specified, we use normal modes analysis to model 
conformational change throughout this study. However, one potential concern 
with this approach is that normal modes may not faithfully represent plausible 
conformational changes. Thus, in order to determine whether or not the results 
are robust to different means of inferring motions (especially those results 
relevant to the conservation of critical residues), we also model conformational 
change using vectors connecting pairs of corresponding residues in crystal 
structures of alternative conformations. We term this approach “absolute 
conformational transitioning” (ACT). This more direct model of 
conformational change is especially straightforward to apply to single-chain 
proteins (applying ACT on a database scale to multi-chain complexes would 
introduce confounding factors related to chain-chain correspondence between 
such complexes when each complex has multiple copies of a given chain). 
 
3.2-c-i  Inferring Protein Conformational Change Using Displacement Vectors 
from Alternative Conformations 
Given a particular protein, how are these ACT vectors defined in order to 
calculate critical residues? We discuss a hypothetical example consisting of a 
multiple structure alignment of 8 sequence-identical structures. Starting with 
the protein’s multiple-structure alignment using all 8 structures, we determine 
the optimal number of clusters represented by the structure alignment using the 
K-means algorithm with the gap statistic (see the above SI Methods section 
3.2-b). Suppose that these 8 structures may be grouped into 2 distinct clusters 
by our scheme (4 structures in cluster A, and 4 structures in cluster B, for 
instance). As discussed in SI Methods section 3.2-b, a representative structure 
is taken from each of these two clusters (structure A and structure B). These 
two representatives are taken to represent the alternative conformations for the 
protein. As an alternative to using ANMs, we may use structure A and 
structure B to try to infer information about the protein’s global 
conformational shifts by assigning a displacement vector to each residue (for 



instance, residue Y140), where the displacement vector is simply defined by 
the two corresponding residues in the different structures within the structure 
alignment (i.e., Y140 within structure A of the structure alignment and Y140 
within structure B of the structure alignment). Because the structure alignment 
was performed on sequence-identical structures, each residue in one of these 
two representative structures matches a corresponding residue on the other 
representative structure. If each of the two structures represents a sequence-
identical protein consisting of 200 residues, then 200 ACT vectors are drawn 
in order to represent the conformational change in transitioning from one 
conformation to the other. These 200 ACT vectors for the protein may then be 
used to identify surface- and interior-critical residues (see below), and 
downstream analysis on these residues is then performed. 

 
 

-- Ref 2.7 – ConSurf Normalization -- 
Reviewer 
Comment 

All ConSurf scores are normalised to zero, but is the 
variation also set to unity? 

Author 
Response 

We thank to reviewer for noting this omission. Indeed, value for σ2 is 
set to unity, and this is now indicated in Supplementary Methods 
Section 3.3-a. 

Excerpt From 
Revised Manuscript 

ConSurf scores for each protein chain are normalized to have a mean ConSurf 
score of 0 (the ConSurf score variance is 1 for each chain). 

 

-- Ref 2.8 – Minor Issues -- 
Reviewer 
Comment 

There is an asterix next to two entries in Table S2, and 
next to one entry in Table S3, but these are not explained 
in the captions or the main text. 
 
"allosteric ligand has a global affect on a protein's 
functionally important motions" affect -> effect 
 
jaccard -> Jaccard, three occurrances 
 
line 279: "However 1000 Genomes SNVs tend hit..." -> tend 
to 

Author 
Response 

We thank the reviewer for pointing out these points. With respect to the 
asterix symbols in Table S2, and next to one entry in Table S3 (now 
merged into what is now Table 1, as noted), these were originally 
intended to highlight structures for which the identification of biological 
ligand-binding sites was previously known to be especially difficult. 
However, this information is not essential, and may be distracting. 
Thus, the asterix symbols have been removed, and this is no longer 
considered. 
 
We have also corrected the other two issues raised here, and thank the 
reviewer again for a very careful review of this work. 
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ABSTRACT 47!

The rapidly growing volume of data being produced by next-generation sequencing 48!

initiatives is enabling more in-depth analyses of conservation than previously possible. 49!

Deep sequencing is uncovering disease loci and regions under selective constraint, 50!

despite the fact that intuitive biophysical reasons for such constraint are sometimes 51!

absent. Allostery may often provide the missing explanatory link. We use models of 52!

protein conformational change to identify allosteric residues by finding essential surface 53!

cavities and information flow bottlenecks, and we develop a software tool 54!

(stress.molmovdb.org) that enables users to perform this analysis on their own proteins of 55!

interest. Though fundamentally 3D-structural in nature, our analysis is computationally 56!

fast, thereby allowing us to run it across the PDB and to evaluate general properties of 57!

predicted allosteric residues. We find that these tend to be conserved over diverse 58!

evolutionary time scales. Finally, we highlight examples of allosteric residues that help 59!

explain poorly understood disease-associated variants. 60!

 61!

 62!

 63!

 64!

 65!

 66!

 67!
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! 3!

INTRODUCTION 68!

The ability to sequence large numbers of human genomes is providing a much 69!

deeper view into protein evolution than previously possible. When trying to understand 70!

the evolutionary pressures on a given protein, structural biologists now have at their 71!

disposal an unprecedented breadth of data regarding patterns of conservation, both across 72!

species and amongst humans. As such, there are greater opportunities to take an 73!

integrated view of the context in which a protein and its residues function. This view 74!

necessarily includes structural constraints such as residue packing, protein-protein 75!

interactions, and stability. However, deep sequencing is unearthing a class of conserved 76!

residues on which no obvious structural constraints appear to be acting. The missing link 77!

in understanding these regions may be provided by studying the protein’s dynamic 78!

behavior through the lens of the distinct functional and conformational states within an 79!

ensemble. 80!

The underlying energetic landscape responsible for the relative distributions of 81!

alternative conformations is dynamic in nature: allosteric signals or other external 82!

changes may reconfigure and reshape the landscape, thereby shifting the relative 83!

populations of states within an ensemble (Tsai et al., 1999). Landscape theory thus 84!

provides the conceptual underpinnings necessary to describe how proteins change 85!

behavior and shape under changing conditions. A primary driving force behind the 86!

evolution of these landscapes is the need to efficiently regulate activity in response to 87!

changing cellular contexts, thereby making allostery and conformational change essential 88!

components of protein evolution. 89!
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! 4!

Given the importance of allosteric regulation, as well as its role in imparting 90!

efficient functionality, several methods have been devised for the identification of likely 91!

allosteric residues. Conservation itself has been used, either in the context of conserved 92!

residues (Panjkovich and Daura, 2012), networks of co-evolving residues (Halabi et al., 93!

2009; Lee et al., 2008; Lockless et al., 1999; Reynolds et al., 2011; Shulman et al., 2004; 94!

Süel et al., 2003), or local conservation in structure (Panjkovich and Daura, 2010). In 95!

related studies, both conservation and geometric-based searches for allosteric sites have 96!

been successfully applied to several systems (Capra et al., 2009). 97!

The concept of ‘protein quakes’ has been introduced to explain local 98!

conformational changes that are essential for global conformation transitions of 99!

functional importance (Ansari et al., 1985; Miyashita et al., 2003). These local changes 100!

cause strain within the protein that is relieved by subsequent relaxations (which are also 101!

termed functionally important motions) that terminate when the protein reaches the 102!

second equilibrium state. Such local perturbations often end with large conformational 103!

changes at the focal points of allosteric regulation, and these motions may be identified in 104!

a number of ways, including modified normal modes analysis (Miyashita et al., 2003) or 105!

time-resolved X-ray scattering (Arnlund et al., 2014). 106!

In addition to conservation and geometry, protein dynamics have also been used 107!

to predict allosteric residues. Normal modes analysis has been used to examine the extent 108!

to which bound ligands interfere with low-frequency motions, thereby identifying 109!

potentially important residues at the surface (Ming and Wall, 2005; Mitternacht and 110!

Berezovsky, 2011; Panjkovich and Daura, 2012). Normal modes have also been used by 111!

the Bahar group to identify important subunits that act in a coherent manner for specific 112!
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proteins (Chennubhotla and Bahar, 2006; Yang and Bahar, 2005). Rodgers et al. have 113!

applied normal modes to identify key residues in CRP/FNR transcription factors 114!

(Rodgers et al., 2013).  115!

With the objective of identifying allosteric residues within the interior, molecular 116!

dynamics (MD) simulations and network analyses have been used to identify residues 117!

that may function as internal allosteric bottlenecks (Csermely et al., 2013; Gasper et al., 118!

2012; Rousseau and Schymkowitz, 2005; Sethi et al., 2009; Vanwart et al., 2012). Ghosh 119!

et al. (2008) have taken a novel approach of combining MD and network principles to 120!

characterize allosterically important communication between domains in methionyl 121!

tRNA synthetase. In conjunction with NMR, Rivalta et al. have use MD and network 122!

analysis to identify important regions in imidazole glycerol phosphate synthase (Rivalta 123!

et al., 2012). 124!

Though having provided valuable insights, many of these approaches have been 125!

limited in terms of scale (the numbers of proteins which may feasibly be investigated), 126!

computational demands, or the class of residues to which the method is tailored (surface 127!

or interior). Here, we use models of protein conformational change to identify both 128!

surface and interior residues that may act as essential allosteric hotspots in a 129!

computationally tractable manner, thereby enabling high-throughput analysis. This 130!

framework directly incorporates information regarding 3D protein structure and 131!

dynamics, and it can be applied on a PDB-wide scale to proteins that exhibit 132!

conformational change. Throughout the PDB (Berman et al., 2000), the residues 133!

identified tend to be conserved both across species and amongst humans, and they may 134!

help to elucidate many of the otherwise poorly understood regions in proteins. In a 135!

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



! 6!

similar vein, several of our identified sites correspond to human disease loci for which no 136!

clear mechanism for pathogenesis had previously been proposed. Finally, we make the 137!

software associated with this framework (termed STRESS, for STRucturally-identified 138!

ESSential residues) publically available through a tool to enable users to submit their 139!

own structures for analysis. 140!

 141!

RESULTS  142!

Identifying Potential Allosteric Residues 143!

Allosteric residues at the surface generally play a regulatory role that is 144!

fundamentally distinct from that of allosteric residues within the protein interior. While 145!

surface residues often constitute the sources or sinks of allosteric signals, interior residues 146!

act to transmit such signals. We use models of protein conformational change to identify 147!

both classes of residues (Figure 1). Throughout, we term these potential allosteric 148!

residues at the surface and interior “surface-critical” and “interior-critical” residues, 149!

respectively.  150!

In order to gauge the effectiveness of our approach, we identified and analyzed 151!

critical residues within a set of 12 well-studied canonical systems (see Figure S1, as well 152!

as Table S1 for rationale regarding the set selection). We then apply this protocol on a 153!

large scale across hundreds of proteins for which crystal structures of alternative 154!

conformations are available. 155!

 156!

 157!
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Identifying Surface-Critical Residues 158!

Allosteric ligands often act by binding to surface cavities and modulating protein 159!

conformational dynamics. The surface-critical residues, some of which may act as latent 160!

ligand binding sites and active sites, are first identified by finding cavities using Monte 161!

Carlo simulations to probe the surface with a flexible ligand (Figure 1A, top-left). The 162!

degree to which cavity occlusion by the ligand disrupts large-scale conformational 163!

change is used to assign a score to each cavity – sites at which ligand occlusion strongly 164!

interferes with conformational change earn high scores (Figure 1A, top-right), whereas 165!

shallow pockets (Figure 1A, bottom-left) or sites at which large-scale motions are largely 166!

unaffected (Figure 1A, bottom-right) earn lower scores. Further details are provided in SI 167!

Methods section 3.1-a. 168!

This approach is a modified version of the binding leverage framework 169!

introduced by Mitternacht and Berezovsky (Mitternacht and Berezovsky, 2011). The 170!

main modifications implemented here include the use of heavy atoms in the protein 171!

during the Monte Carlo search, in addition to an automated means of thresholding the list 172!

of ranked scores. These modifications were implemented to provide a more selective set 173!

of sites; without them, a very large fraction of the protein surface would be occupied by 174!

critical sites (Figure S2A). Within our dataset of proteins exhibiting alternative 175!

conformations, we find that this modified approach results in an average of ~2 distinct 176!

sites per domain (Figure S2A; see Figure S2B for the distribution for distinct sites within 177!

entire complexes). 178!

Within the canonical set of 12 proteins, we positively identify an average of 179!

55.6% of the sites known to be directly involved in ligand or substrate binding (see Table 180!

1, Figure S1, and SI Methods section 3.1-a-iv). Some of the sites identified do not 181!
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directly overlap with known binding regions, but we often find that these “false 182!

positives” nevertheless exhibit some degree of overlap with binding sites (Table S2). In 183!

addition, those surface-critical sites that do not match known binding sites may 184!

nevertheless correspond to latent allosteric regions: even if no known biological function 185!

is assigned to such regions, their occlusion may nevertheless disrupt hitherto unfound 186!

large-scale motions. 187!

 188!

Dynamical Network Analysis to Identify Interior-Critical Residues 189!

The binding leverage framework described above is intended to capture hotspot 190!

regions at the protein surface, but the Monte Carlo search employed is a priori excluded 191!

from the protein interior. Allosteric residues often act within the protein interior by 192!

functioning as essential information flow ‘bottlenecks’ within the communication 193!

pathways between distant regions. 194!

To identify such bottleneck residues, the protein is first modeled as a network, 195!

wherein residues represent nodes and edges represent contacts between residues (in much 196!

the same way that the protein is modeled as a network in constructing anisotropic 197!

network models, see below). In this regard, the problem of identifying interior-critical 198!

residues is reduced to a problem of identifying nodes that participate in network 199!

bottlenecks (see Figure 1B and SI Methods section 3.1-b for details). Briefly, the network 200!

edges are first weighted by the degree of strength in the correlated motions of contacting 201!

residues: a strong correlation in the motion between contacting residues implies that 202!

knowing how one residue moves better enables one to predict the motion of the other, 203!

thereby suggesting a strong information flow between the two residues. The weights are 204!
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used to assign ‘effective distances’ between connecting nodes, with strong correlations 205!

resulting in shorter effective node-node distances. 206!

Using the motion-weighted network, “communities” of nodes are identified using 207!

the Girvan-Newman formalism (Girvan et al., 2002). This formalism entails calculating 208!

the betweenness of each edge, where the betweenness of a given edge is defined as the 209!

number of shortest paths between all pairs of residues that pass through that edge. Each 210!

path length is the sum of that path’s effective node-node distances assigned in the 211!

weighting scheme above. Each community identified is a group of nodes such that each 212!

node within the community is highly inter-connected (in terms of betweenness), but 213!

loosely connected to other nodes outside the community. Communities are thus densely 214!

inter-connected regions within proteins. The community partitions and the resultant 215!

critical residues for the canonical set are given in Figure 2. 216!

Those residues that are involved in the highest-betweenness edges between pairs 217!

of interacting communities are identified as the interior-critical residues. These residues 218!

are essential for information flow between communities, as their removal would result in 219!

substantially longer paths between the residues of one community to those of another. 220!

 221!

Software Tool: STRESS (STRucturally-identified ESSential residues) 222!

We have made the implementations for finding surface- and interior-critical 223!

residues available through a new software tool, STRESS, which may be accessed at 224!

stress.molmovdb.org (Figure 3A). Users may submit a PDB file or a PDB ID 225!

corresponding to a structure to be analyzed, and the output provided constitutes the set of 226!

identified critical residues. 227!
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Running times are minimized by using a scalable server architecture that runs on 228!

the Amazon cloud (Figure 3). A light front-end server handles incoming user requests, 229!

and more powerful back-end servers, which perform the calculations, are automatically 230!

and dynamically scalable, thereby ensuring that they can handle varying levels of demand 231!

both efficiently and economically. In addition, the algorithmic implementation of our 232!

software is highly efficient, thereby obviating the need for long wait times. Relative to a 233!

naïve global Monte Carlo search implementation, local searches supported with hashing 234!

and additional algorithmic optimizations for computational efficiency reduce running 235!

times considerably (Figures 3B and 3C). A typical protein of ~500 residues takes only 236!

about 30 minutes on a 2.6GHz CPU. 237!

 238!

High-Throughput Identification of Alternative 239!

Conformations 240!

We use a generalized approach to systematically identify instances of alternative 241!

conformations throughout the PDB. We first perform multiple structure alignments 242!

(MSAs) across sequence-identical structures that are pre-filtered to ensure structural 243!

quality. We then use the resultant pairwise RMSD values to infer distinct conformational 244!

states (Figure S3; see also SI Methods section 3.2). 245!

The distributions of the resultant numbers of conformations for domains and 246!

chains are given in Figures S3D and S3E, respectively, and an overview is given in 247!

Figure S3F. We note that the alternative conformations identified arise in an extremely 248!

diverse set of biological contexts, including conformational transitions that accompany 249!
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ligand binding, protein-protein or protein-nucleic acid interactions, post-translational 250!

modifications, changes in oxidation or oligomerization states, etc. The dataset of 251!

alternative conformations identified is provided as a resource in File S1 (see also Figure 252!

S3G). 253!

 254!

Evaluating Conservation of Critical Residues 255!

Using Various Metrics and Sources of Data  256!

The large dataset of dynamic proteins culled throughout the PDB, coupled with 257!

the high algorithmic efficiency of our critical residue search implementation, provide a 258!

means of identifying and evaluating general properties of a large pool of critical residues. 259!

In particular, we use a variety of conservation metrics and data sources to measure the 260!

inter- and intra-species conservation of the residues within this pool. As discussed below, 261!

we find that both surface- (Figures 4A-D) and interior-critical residues (Figures 4E-H) 262!

are consistently more conserved than non-critical residues. We emphasize that the 263!

signatures of conservation identified not only provide a means of rationalizing many of 264!

the otherwise poorly understood regions of proteins, but they also reinforce the functional 265!

importance of the residues predicted to be allosteric. 266!

 267!

Conservation Across Species 268!

 When evaluating conservation across species, we find that both surface- and 269!

interior-critical residues tend to be significantly more conserved than non-critical residues 270!

with the same degree of burial (Figures 4B and 4F, respectively; note that negative 271!

conservation scores designate stronger conservation – see SI Methods section 3.3-a). 272!

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



! 12!

Leveraging Next-Generation Sequencing to Measure Conservation Amongst 273!
Humans 274!

In addition to measuring inter-species conservation, we have also used fully 275!

sequenced human genomes and exomes to investigate conservation among human 276!

populations, as many constraints may be species-specific and active in more recent 277!

evolutionary history. Commonly used metrics for quantifying intra-species conservation 278!

include minor allele frequency (MAF) and derived allele frequency (DAF). Low MAF or 279!

DAF values are interpreted as signatures of deleteriousness, as purifying selection is 280!

prone to reduce the frequencies of harmful variants (see SI Methods section 3.3-b). 281!

Non-synonymous single-nucleotide variants (SNVs) from the 1000 Genomes 282!

dataset (McVean et al., 2012) that intersect surface-critical residues tend to occur at 283!

lower DAF values than do SNVs that intersect non-critical residues (Figure 4C). Though 284!

this difference is not observed to be significant, the significance improves when 285!

examining the shift in DAF distributions, as evaluated with a KS test (p=!0.159, Figure 286!

S4A), and we point out only a limited number of proteins (thirty-two) for which these 287!

1000 Genomes SNVs intersect with surface-critical sites. Furthermore, the long tail 288!

extending to lower DAF values for surface-critical residues may suggest that only a 289!

subset of the residues in our prioritized binding sites is essential. In contrast to surface-290!

critical residues, however, interior-critical residues intersect 1000 Genomes SNVs with 291!

significantly lower DAF values than do non-critical residues (Figure 4G; see also Figure 292!

S4B). 293!

When analyzing human polymorphism data, a variety of statistical measures 294!

relating SNVs to selective constraint may be calculated, and the results obtained (along 295!

with their associated significance levels) are highly dependent on sample size. 1000 296!
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Genomes datasets are attractive partially because of their status as a well-established 297!

“blue chip” set of variants in human populations. However, given the relatively limited 298!

number of proteins that intersect with 1000 Genomes SNVs, we also analyzed the larger 299!

dataset provided by the Exome Aggregation Consortium (ExAC) (Exome Aggregation 300!

Consortium, 2015). Though this dataset has been released much more recently (and is 301!

consequently not yet as well established as 1000 Genomes), ExAC provides sequence 302!

data from more than 60,000 individuals, and samples are sequenced at much higher 303!

coverage, thereby ensuring better data quality. This larger dataset enables us to more 304!

easily examine trends in the data as they relate to critical and non-critical residues. 305!

Using MAF as a conservation metric, we performed a similar analysis using this 306!

data. MAF distributions for surface- and non-critical residues in the same set of proteins 307!

are given in Figure 4D. Although the mean value of the MAF distribution for surface-308!

critical residues is slightly higher than that of non-critical residues, the median for 309!

surface-critical residues is substantially lower than that for non-critical residues, 310!

demonstrating that the majority of proteins are such that MAF values are lower in 311!

surface- than in non-critical residues. In addition, the overall shifts of these distributions 312!

also point to a trend of lower MAF values in surface-critical residues (Figure S4C, KS 313!

test p=9.49e-2). 314!

Interior-critical residues exhibit significantly lower MAF values than do non-315!

critical residues in the same set of proteins. MAF distributions for interior- and non-316!

critical residues are given in Figure 4H (see also Figure S4D). 317!

 In addition to analyzing overall allele frequency distributions, we also evaluate 318!

the fraction of rare alleles as a metric for measuring selective pressure. This fraction is 319!
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defined as the ratio of the number of rare (i.e., low-DAF or low-MAF) non-synonymous 320!

SNVs to the number of all non-synonymous SNVs in a given protein annotation (such as 321!

all surface-critical residues of the protein, for example; see SI Methods section 3.3-b). A 322!

higher fraction is interpreted as a proxy for greater conservation (Khurana et al., 2013; 323!

Sethi et al., 2015). Using variable DAF (MAF) cutoffs to define rarity for 1000 Genomes 324!

(ExAC) SNVs, both surface- and interior-critical residues are shown to harbor a higher 325!

fraction of rare alleles than do non-critical residues, further suggesting a greater degree of 326!

evolutionary constraint on critical residues (Figure 5). 327!

 328!

Comparisons Between Different Models of Protein Motions 329!

The identification of surface- and interior-critical residues entails using sets of 330!

vectors (on each protein residue) to describe conformational change. Notably, our 331!

framework enables one to determine these vectors in multiple ways. Conformational 332!

changes may be modeled using vectors connecting residues in crystal structures from 333!

alternative conformations. We term this approach “ACT”, for “absolute conformational 334!

transitions” (see SI Methods section 3.2-c). The crystal structures of such paired 335!

conformations may be obtained using the framework discussed above. The protein 336!

motions may also be inferred from anisotropic network models (ANMs) (Atilgan et al., 337!

2001). ANMs entail modeling interacting residues as nodes linked by flexible springs, in 338!

a manner similar to elastic network models (Fuglebakk et al., 2015; Tirion, 1996) or 339!

normal modes analysis (Figure 1B). ANMs are not only simple and straightforward to 340!

apply on a database scale, but unlike using alternative crystal structures, the motion 341!

vectors inferred may be generated using a single structure. 342!
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We find that modeling conformational change using vectors from either ACTs or 343!

ANMs gives the same general trends in terms of the disparities in conservation between 344!

critical and non-critical residues. Our framework is thus general with respect to how the 345!

motion vectors are obtained (see Figure 6 and SI Methods section 3.2-c for further 346!

details). 347!

 348!

Critical Residues in the Context of Human Disease Variants 349!

Directly related to conservation is confidence with which an SNV is believed to 350!

be disease-associated. SIFT (Ng and Henikoff, 2001) and PolyPhen (Adzhubei et al., 351!

2010) are two tools for predicting SNV deleteriousness. ExAC SNVs that intersect 352!

critical residues exhibit significantly higher PolyPhen scores relative to non-critical 353!

residues, suggesting the potentially higher disease susceptibility at critical residues 354!

(Figure S5). Significant disparities were not observed in SIFT scores (Figure S6). 355!

Using HGMD (Stenson et al., 2014) and ClinVar (Landrum et al., 2014), we 356!

identify proteins with critical residues that coincide with disease-associated SNVs (File 357!

S2). Several critical residues coincide with known disease loci for which the mechanism 358!

of pathogenicity is otherwise unclear (File S3). The fibroblast growth factor receptor 359!

(FGFR) is a case-in-point (Figure 7A). SNVs in FGFR have been linked to craniofacial 360!

defects. Dotted lines in Figure 7B highlight poorly understood disease SNVs that 361!

coincide with critical residues. In addition, we identify Y328 as a surface-critical residue, 362!

which coincides with a disease-associated SNV from HGMD, despite the lack of 363!

confident predictions of deleteriousness by several widely used tools for predicting 364!

disease-associated SNVs, including PolyPhen (Adzhubei et al., 2010), SIFT (Ng and 365!

Henikoff, 2001), and SNPs&GO (Calabrese et al., 2009). Together, these results suggest 366!
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that the incorporation of surface- and interior-critical residues introduces a valuable layer 367!

of annotation to the protein sequence, and may help to explain otherwise poorly 368!

understood disease-associated SNVs.  369!

 370!

DISCUSSION & CONCLUSIONS 371!

The same principles of energy landscape theory that dictate protein folding are 372!

integral to how proteins explore different conformations once they adopt their fully 373!

folded states. These landscapes are shaped not only by the protein sequence itself, but 374!

also by extrinsic conditions. Such external factors often regulate protein activity by 375!

introducing allosteric-induced changes, which ultimately reflect changes in the shapes 376!

and population distributions of the energetic landscape. In this regard, allostery provides 377!

an ideal platform from which to study protein behavior in the context of their energetic 378!

landscapes. To investigate allosteric regulation, and to simultaneously add an extra layer 379!

of annotation to conservation patterns, an integrated framework to identify potential 380!

allosteric residues is essential. We introduce a framework to select such residues, using 381!

knowledge of conformational change. 382!

When applied to many proteins with distinct conformational changes in the PDB, 383!

we investigate the conservation of potential allosteric residues in both inter-species and 384!

intra-human genomes contexts, and find that these residues tend to exhibit greater 385!

conservation in both cases. In addition, we identify several disease-associated variants for 386!

which plausible mechanisms had been unknown, but for which allosteric mechanisms 387!

provide a reasonable rationale. 388!
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Unlike the characterization of many other structural features, such as secondary 389!

structure assignment, residue burial, protein-protein interaction interfaces, disorder, and 390!

even stability, allostery inherently manifests through dynamic behavior. It is only by 391!

considering protein motions and changes in these motions can a fuller understanding of 392!

allosteric regulation be realized. As such, MD and NMR are some of the most common 393!

means of studying allostery and dynamic behavior (Kornev and Taylor, 2015). However, 394!

these methods have limitations when studying large and diverse protein datasets. MD is 395!

computationally expensive and impractical when studying large numbers of proteins. 396!

NMR structure determination is extremely labor-intensive and better suited to certain 397!

classes of structures or dynamics. In addition, NMR structures constitute a relatively 398!

small fraction of structures currently available. 399!

Despite these limitations in MD and NMR, allosteric mechanisms and signaling 400!

pathways may be conserved across many different but related proteins within the same 401!

family, suggesting that such computationally- or labor-intensive approaches for all 402!

proteins may not be entirely essential. Flock et al. have carefully demonstrated that the 403!

allosteric mechanisms responsible for regulating G proteins through GPCRs tend to be 404!

conserved (Flock et al., 2015). Investigations into representative families have also been 405!

enlightening in other contexts. In one of the early studies employing network analysis, 406!

del Sol et al. conduct a detailed study of several allosteric protein families (including 407!

GPCRs) to demonstrate that residues important for maintaining the integrity of short 408!

paths within residue contact networks are essential to enabling signal transmission 409!

between distant sites (del Sol et al., 2006). Another notable result in the same work is that 410!

these key residues (which match experimental results) may become redistributed when 411!
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the protein undergoes conformational change, thereby changing optimal communication 412!

routes as a means of conferring different regulatory properties. 413!

There are several notable implications of our dynamics-based analysis across a 414!

database of proteins. Relative to sequence data, allostery and dynamic behavior are far 415!

more difficult to evaluate on a large scale. The framework described here enables one to 416!

evaluate dynamic behavior in a systemized and efficient way across many proteins, while 417!

simultaneously capturing residues on both the surface and within the interior. That this 418!

pipeline can be applied in a high-throughput manner enables the investigation of system-419!

wide phenomena, such as the roles of potential allosteric hotspots in protein-protein 420!

interaction networks. 421!

It is only by analyzing a large dataset of proteins can one investigate general 422!

trends in predicted allosteric residues. In addition, the implementation detailed here 423!

enables one to match structural features with the high-throughput data generated through 424!

deep sequencing initiatives, which are providing an unprecedented window into 425!

conservation patterns, many of which may be human-specific. 426!

We anticipate that, within the next decade, deep sequencing will enable structural 427!

biologists to study evolutionary conservation using sequenced human exomes just as 428!

routinely as cross-species alignments. Furthermore, intra-species metrics for conservation 429!

provide added value in that the confounding factors of cross-species comparisons are 430!

removed: different species evolve in various evolutionary contexts and at different rates, 431!

and it can be difficult to decouple these different effects from one another. Cross-species 432!

metrics of protein conservation entail comparisons between proteins that may be very 433!

different in structure and function. Sequence-variable regions across species may not be 434!
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conserved, but nevertheless impart essential functionality. Intra-species comparisons, 435!

however, can often provide a more direct and sensitive evaluation of constraint.  436!

In particular, selective constraints within human populations are particularly 437!

relevant to understanding human disease. Formalisms for analyzing large structural and 438!

sequence datasets will become increasingly important in the context of human health. We 439!

anticipate that the framework and formalisms detailed here, along with the accompanying 440!

web tool we have introduced, will help to further motivate future studies along these 441!

directions. 442!

 443!

METHODS 444!

An overview of the framework for finding surface- and interior-critical residues is 445!

given in Figure 1. Figure S3A provides a schematic of our pipeline for identifying 446!

alternative conformations throughout the PDB. Cross-species conservation scores were 447!

analyzed in those PDBs for which full ConSurf files are available through the ConSurf 448!

server. 1000 Genomes SNVs were taken from the Phase 3 release, and ExAC SNVs were 449!

downloaded in May 2015. Further details on all protocols are provided in SI Methods. 450!

 451!

 452!

 453!

 454!

 455!

 456!

 457!
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CAPTIONS 618!

Figure 1.  Schematic overviews of methods for finding surface- and interior-critical 619!

residues. (A) A simulated ligand probes the protein surface in a series of Monte Carlo 620!

simulations (top-left). The cavities identified may be such that occlusion by the ligand 621!

strongly interferes with conformational change (top-right; such a site is likely to be 622!

identified as surface-critical, in red), or they may have little effect on conformational 623!

change, as in the case of shallow pockets (bottom-left) or pockets in which large-scale 624!

motions do not drastically affect pocket volume (bottom-right). (B) Interior-critical 625!

residues are identified by weighting residue-residue contacts (edges) on the basis of 626!

correlated motions, and then identifying communities within the weighted network. 627!

Residues involved in the highest-betweenness interactions between communities (in red) 628!

are selected as interior-critical residues. 629!

 630!

Figure 2.  Community partitioning for canonical systems. Different network 631!

communities are colored differently, and communities were identified using the 632!

dynamical network-based analysis with the GN formalism discussed in the main text and 633!

in SI Methods section 3.1-b. Residues shown as spheres are interior-critical residues, and 634!

they are colored based on community membership, and black lines connecting pairs of 635!

critical residues represent the highest-betweenness edges between the corresponding 636!

communities. See also Table S3. 637!

 638!

 639!
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Figure 3.  STRESS web server front page, running times, and server architecture. 640!

(A) The server enables users to either provide PDB IDs or to upload their own PDB files 641!

for proteins of interest. Users may opt to identify surface-critical residues, interior-critical 642!

residues, or both. A thin front-end server handles incoming user requests, and more 643!

powerful back-end servers perform the heavier algorithmic calculations. The back-end 644!

servers are dynamically scalable, making them capable of handling wide fluctuations in 645!

user demand. Amazon’s Simple Queue Service is used to coordinate between user 646!

requests at the front end and the back-end compute nodes: when the front-end server 647!

receives a request, it adds the job to the queue, and back-end servers pull that job from 648!

the queue when ready. Source code is available through Github 649!

(github.com/gersteinlab/STRESS). (B) Running times are shown for systems of various 650!

sizes. Shown in red are the running times without optimizing for speed, and green shows 651!

running times with algorithmic optimization. (C) The same data is represented as a log-652!

log plot. The slopes of these two approaches demonstrate that our algorithm reduces the 653!

computational complexity by an order of magnitude. Our speed-optimized algorithm 654!

scales at O(n1.3), where n is the number of residues. 655!

 656!

Figure 4.  Multiple metrics and datasets reveal that critical residues tend to be 657!

conserved. Surface- and interior-critical residues (red) in phosphofructokinase (PDB 658!

3PFK) are given in (A) and (E), respectively. Distributions of cross-species conservation 659!

scores, 1000 Genomes SNV DAF averages, and ExAC SNV MAF averages for surface- 660!

and non-critical residue sets are given in (B), (C), and (D), respectively. The same 661!

distributions corresponding to interior- and non-critical residue sets are given in (F), (G), 662!
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and (H), respectively. In (B), mean inter-species conservation scores for surface-critical 663!

sets are -0.131, whereas non-critical residue sets with the same degree of burial have a 664!

mean score of +0.059 (p < 2.2e-16). In (F), mean inter-species conservation scores for 665!

interior-critical sets are -0.179, whereas non-critical residue sets with the same degree of 666!

burial have a mean score of -0.102 (p=3.67e-11). In (C), means for surface- and non-667!

critical sets are 9.10e-4 and 8.34e-4, respectively (p=0.309); corresponding means in (D) 668!

are 4.09e-04 and 2.26e-04, respectively (p=1.49e-3). In (G), means for interior- and non-669!

critical sets are 2.82e-4 and 3.12e-3, respectively (p=1.80e-05); corresponding means in 670!

(H) are 3.08e-05 and 3.27e-04, respectively (p=7.98e-09). N = 421, 32, 84, 517, 31, and 671!

90 structures for panels B, C, D, F, G, and H, respectively. P-values are based on 672!

Wilcoxon-rank sum tests. See SI Methods for further details. See also Figures S2 and S4. 673!

 674!

Figure 5.  Critical residues are shown to be more conserved, as measured by the 675!

fraction of rare alleles. Protein regions with high fractions of rare variants are believed 676!

to be more sensitive to sequence variants than other regions, thereby explaining why such 677!

variants occur infrequently in the population. Panels (A) and (C) show distributions for 678!

rare (low DAF) non-synonymous SNVs (taken from the 1000 Genomes dataset) in which 679!

the critical residues are defined to be the surface-critical (A) and interior-critical (C) 680!

residues. Panels (B) and (D) show distributions for rare (low MAF) non-synonymous 681!

SNVs (taken from the ExAC dataset) in which the critical residues are defined to be the 682!

surface-critical (B) and interior-critical (D) residues. For varying thresholds to define 683!

rarity, there are more structures in which the fraction of rare variants is higher in critical 684!

residues than in non-critical residues. Cases in which the fraction is equal in both 685!
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categories are not shown. We consider all structures such that at least one critical and at 686!

least one non-critical residue intersect a non-synonymous SNV. Panels (A), (B), (C), and 687!

(D) represent data from 31, 90, 32, and 84 structures, respectively. 688!

 689!

Figure 6.  Modeling protein conformational change through a direct use of crystal 690!

structures from alternative conformations using absolute conformational transitions 691!

(ACT). (A) Distributions (155 structures) of the mean conservation scores on surface-692!

critical (red) and non-critical residues with the same degree of burial (blue). (B) 693!

Distributions (159 structures) of the mean conservation scores for interior-critical (red) 694!

and non-critical residues with the same degree of burial (blue). Mean values are given in 695!

parentheses. Results for single-chain proteins are shown, and p-values were calculated 696!

using a Wilcoxon rank sum test. See also Figure S3. 697!

 698!

Figure 7.  Potential allosteric residues add a layer of annotation to structures in the 699!

context of disease-associated SNVs. The structure shown (A) is that of the fibroblast 700!

growth-factor receptor (FGFR) in VMD Surf rendering, with HGMD SNVs shown in 701!

orange, bound to FGF2, in ribbon rendering (PDB 1IIL). (B) A linear representation of 702!

structural annotation for FGFR. Dotted lines highlight loci which correspond to HGMD 703!

sites that coincide with critical residues, but for which other annotations fail to coincide. 704!

Deeply-buried residues are defined to be those that exhibit a relative solvent-exposed 705!

surface area of 5% or less, and binding site residues are defined as those for which at 706!

least one heavy atom falls within 4.5 Angstroms of any heavy atom in the binding partner 707!
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(heparin-binding growth factor 2). The loci of PTM sites were taken from UniProt 708!

(accession P21802). See also Figures S5 and S6. 709!

 710!

Table 1.  Statistics on the surfaces of apo structures within the canonical set of 711!

proteins 712!

For each apo structure within the canonical set of proteins, statistics relating surface-713!

critical sites to known ligand-binding sites are reported. The surface of a given structure 714!

is defined to be the set of all residues that have a relative solvent accessibility of at least 715!

50%, where relative solvent accessibility is evaluated using all heavy atoms in both the 716!

main-chain and side-chain of a given residue. Mean values are given in the bottom row. 717!

NACCESS is used to calculate relative solvent accessibility (Hubbard and Thornton, 718!

1993). Column 1: Protein name and PDB IDs for each structure; Column 2: among these 719!

surface residues, the fraction that constitute surface-critical (SC) residues; Column 3: 720!

among surface residues, the fraction that constitute known ligand-binding (LB) residues 721!

(known ligand-binding residues are taken to be those within 4.5 Angstroms of the ligand 722!

in the holo structure; Table S1); Column 4: the Jaccard similarity between the sets of 723!

residues represented in columns 2 and 3 (i.e., surface-critical and known-ligand binding 724!

residues), where values given in parentheses represent the expected Jaccard similarity, 725!

given a null model in which surface-critical and ligand-binding residues are randomly 726!

distributed throughout the surface (for each structure, 10,000 simulations are performed 727!

to produce random distributions, and the expected values reported here constitute the 728!

mean Jaccard similarity among the 10,000 simulations for each structure); Column 5: the 729!

number of distinct surface-critical sites identified in each structure; Column 6: the 730!
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number of known ligand-binding sites in each structure; Column 7: the number of known 731!

ligand-binding sites which are positively identified within the set of surface-critical sites, 732!

where a positive match occurs if a majority of the residues in a surface-critical site 733!

coincide with the known ligand-binding site; Column 8: The fraction of ligand-binding 734!

sites captured is simply the ratio of the values in column 7 to those in column 6. See also 735!

Figure S1, Table S1, and Table S2. 736!

 737!
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Figure S2, related to Figure 4. Summary statistics for surface-critical sites.  
Panel (A) shows the distribution of the number of surface-critical sites per complex without applying 
thresholds, with complexes represented in biological assembly files downloaded from the PDB. Without 
applying thresholds to the list of ranked surface-critical sites, the protein is often covered with an excess of 
identified critical sites. Distributions of the numbers of distinct surface-critical sites per domain and per 
complex are given in panels (B) and (C), respectively. 
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Figure S3, related to Figure 6. Pipeline for identifying alternative conformations throughout the 
PDB. 
(A) Pipeline for identifying distinct conformations and critical residues: Top to bottom: BLASTClust is 
applied to the sequences corresponding to a filtered set of structures, thereby providing a large number of 
sequence-identical sets of proteins (i.e., “sequence groups”). For each sequence-identical group, a multiple 
structure alignment is performed using STAMP. The example shown here is adenylate kinase. Using the 
pairwise RMSD values in this structure alignment, the structures are clustered using the UPGMA 
algorithm, and K-means with the gap statistic (δ) is performed to identify the number of distinct 
conformations. The plot at left identifies 2 as the optimal value for K: the solid line represents δ(K) values 
at each value of K, and the dotted line represents δ(K+1) – sk+1 for each value of K (see SI Methods section 
3.2-b for details). The structures that exhibit multiple clusters (i.e., those with K > 1) are then taken to 
exhibit multiple conformations. Finally, surface-critical (bottom-left) and interior-critical (bottom-right) 
residues are identified on those proteins determined to exist as multiple conformations.  (B) Energy 
landscapes to describe distributions of different conformations. Energy landscape theory may be used to 
describe the relative populations of alternative biological states and conformations (for instance, 
active/inactive, or holo/apo). In the apo state, the landscape may take the form of the red curve, resulting in 
most proteins favoring the conformation shown in red. Once binding to ligand, the landscape becomes 
reconfigured to take the shape in the cyan curve, thereby shifting the distribution of conformations to that 
shown in cyan. One may use multiple structure alignments for domains or proteins to identify these distinct 
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biological states in a database of structures. The schematized dendrogram represents the partitioning of 
these structures by a metric such as RMSD. The example shown is a multiple structure alignment of 
adenylate kinase. SCOP IDs of the apo domains: d4akea1 and d4akeb1; those of the holo domains: 
d3hpqb1, d3hpqa1, d2eckb1, d2ecka1, d1akeb1, and d1akea1. (C) Intuition behind the k-means algorithm 
with the gap statistic. The objective is to identify the ideal number of clusters to describe the observed data 
of 60 points (in blue). This entails defining how well-clustered our observed data appears (given an 
assigned number of clusters, K) relative to a null model consisting of a randomly distributed set of 60 
points (grey) that fall within the same variable ranges as the observed data. Further details are provided by 
Tibshirani et al, 2001. The distributions of the number conformations (i.e., “K”) for domains and chains are 
given in (D) and (E), respectively. Only proteins for which K exceeds 1 (for chains) are included in our 
dataset of multiple conformations. (F) Distinct proteins in our dataset within the context of high-quality X-
ray structures in the PDB that we structurally aligned. A set of distinct proteins is such that no pair shares 
more than 90% sequence identity. (G) A single annotated entry from our database of alternative 
conformations. The clustering for the protein adenosylcobinamide kinase is shown. Two distinct 
conformations are represented in the ensemble of structures. The measure kf designates the fraction of 
times that the optimal value of K (here, K=2) was obtained out of 1000 simulations in which the algorithm 
(K-means with the gap statistic) obtained this particular value of K. The high kf value (0.969) signifies that 
these structures are very well clustered into two groups. n designates the number of distinct structures (PDB 
chains in this case) in the multiple structure alignment. pf designates the fraction of times (out of 1000 
simulations of running Lloyd’s algorithm, the standard K-means algorithm) that this particular set of 
structure-group assignments were assigned. In this this example, for all 1000 simulations, 1C9K_C and 
1C9K_A were clustered in one group, and 1CBU_A, 1CBU_B, 1CBU_C clustered together. Within each 
cluster (the two clusters shown as two red boxes), the chain preceding the “::” tag designates the cluster 
representative (i.e., the structure closest to the Euclidean centroid of the cluster). The last field gives the 
RMSD values between cluster representatives. See the header information within File S1 for further details. 
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Figure S4, related to Figure 4. Shifts in allele frequency distributions from 1000 Genomes (panels A 
and B) and ExAC (panels C and D) datasets using two-sample Kolmogorov-Smirnov tests. 
Cumulative distribution functions for (A) mean DAF values of surface-critical and non-critical residues (p-
val = 0.159); (B) mean DAF values of interior-critical and non-critical residues (p-val = 1.79e-4); (C) mean 
MAF values of surface-critical and non-critical residues (p-val = 9.49e-2); (D) mean MAF values of 
interior-critical and non-critical residues (p-val = 1.75e-4). All p-values are based on tow-sample KS tests. 
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Figure S5, related to Figure 7. Evaluating pathogenicity using PolyPhen scores for critical- and non-
critical residues, as identified by ExAC  
Left: Distributions (64 structures) of mean PolyPhen values on surface-critical residues (red) and non-
critical residues (blue). Right: Distributions (70 structures) of mean PolyPhen values on interior-critical 
residues (red) and non-critical residues (blue). Overall mean values and p-values are given below plots. 
Note that higher PolyPhen scores denote more damaging variants.  
 
 
 
 

 
 
Figure S6, related to Figure 7. Evaluating pathogenicity using mean SIFT scores for critical- and 
non-critical residues, as identified by ExAC 
Left: Distributions (63 structures) of mean SIFT values on surface-critical residues (red) and non-critical 
residues (blue). Right: Distributions (65 structures) of mean SIFT values on interior-critical residues (red) 
and non-critical residues (blue). Overall mean values and p-values are given below plots. Note that lower 
SIFT scores denote more damaging variants. 
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2 – Supplemental Tables 

 
 
Table S1, related to Table 1. Set of 12 canonical proteins, organized by state (apo or holo) 
These 12 proteins were chosen to constitute the canonical set for several reasons: the allosteric mechanisms 
of their natural ligands are well understood, and both the holo and apo states for each system are available 
and clearly distinguishable; in addition, these proteins have been extensively investigated in the contexts of 
both binding leverage and allostery in general. Ligands are given in parentheses (those in bold text 
designate the ligands used to define residues involved in ligand-binding interactions). 
 
 
 
 

 
 
Table S2, related to Table 1. Capturing known-ligand binding sites at varying thresholds 
Here, n designates the number of residues within a surface-critical site that overlap with known ligand-
binding residues. For the calculations reported above and in the main text, this value is taken to be n=6. 
Because each surface-critical site typically has 10 residues, and never has more than 10 residues, this 
criterion enforces that a majority of surface-critical residues within a given site overlap with known ligand-
binding residues in order to be counted as a site match. However, as this threshold (n) is relaxed to lower 
values, the fraction of captured known ligand-binding sites improves rapidly, suggesting that surface-
critical sites generally lie close to known ligand binding sites in many cases. 
 
 
 
 
 

HOLO APO
1ake%(AP5) 4ake
3cep%(G3P,*IDM,*PLP) 1bks%(PLP)
1hor%(AGP,%PO4,%[&%16G%in%pdb%1HOT]) 1cd5
2c2b%(SAM,%[&%LLP%in%pdb%2c2g]) 1e5x
1gz3%(ATP,*FUM,$OXL) 1efk%(MAK)
1atp%(ATP) 1j3h
1hwz%(GLU,%GTP,*NDP%[&%ADP%in%PDB%1NQT]) 1nr7
1xtu%(CTP,*U5P) 1xtt%(ACY,%U5P)
1aax%(BPM%[&%892%in%PDB%1T49]) 2hnp
7at1%(ATP,%MAL,%PCT%[&%CTP%in%PDB%1RAC],%[&%PAL%in%PDB%1D09]) 3d7s
3ju6%(ANP,%ARG) 3ju5
6pfk%(PGA%[&%F6P*+*ADP*in%PDB%4PFK]) 3pfk%(PO4)

n
Mean'fract.'of'ligand/
binding'sites'captured

6 0.56
5 0.59
4 0.65
3 0.69
2 0.79
1 0.84
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Table S3, related to Figure 2. Comparing the two network module identification algorithms GN & 
Infomap 
Though both GN (values to the left of “|” symbols throughout the table) and Infomap (values to the right) 
decompose networks to give similar modularity, the number of communities, and hence the number of 
critical residues connecting communities, is substantially larger when decomposing networks using 
Infomap than using GN. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



! !

3 - Supplemental Methods 
3.1  Identifying Potential Allosteric Residues 

Allosteric residues are predicted both on the surface and within the protein interior. In this study, 
these two sets of predicted allosteric residues are termed “surface-critical” and “interior-critical” residues, 
respectively. Notably, allosteric sites on the surface play mechanistic roles that are generally different from 
those within the interior: while surface sites often function as the source points or sinks of allosteric signals, 
the interior acts to transmit such information. Thus, different approaches are needed for selecting these two 
sets of residues. For both, biological assembly files from the PDB are used as the input to our analysis 
(Berman et al., 2000). 
 
3.1-a  Identifying Surface-Critical Residues 

With the objective of identifying potential allosteric residues on the protein surface, we employ a 
modified version of the binding leverage method for identifying likely ligand binding sites (Figure 1A), as 
described previously (Mitternacht and Berezovsky, 2011). Allosteric signals may be transmitted over large 
distances by a mechanism in which the allosteric ligand has a global effect on a protein’s functionally 
important motions. For instance, introducing a bulky ligand into the site of an open pocket may disrupt 
large-scale motions if those motions normally entail that the pocket become collapsed over the course of a 
motion (Figure 1A). Such a modulation of the global motions may affect activity within sites that are 
distant from the allosteric ligand-binding site. We point the reader to work by Mitternacht and Berezovsky 
for a more detailed discussion regarding the binding leverage method (Mitternacht and Berezovsky, 2011), 
though a general overview of the approach, along with a detailed discussion of the changes we have 
implemented, are given below. 
 
3.1-a-i  Monte Carlo Simulations & Parameterization to Identify Candidate Allosteric Sites on the 
Surface 

The surface of most proteins is a highly dense patchwork of pockets, ridges, protrusions, and 
clefts. Throughout this complex topology, there are many potential sites that may confer allosteric 
regulation upon binding by natural or artificial ligands. Thus, as a first step to identifying surface-critical 
sites, we aim to identify surface pockets that are capable of accommodating small ligands. These candidate 
allosteric sites are generated by Monte Carlo (MC) simulations in which a simple flexible ligand 
(comprising of 4 “atoms” linked by bonds of fixed length 3.8 Angstroms, but variable bond and dihedral 
angles) explores the protein’s surface. The number of MC simulations is set to 10 times the number of 
residues in the protein structure, and the number of MC steps per simulation in our implementation is set to 
10,000 times the size of the simulation box, as measured in Angstroms. The size of this simulation box is 
set to twice the maximum size of the PDB along any of the x, y or z-axes. Apo structures were used when 
probing protein surfaces for putative ligand binding sites in the canonical set of proteins. 

Throughout the MC simulation, a simple square well potential (i.e., modeling hard-sphere 
interactions) is used to model the attractive and repulsive energy terms associated with the ligand’s 
interaction with the protein surface. In the unmodified implementation of the method, these energy terms 
depend only on the ligand atom’s distance to alpha carbon atoms in the protein – other heavy atoms or 
biophysical properties are not considered. 

Our approach and set of applications differ from those previously developed in several key ways. 
When running MC simulations to probe the protein surface and generate candidate binding sites, we use all 
heavy atoms in the protein when evaluating a ligand’s affinity for each location. By including all heavy 
atoms (i.e., as oppose to using the protein’s alpha carbon atoms exclusively), our hope is to generate a more 
selective set of candidate sites. Indeed, the use of alpha carbon atoms alone leaves ‘holes’ in the protein 
which do not actually exist in the context of the dense topology of side chain atoms. Thus, by including all 
heavy atoms, we hope to reduce the number of false positive candidate sites, as well as more realistically 
model ligand binding affinities in general. 

In the original binding leverage framework, an interaction between a ligand atom and an alpha 
carbon atom in the protein contributes -0.75 to the binding energy if the interaction distance is within the 
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range of 5.5 to 8 Angstroms. Interaction distances greater than 8 Angstroms do not contribute to the 
binding energy, but distances in the range of 5.0 to 5.5 are repulsive, and those between 4.5 to 5.0 
Angstroms are strongly repulsive (distances below 4.5 Angstroms are not permitted). However, given the 
much higher density of atoms interacting with the ligand in our all-heavy atom model of each protein, it is 
necessary to accordingly change the energy parameters associated with the ligand’s binding affinity.  

The determination of how these parameters should be changed in an all-heavy atom model is 
fundamentally a problem of optimization. Thus, how are these parameters optimized in the potential 
function? We determined which combination of parameters best predicts known ligand binding sites in 
threonine synthase (1E5X), phosphoribosyltransferase (1XTT), tyrosine phosphatase (2HNP), arginine 
kinase (3JU5), and adenylate kinase (4AKE). Specifically, the parameters to be optimized include (1) the 
ranges of favorable and unfavorable interactions (i.e., the widths of the potential function) and (2) the 
attractive and repulsive energies themselves (i.e., the depths and heights of the potential function). 

For well depths, we tested models using several different attractive potentials, ranging from -0.05 
to -0.75, including all intermediate factors of 0.05. For well widths, we first tried using the cutoff distances 
originally used (attractive in the range of 5.5 to 8.0 Angstroms, repulsive in the range of 5.0 to 5.5, and 
strongly repulsive in the range of 4.5 to 5.0). However, these cutoffs, which were originally devised to 
model the ligand’s affinity to the alpha carbon atom skeleton alone, were observed to be inappropriate 
when including all heavy atoms. Thus, in addition to sampling various well widths, we also performed the 
simulations using revised sets of distance cutoffs. 

Using this approach, the optimized set of parameters were as follows (here, Dlig-prot designates the 
distance, in Angstroms, between a ligand atom and a protein atom): 

 
             widths      depths & heights 

 ∞   >  Dlig-prot  ≥  4.5: Energy = 0 
4.5  >  Dlig-prot  ≥  3.5: Energy = - 0.35 (attractive) 
3.5  >  Dlig-prot  ≥  3.0: Energy = +10 (repulsive) 
3.0  >  Dlig-prot  ≥  0.0: Energy = +10000 (strongly repulsive: effectively prohibited) 

 
In addition to optimizing these parameters within the potential function, we also determined that 

setting the number of MC steps to 10,000 times the size of the simulation box (see above) provided the best 
convergence across multiple simulations on the same protein – that is, this number of steps better enabled 
us to recapture the same set of sites when running the simulations multiple times. 

After all candidate sites are identified by these MC simulations, pairs of sites with extremely high 
overlap are merged by combining any pair of sites that have a Jaccard similarity of at least 0.7, where the 
Jaccard similarity between sites i and j is |i�j|/|i�j|. After merging sites in this way, the residues of a given 
site are listed by their local closeness, and no more than 10 residues for a site are used. Local closeness 
(LC) is a geometric quantity that provides a measure of the degree of a residue in the residue-residue 
contact network; see (Mitternacht and Berezovsky, 2011b) for further discussion of LC. This entire process 
results in a list of sites on which binding leverage calculations can be performed. 
 
3.1-a-ii  Binding Leverage Calculations 

Once candidate pocket sites are identified using the protocol outlined above, an obvious question 
is whether these sites can function allosterically by influencing global low-frequency motions of the 
protein. In order to rank the candidate sites by the degree to which they can impart such allosteric 
properties, the binding leverage associated with each candidate site is calculated. 

First, normal modes analysis is applied to generate a model of the protein’s low-frequency 
motions (alternatively, one may use direct displacement vectors between two structures; see SI Methods 
section 3.2-c). To generate these modes, we use the alpha carbon atoms in building the protein’s elastic 
networks. Using default parameters, we take the top 10 (lowest-frequency) available non-trivial Fourier 
normal modes generated using the Molecular Modeling Toolkit (MMTK) (Hinsen, 2000). Specifically, 
these 10 low-frequency modes are produced using the “representative structures” within each cluster of a 
multiple structure alignment (for details on representative structures, see SI Methods section 3.2-b). Note 
that this exact same method for producing the modes was also used in the identification of interior-critical 
residues (see below). 

Once the 10 modes are produced, each of the candidate sites is then scored based on the degree to 
which deformations in the site couple to the low-frequency modes; that is, those sites which are heavily 
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deformed as a result of the normal mode fluctuations (Figure 1A, top-right) receive a high score (termed 
the binding leverage for that site), whereas shallow sites with few interacting residues (Figure 1A, bottom-
left) or sites that undergo minimal change over the course of a mode fluctuation (Figure 1A, bottom-right) 
receive low binding leverage scores. Specifically, the binding leverage score for a given site is calculated as 
 

 
 
Here, the outer sum is taken over the 10 modes, and the pair of inner sums are taken over all pairs of 
residues (i,j) such that the line connecting the pair lies within 3.0 Angstroms of any atom within the 
simulated ligand. The value ∆dij(m) for each residue pair (i,j) represents the change in the distance between 
residues i and j when this distance is calculated using mode m. Thus, one may think of binding leverage as 
qualitatively predicting the extent to which a surface pocket is deformed when the protein undergoes 
conformational transitions. 
 
3.1-a-iii  Defining & Applying Thresholds to Select High-Confidence Surface-Critical Sites 

As discussed in the main text, without applying thresholds to the list of ranked surface sites that 
remain after running the binding leverage calculations, a very large number of sites would occupy the 
protein surface (Figure S2A). Thus, it is necessary to trim and process this list. To do so, we borrow from 
principles in energy gap theory (Bryngelson et al., 1995). Details regarding the calculations for establishing 
a threshold on the number of sites are given here. 

For each of the N candidate binding sites in what we call “pre-processed ranked list of sites” 
(produced by the procedure outlined above), we calculate the value ∂BL(j)/∆BL. Here, j is the jth site to 
appear in the pre-processed ranked list of sites, with this list of sites being ranked in descending order of 
each site’s binding leverage score (see above). ∂BL(j) is defined as the difference in the binding leverage 
scores of the jth site and the (j-1)th site in the ranked list. Because the list of sites is organized in descending 
order of binding leverage scores, ∂BL(j) ≥ 0. ∆BL is a constant defined as: 
 

∆BL  =  maxbinding_leverage_score  –  minbinding_leverage_score 
 
∆BL is thus the difference in the binding scores associated with the very top site and very bottom site in this 
ranked. Qualitatively, a large value for ∂BL(j)/∆BL indicates that there is a large drop in binding 
leverage scores in going from site j to site (j-1) within the pre-processed ranked list. 

We then consider those sites with the highest ∂BL/∆BL values – specifically, we consider the top 
5.5% of sites in terms of ∂BL/∆BL. Thus, we are considering site j if there is a very large gap in binding 
leverage scores between sites j and (j-1). The lowest-occurring site within this considered list of high 
∂BL/∆BL values demarcates a threshold beyond which we reject all lower sites within the pre-processed 
ranked list, leaving only what we call the “processed ranked list of sites”. 

We then go up from to bottom through the top of this processed ranked list of sites, and for each 
site, we determine the Jaccard similarity with all sites above. If the Jaccard similarity with any site above 
exceeds 0.7, then the lower site is removed from the processed ranked list. The final list obtained after 
performing these Jaccard similarity filters is taken to represent the set of surface-critical sites on a structure. 

In counting the final number of truly distinct surface-critical sites for any given structure, we 
remove redundant sites within the set of surface-critical sites obtained in the process above, as some of the 
sites within this set may still exhibit considerable mutual overlap. A site i within the list of surface-critical 
sites is said to be redundant if it is assigned a redundancy score that exceeds 0.4, where 

 
redundancy_score(i)  =  | {Rsite_i!}!!� {Rsites>i} |  /  Nres_i 

 
Here, {Rsite_i} is the set of residues in site i, {Rsites>i} is the union of residues in all accepted sites above site 
i in the list of sites, Nres_i is the number of residues in site i, and the |…| notation in the denominator of this 
ratio is meant to designate the number of residues in the indicated intersection. If this redundancy score is 
less than 0.4, then site i is considered to be truly distinct from all other sits, and it is included in the list of 
distinct sites. If the redundancy score exceeds 0.4, then the site overlaps with another site on the surface, 
and it is thus rejected from the set of accepted distinct sites. Finally, the total number of sites in the 
accepted set of sites is taken as the number of distinct sites for a structure. 
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3.1-a-iv  Known Ligand-Binding Sites at the Surface 
Known ligand-binding residues of an apo structure are taken to be those within 4.5 Angstroms of 

the ligand in the corresponding holo structure (Table S1). Within the canonical set of proteins, surface-
critical sites overlap with an average of 56% of the known-ligand binding sites (Table 1). It has previously 
been shown that the sites in aspartate transcarbamoylase (PDB ID 3D7S) are especially difficult to identify 
(Mitternacht and Berezovsky, 2011); excluding aspartate transcarbamoylase results in finding an average of 
61% of known biological ligand binding sites. In addition, we emphasize that many of the “false positives” 
(sites predicted to be important allosterically, but do not correspond to known ligand binding sites) may 
nevertheless function as latent allosteric sites. Such sites potentially may impart allosteric properties 
through previously uncharacterized ligands or through artificial ligands (such as drugs targeted to specific 
proteins). 
 
3.1-b  Dynamical Network Analysis to Identify Interior-Critical 
Residues 

As discussed, allosteric residues within the protein interior often act to transmit signals. The 
identification of such residues is accomplished by a network formalism (Figure 1B), wherein the objective 
is to identify network nodes (i.e., residues) that are essential for communication between communities (i.e., 
groups of highly inter-connected residues of the contact map). This first entails representing a protein 
structure as a network of interacting residues, and then weighting the connections (edges) between these 
residues using information about inferred protein motions. Once the edges are weighted, the network is 
decomposed into distinct modules, and the residues that are identified as being important for inter-module 
communication are identified as the interior-critical residues. The details of this formalism are provided 
here. 
 
3.1-b-i  Network Formalism and Weighting Scheme 

The network representing interacting residues is first constructed. An edge between residues i and 
j is drawn if any heavy atom within residue i is located within 4.5 Angstroms of any heavy atom within 
residue j, and we exclude the trivial cases of pairs of residues that are adjacent in sequence, which are not 
considered to be in contact within the network. 

Network edges are then weighted on the basis of correlated motions of the interacting residues, 
with these motions provided by the same ANMs that had been used in the identification of surface-critical 
residues (as with the identification of surface-critical residues, it is also possible to model conformational 
changes by using information regarding pairs of distinct conformations; see the SI Methods section 3.2-c). 
Again, the 10 lowest-frequency non-trivial modes are produced using the “representative structures” (see 
discussion in SI Methods section 3.2-b) within each cluster of a multiple structure alignment for a given 
protein. We emphasize that, although ANMs are more coarse-grained than molecular dynamics, our use of 
ANMs is motivated by their much faster computational efficiency, which is a required feature for our 
database-scale analysis. 

The edge weighting scheme is performed as follows: an “effective distance” Dij for an edge 
between interacting residues i and j is set to Dij = −log(∣Cij∣), where Cij designates the correlated motions 
between residue i and j: 

 
Cij  =  Covij  /  √(⟨ri

2⟩⟨rj
2⟩) 

 
where 
 

Covij  =  ⟨ri ! rj⟩$
 

Here, ri and rj designate the vectors associated with residues i and j (respectively) under a particular mode. 
The brackets in the term ⟨ri ! rj⟩ indicate that we are taking the mean value for the dot product ri ! rj over 
the 10 lowest-frequency non-trivial modes. 

An example may help to clarify this. If two interacting residues exhibit a high degree of correlated 
motion, then the motion of one may tell us about the motion of the other, suggesting a strong flow of 
energy or information between the two residues, resulting in a low value for Dij: a strong correlation (or a 
strong anti-correlation) between nodes i and j result in a value for ∣Cij∣ that is close to 1. This gives a low 
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value for Dij (−log(∣Cij∣) ≈ 0). Thus, given a strong correlated motion, this effective distance Dij between 
residues i and j is very short. This small Dij means that any path involving this pair of residues is likewise 
shorter as a result, thereby more likely placing this pair of residues within a shortest path, and more likely 
rendering this pair a bottleneck pair. In sum, this edge-weighting scheme is such that a high correlation in 
motion results in a short effective distance, thereby more likely rendering this a bottleneck pair of residues.  

In the opposite scenario, for interacting residues with poor correlation values (Cij ≈ 0), a large 
effective distance Dij results, thereby making it more difficult for the pair of residues to lie within shortest 
paths or within the same community. 

Once all connections between interacting pairs of residues are appropriately weighted and the 
communities are assigned using the Girvan-Newman (GN) algorithm (Girvan et al., 2002) with these 
effective distances, a residue is deemed to be critical for allosteric signal transmission (i.e., an interior-
critical residue) if it is involved in the highest-betweenness edge connecting two distinct communities. A 
given edge’s betweenness is taken to be the number of shortest paths involving that edge, where a path 
length is the sum of its associated effective edge distances (see above). The shortest distance between each 
NC2 pair of nodes in the network of N residues is calculated with the Floyd–Warshall algorithm. See Figure 
2 for examples of community partitions and associated interior-critical residues. 
 
3.1-b-ii  Decomposing Proteins into Modules Using Different Algorithms 

We use the GN formalism to identify the community structure of networks as part of our 
framework to identify interior-critical residues. By identifying the “community structure”, we are referring 
to the problem of finding the optimal partitioning of a network into different “modules” (i.e., communties), 
such that each node within a module is highly connected to other nodes within the same module, and 
minimally conntected to other nodes in outside modules. However, although we employ GN, many other 
algorithms have been devised to identify community structure. 

In a study comparing different algorithms (Lancichinetti and Fortunato, 2009), an information 
theory-based approach (Rosvall and Bergstrom, 2007) was shown to be one of the strongest methods. This 
approach (termed “Infomap”) effectively reduces the network community detection problem to a problem 
in information compression: the prominent features of the network are extracted in this compression 
process, giving rise to distinct modules; further details are provided in (Rosvall and Bergstrom, 2007). 

Perhaps surprisingly, even though both GN and Infomap achieve similar network modularity (with 
GN being slightly better), Infomap produces at least twice the number of communities relative to that of 
GN when applied to protein structures, and it thus generates many more interior-critical residues (Table 
S3). Within the set of 12 canonical proteins, GN and Infomap generate an average of 12.0 and 36.8 
communities, respectively. This corresponds to an average of 44.8 and 201.4 interior-critical residues when 
using GN and Infomap, respectively. Thus, given that GN produces a more selective set of residues for 
each protein, we use GN throughout our analyses. 

Although the critical residues identified by GN do not always correspond to those identified by 
Infomap, the mean fraction of GN-identified interior-critical residues that match Infomap-identified 
residues is 0.30 (the expected mean, based on a uniformly-random distribution of critical residues 
throughout the protein, is 0.21, p-value=0.058). Furthermore, we observe that obvious structural 
communities are detected when applying both methods: a community generated by GN is often the same as 
that generated by Infomap, and in other cases, a community generated by GN is often composed of sub-
communities generated by Infomap. In addition, the modularity from the network partitions generated by 
GN and Infomap are comparable. For the 12 canonical systems, the mean modularity for GN and Infomap 
is 0.73 and 0.68, respectively. GN modularity values are consistently at least as high as those in Infomap 
because GN explicitly optimizes modularity in partitioning the network, whereas Infomap does not. 

Together, these results suggest that both GN and Infomap generate similar partitions. Roughly, the 
set of interior-critical residues identified by GN partially constitute a subset of those identified with 
Infomap. If these sets of residues were completely different, then the choice between GN and Infomap 
would be difficult, as the results in our downstream conservation analyses would then be highly sensitive to 
our community detection method of choice. Given that the two residue sets are not disjoint, our choice of 
GN over infomap was largely guided by the fact that GN is far more selective in identifying important 
network elements (i.e., interior-critical residues), as evidenced in Table S3. In contrast, Infomap generates a 
much less selective set of interior-critical residues. 
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3.1-c  STRESS (STRucturally-identified ESSential residues) 
We have developed an easy-to-use web tool in order to enable those in the structural biology 

community to identify surface- and interior-critical residues within their own proteins of interest. Our 
server has been designed to be both user-friendly and highly efficient. 

We use local searching supported by hashing to perform a local search in each sampling step of 
the Monte Carlo simulations, which takes constant time. This approach brings down the asymptotic 
computational complexity by an order of magnitude, relative to a simpler implementation without 
optimization (Figures 3B and 3C). The time complexity of the core computation, Monte Carlo sampling, is 
O(|T||S|), where T and S are simulation trials and steps for each trial, respectively. After carefully profiling 
and optimizing for speed (with optimizations introduced through changes in the workflow, data structures, 
numerical arithmetic, etc.), a typical case takes ~30 minutes on a E5-2660 v3 (2.60GHz) core. 

In terms of operation, our tool utilizes two types of servers: front-end servers that handle incoming 
HTTP requests and back-end servers that perform algorithmic calculations (Figure 3A). Communication 
between these two types of servers is handled by Amazon's Simple Queue Service (SQS). When our front-
end servers receive a new request, they add the job to the queue and then return to requests immediately. 
Our back-end servers poll the queue for new jobs and run them when capacity is available. Amazon's 
Elastic Beanstalk offers several features that enable us to dynamically scale our web application. We use 
Auto Scaling to automatically adjust the number of back-end servers backing our application based on 
predefined conditions, such as the number of jobs in the queue and CPU utilization. Elastic Load Balancer 
automatically distributes incoming network traffic. This system ensures that we are able to handle varying 
levels of demand in a reliable and cost-effective manner. Since we may have multiple servers backing our 
tool simultaneously (some handling HTTP requests and some performing calculations, any of which may 
be terminated at any time by Auto Scaling), it is important that our servers are stateless. We thus store input 
and output files remotely in an S3 bucket, which is accessible to each server via RESTful conventions. The 
corresponding source code and README files are made available through Github 
(github.com/gersteinlab/STRESS). 
 
 

3.2  High-Throughput Identification of Alternative 
Conformations 
 There are many proteins within the PDB for which multiple distinct conformations are available. 
In many cases, a large number of structures may represent a relatively small number of conformations. We 
have sought identify such alternative conformations using a structural clustering scheme as part of our 
framework for identifying critical residues. The purpose of developing this clustering scheme is three-fold: 
 

1) We are interested in those structures that exhibit distinct conformations, as we are focusing on 
cases for which pronounced conformational change plays an essential role in allostery. 

2) The clustering scheme ultimately enables us to perform an important control. Namely, it enables 
us to address the question: are the results robust to alternative methods of inferring information 
about conformational change? ANMs provide only one means of defining the vectors for predicted 
conformational change. However, another approach is to use the direct displacement vectors from 
the crystal structures of alternative conformations. This alternative constitutes a method that we 
term “absolute conformational change” (ACT) in the manuscript. 

3) ANMs constitute the bulk of our analysis, so we must be confident that the structures analyzed are 
suitable: if a given protein is not believed to undergo significant conformational change, it may 
not be appropriate to apply ANMs, as the ANMs can incorrectly predict large-scale 
conformational change where no such change is believed to occur.  
 

An overview of our pipeline is provided in Figure S3A. Broadly, we perform MSAs for thousands of 
structures, with each alignment consisting of sequence-identical groups. Within each alignment, we cluster 
structures using RMSD to determine the distinct conformational states. We then use models of protein 
conformational transitions to identify surface- and interior-critical residues. 
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3.2-a  Database-Wide Multiple Structure Alignments 
 FASTA files of all SCOP domains were downloaded from the SCOP website (version 2.03) (Fox 
et al., 2014; Murzin et al., 1995). We first worked with domains to probe for intra-domain conformational 
changes, as better alignments are generally possible at the domain level. For all other analyses reported, all 
results are based on groups of structures that are 100% sequence identical. We removed structures with 
resolution values poorer than 2.8, as well as any PDB files with R-Free values poorer than 0.28. STAMP 
(Russell and Barton, 1992) and MultiSeq (Roberts et al., 2006) were used to generate the multiple structure 
alignments (MSAs). For each MSA, the final output is a symmetric matrix representing all pairwise RMSD 
values, which are then used as input to the K-means module (below). 
 
3.2-b  Identifying Distinct Conformations within an MSA 

For each MSA produced in the previous step, the corresponding matrix of pairwise RMSD values 
describes the degree and nature of structural heterogeneity among the crystal structures. The objective is to 
use this data in order to identify the biologically distinct conformations represented by an ensemble of 
structures. Our framework relies on a modified version of the K-means clustering algorithm, termed K-
means clustering with the gap statistic (Tibshirani et al., 2001). A priori, performing K-means clustering 
assumes prior knowledge of the number of clusters (i.e., “K”) to describe a dataset, and the gap statistic 
enables one to identify the optimal number of clusters intrinsic to a complex or noisy dataset. Given 
multiple resolved crystal structures for a given domain, this method estimates the number of 
conformational states represented in the ensemble of structures. 

As a first step toward clustering the structure ensemble of N structures, we use multidimensional 
scaling (MDS) to convert an N-by-N matrix of pairwise RMSD values into a set of N distinct points, with 
each point representing a structure in (N-1)-dimensional space. The values of the N-1 coordinates assigned 
to each of these N points are such that the Euclidean distance between each pair of points is the same as 
that corresponding pair’s RMSD value in the original matrix. 

We point the reader to the work by Tibshirani et al for details governing how we perform K-
means clustering with the gap statistic, as well as more details on the theoretical justifications of this 
approach (Tibshirani et al., 2001). However, an overview is provided here. Assume that the data takes the 
form of 60 data points, with each point represented in 2D space. 

1) Start by assuming that the data can be represented with K clusters. Perform standard K-means 
clustering on the data to assign each point to one of K clusters. Then, for each cluster k (which contains 
data points in the set Ck) measure Dk, which describes the ‘density’ of points within cluster k: 
 

 
 

2) Calculate an overall normalized score W to describe how well-clustered the resultant system has 
become when assigning all 60 data points to the K clusters (nk denotes the number of points in cluster k):  
 

 
 

3) Given our data, how well does this number of assigned clusters K actually represent the ‘true’ 
number of clusters, relative to a null model without any apparent clustering? To address this, produce a null 
distribution of 60 randomly (i.e., uniformly) distributed data points that lack any clear clustering such that 
the randomly placed points lie within the same bounding box of the observed data. 

4) Repeat step (3) M times, and each time a random null distribution is produced, calculate Wnull(K) 
(assuming K clusters), just as W is calculated for the observed data. Then calculate the meanM{log(Wnull(K))} 
for these M null distributions. The meanM{log(Wnull(K))} measures how well random systems (with the same 
number of data points and within the same variable ranges as the observed data) can be described by K 
clusters. The M log(Wnull(K)) values produced by the null models have a standard deviation that is ultimately 
converted to sk; see (Tibshirani et al., 2001) for details: 

 
sk  =  σ(k)√(1 + 1/B) 
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5) Calculate the gap statistic δ(K), given K clusters. This measures how well our observed data 
may be described by K clusters relative to null models containing the same number of points and within the 
same variable ranges. A high δ(K) signifies that our data is well-described using K clusters. Assuming K 
clusters, the gap statistic is given as:  

   
δ(K)  =  meanM{log(Wnull(K))} – log(W) 

 
 6) Obtain successive values δ(K+1), δ(K+2), δ(K+3), etc. by incrementing the value for K and 
repeating the steps (1) - (5). The optimal K is the first (i.e., lowest) K such that δ(K) >= δ(K+1) – sk+1: 
 

Koptimal = {K| δ(K) >= δ(K+1) – sk+1} 
 

We confirmed that these Koptimal values accurately reflect the number of clusters by manually 
studying dozens of MSAs. We also examined several negative controls, such as CAP, an allosteric protein 
that does not undergo conformational change. We identified a vast array well-studied allosteric domains 
and proteins. There may be many factors driving conformational change, and those cases for which the 
change is induced by the binding to a simple ligand (i.e., a simple consideration of apo or holo states) 
constitute only a very small subset of the conformational shifts observed in the PDB. The gap statistic 
performed well in discriminating crystal structures that constitute such a diverse set. 

Each structure is assigned to its respective cluster using the assigned optimal K-values as input to 
Lloyd’s algorithm (i.e., standard K-means clustering). For each sequence group, we perform 1000 K-means 
clustering simulations on the MDS coordinates, and take the most common partition generated in these 
simulations to assign each structure to its respective cluster.  We then select a “representative structure” 
from each of the assigned clusters. This representative  is the member with the lowest Euclidean distance to 
the cluster mean, using the coordinates obtained by MDS (see description above). These cluster 
representatives are then taken as the distinct conformations for this protein, and they are used for the 
binding leverage calculations and networks analyses (below). 
 
3.2-c  Models of Conformational Change via Displacement Vectors 
from Alternative Conformations 

Unless otherwise specified, we use normal modes analysis to model conformational change 
throughout this study. However, one potential concern with this approach is that normal modes may not 
faithfully represent plausible conformational changes. Thus, in order to determine whether or not the results 
are robust to different means of inferring motions (especially those results relevant to the conservation of 
critical residues), we also model conformational change using vectors connecting pairs of corresponding 
residues in crystal structures of alternative conformations. We term this approach “absolute conformational 
transitioning” (ACT). This more direct model of conformational change is especially straightforward to 
apply to single-chain proteins (applying ACT on a database scale to multi-chain complexes would 
introduce confounding factors related to chain-chain correspondence between such complexes when each 
complex has multiple copies of a given chain). 
 
3.2-c-i  Inferring Protein Conformational Change Using Displacement Vectors from Alternative 
Conformations 

Given a particular protein, how are these ACT vectors defined in order to calculate critical 
residues? We discuss a hypothetical example consisting of a multiple structure alignment of 8 sequence-
identical structures. Starting with the protein’s multiple-structure alignment using all 8 structures, we 
determine the optimal number of clusters represented by the structure alignment using the K-means 
algorithm with the gap statistic (see the above SI Methods section 3.2-b). Suppose that these 8 structures 
may be grouped into 2 distinct clusters by our scheme (4 structures in cluster A, and 4 structures in cluster 
B, for instance). As discussed in SI Methods section 3.2-b, a representative structure is taken from each of 
these two clusters (structure A and structure B). These two representatives are taken to represent the 
alternative conformations for the protein. As an alternative to using ANMs, we may use structure A and 
structure B to try to infer information about the protein’s global conformational shifts by assigning a 
displacement vector to each residue (for instance, residue Y140), where the displacement vector is simply 
defined by the two corresponding residues in the different structures within the structure alignment (i.e., 
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Y140 within structure A of the structure alignment and Y140 within structure B of the structure alignment). 
Because the structure alignment was performed on sequence-identical structures, each residue in one of 
these two representative structures matches a corresponding residue on the other representative structure. If 
each of the two structures represents a sequence-identical protein consisting of 200 residues, then 200 ACT 
vectors are drawn in order to represent the conformational change in transitioning from one conformation 
to the other. These 200 ACT vectors for the protein may then be used to identify surface- and interior-
critical residues (see below), and downstream analysis on these residues is then performed. 
 
3.2-c-ii  Identifying Surface-Critical Residues Using Vectors from Alternative Conformations 

All preliminary steps performed when identifying surface-critical residues using normal modes 
(such as the MC search) are the same as those when using ACT vectors, with the important difference, of 
course, being the use of these ACT vectors as oppose to using eigenvectors when inferring motion. Thus, 
when using ACT vectors, the binding leverage score for a given site is simply calculated as: 
 

 
 
where the sum is taken over all pairs of residues (i,j) such that the line connecting the pair lies within 3.0 
Angstroms of any atom within the simulated ligand, and the value ∆dij for each residue pair (i,j) represents 
the change in the distance between residues i and j when this distance is calculated in alternative crystal 
structure. Thus, for each residue, the 10 vectors provided by the normal modes are simply replaced by the 
single ACT vector that defines the change in position of that residue when going from the protein 
conformation given by one representative structure to the conformation given by the other representative. 
 
3.2-c-iii  Identifying Interior-Critical Residues Using Vectors from Alternative Conformations 

When identifying interior-critical residues, ACT vectors may be produced in the exact same way 
that they are produced when identifying surface-critical residues. When identifying interior-critical 
residues, the inferred conformational changes are used in order to assign weights within the residue contact 
maps. In the scheme in which normal modes are used, these weights are assigned by averaging over to 10 
sets of vectors given by the 10 modes. However, when using ACT vectors, there is only one vector for each 
residue (i.e., the vector defining the “displacement” defined by two structures). Thus, when using ACT 
vectors, the weight parameters are calculated as 

 
Cij  =  Covij  /  √(|ri|2$*$|rj|2) 

 
where 
 

Covij  =  ri ! rj$
 

Here, ri denotes the vector that defines the change in position for residue i when going from one 
representative conformation to the other. 
 
3.2-c-iv  Using Vectors from Alternative Conformations Recapitulates Results Using Normal Modes  

When we use ACT vectors to apply the modified binding leverage framework for these proteins, 
we again observe that our surface-critical residues are significantly more conserved than are non-critical 
residues (Figure 6A), and the same trend is also observed when ACT vectors are applied in our dynamical 
network analysis for identifying interior-critical residues (Figure 6B). The fact that ACT vectors produce a 
similar set of results to those obtained using normal modes analysis suggests that our approach is robust to 
different methods for inferring protein conformational change. We note that there are too few human 
single-chain proteins to perform a reliable analysis in which conservation is evaluated using 1000 Genomes 
or ExAC data – for instance, only 9 (16) structures are such that 1000 Genomes (ExAC) SNVs overlap with 
interior-critical residues. 
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3.3  Evaluating Conservation of Critical Residues 
Using Various Metrics and Sources of Data 

How conserved are the surface- and interior-critical residues identified, relative to other residues 
in the protein? Certainly, allosteric residues are known to exhibit conservation, and we should expect that 
the critical residues identified exhibit strong conservation. Conservation may be measured across diverse 
evolutionary time scales. Metrics for selective constraint that correspond to long evolutionary time scales 
entail sequence comparisons across diverse species. At the other extreme, metrics for short-term 
evolutionary conservation entail analyzing multiple genomes from within the same species (e.g., multiple 
human genomes). In order to evaluate the relative conservation of the critical residues identified in this 
study, we measure conservation using both types of measures, and demonstrate that, as expected, critical 
residues are under stronger evolutionary constraint relative to other regions of the protein. 
 
3.3-a  Conservation Across Species 

All cross-species conservation scores represent the ConSurf scores, as downloaded from the 
ConSurf Server (Ashkenazy et al., 2010; Celniker et al., 2013; Glaser et al., 2003; Landau et al., 2005), in 
which ConSurf scores for each protein chain are normalized to have a mean ConSurf score of 0 (the 
ConSurf score variance is 1 for each chain). Low (i.e., negative) ConSurf scores represent a stronger degree 
of conservation, and high (i.e., positive) scores designate weaker conservation. We perform cross-species 
conservation analysis on those proteins for which ConSurf files are available from the ConSurf server, and 
all ConSurf scores were calculated using default parameters, listed here: 

 
 Homolog search algorithm: CSI-BLAST 
 Number of iterations: 3 
 E-value cutoff: 0.0001 
 Proteins database: UniRef-90 
 Maximum homologs to collect: 150 
 Maximal %ID between sequences: 95 
 Minimal %ID for homologs: 35 
 Alignment method: MAFT-L-INS-i 
 Calculation method: Baysian 
 Calculation method: JTT 
 

Each individual point within the cross-species conservation plots (e.g., Figures 4B, 4F, and 6) 
represents data from one structure: the value of the point for any given structure represents the mean 
conservation score for all residues within one of two classes: the set of N critical residues within a protein 
structure (surface or interior) or a randomly-selected set of N non-critical residues (with the same “degree”, 
see below) within the same structure. The randomly selected non-critical set of residues was chosen in a 
way such that, for each critical residue with degree k (k being the number of non-adjacent residues with 
which the critical residue is in contact, see below), a randomly selected non-critical residue with the same 
degree k was included in the set. The distributions of non-critical residues shown are very much 
representative of the distributions observed when re-building the random set many times. 

Note that the degree (i.e., k) of residue j is defined as the number of residues which interact with 
residue j, where residues adjacent to residue j in sequence are not considered, and an interaction is defined 
whenever any heavy atom in an interacting residue is within 4.5 Angstroms of any heavy atom in the 
residue j. We use degree as a measure of residue burial for several reasons. This metric for burial is 
consistent with our networks-based analysis for identifying interior-critical residues, as well as our use of 
residue-residue contacts in building networks for producing the ANMs. In addition, degree is also an 
attractive metric because it is discrete in nature, thereby allowing us to generate null distributions of non-
critical residues with the exact same degree distribution. 
 
3.3-b  Measures of Conservation Amongst Humans from Next-
Generation Sequencing 

All SNVs intersecting protein-coding regions that result in amino acids changes (i.e., 
nonsynonymous SNVs) were collected from the phase 3 release of The 1000 Genomes Project (McVean et 
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al., 2012). VCF files containing the annotated variants were generated using VAT (Habegger et al., 2012). 
For nonsynonymous SNVs, the VCF files included the residue ID of the affected residue, as well as 
additional information (such as the corresponding allele frequency, the ancestral allele, and the residue 
type). To map the 1000 Genomes SNVs on to protein structures, FASTA files corresponding to the 
translated chain(s) of the respective transcript ID(s) were obtained using BioMart (Smedley et al., 2015). 
FASTA files for each of the PDB structures associated with these transcript IDs (the PDB ID-transcript ID 
correspondence was also obtained using BioMart) were generated based on the ATOM records of the PDB 
files. For each given protein chain, BLAST was used to align the FASTA file obtained from BioMart with 
that generated from the PDB structure. The residue-residue correspondence obtained from these alignments 
was then used in order to map each SNV to specific residues within the PDB. As a quality assurance 
mechanism, we confirmed that the residue type reported in the VCF file matched that specified in the PDB 
file. 
 ExAC SNVs were downloaded from the ExAC Browser (Beta), as hosted at the Broad Institute. 
SNVs were mapped to all PDBs following the same protocol as that used to map 1000G SNVs, and only 
non-synonymous SNVs in ExAC were analyzed. When evaluating SNVs from the ExAC dataset, minor 
allele frequencies (MAF) were used instead of DAF values. The ancestral allele is not provided in the 
ExAC dataset – thus, analysis is performed for MAF rather than DAF. However, we note that little 
difference was observed when using AF or DAF values with 1000 Genomes data, and we believe that the 
results with MAF values would generally be the same as those with DAF values. We also highlight the 
attractive feature of recapitulating the general conservation trends observed using a separate matric. 

When analyzing both 1000 Genomes and ExAC data, we consider only those structures in which 
at least one critical and one non-critical residue intersect a non-synonymous SNV. This enables a more 
direct comparison between critical and non-critical residues, as comparisons between two different proteins 
would rely on the assumption of equal degrees of selection between such proteins. 

Each individual point within the intra-human conservation plots (e.g., Figures 4C, 4D, 4G, and 
4H) represents data from one structure: the value of the point for any given structure represents the mean 
score (DAF or MAF, for 1000 Genomes or ExAC SNVs, respectively) for all critical (red bars) or non-
critical (blue bars) residues to intersect SNVs. 

The fraction of rare SNVs intersecting a particular “protein annotation” (described below) is 
defined to be the ratio of the number of rare non-synonymous SNVs in that annotation to the total number 
of non-synonymous SNVs intersecting that annotation. An annotation for a given protein is simply the set 
of residues within a particular category, such as the set of all surface-critical residues (or alternatively the 
set of all interior-critical residues, or the set of non-critical residues). We define the term “rare” to mean 
that a 1000 Genomes SNV has a DAF value below a certain threshold – for instance, variable thresholds 
ranging from DAF = 0.05% to 0.50% are evaluated in Figures 5A and 5C. An SNV in ExAC is defined to 
be rare if it has a MAF value below a certain threshold – variable thresholds ranging from MAF = 0.05% to 
0.50% are evaluated in Figures 5B and 5D.  

If a particular annotation, such as the set of surface-critical residues, has a rare SNV, then this 
rarity may potentially be a consequence of purifying selection acting to remove a deleterious SNV from the 
population pool (thereby making it rare). Such an annotation may thus be sensitive to sequence changes, 
and would thus be conserved. If there is a high fraction of such rare SNVs within the annotation, it provides 
further confidence to the claim that the annotation is conserved. Thus, a high fraction of rare SNVs is used 
as a signature for stronger conservation. Supporting this intuition, previous studies have observed that 
conserved genomic regions within the human population harbor higher fractions of rare SNVs (Khurana et 
al., 2013; McVean et al., 2012; Tennessen et al., 2012). 
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