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ABSTRACT 

Identification of somatic mutation hotspots as potential driver candidates in disease 
genomes is challenging because background mutation rate is usually heterogeneous and 
severely confounded by many known genomic features. Limited annotation information, 
especially in noncoding regions, further hinders the interpretability of the discovered 
candidates. Here, we address these issues with a new computational framework called 
NIMBus. It treats the varying mutation rates from different samples as a random variable 
with scaled gamma distribution and therefore models the over dispersed mutation count 
data by negative binomial distribution. To remove the confounding effect, we extracted 
381 features from REMC and ENCODE in all available tissues and utilized a negative 
binomial regression to accurately estimate background mutation rate. Such integrative 
framework in NIMBus is flexible and can be immediately extended to accommodate any 
number of new features in the future. We also provided the most comprehensive 
noncoding annotation from ENCODE inside NIMBus to help users to better interpret the 
underlying biological mechanisms for the discovered targets. We applied NIMBus on 649 
whole-genome cancer sequences and it successfully identified well-known noncoding 
drivers, such as the TERT promoter. We make LARVA available as a software tool, and 
release our results as an online resource (nimbus.gersteinlab.org). 

 

1. Introduction	  

With the rapid development of high throughput sequencing technologies, thousands of 
whole genome sequencing (WGS) data for patients with various diseases considerably 
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increases the statistical power to dissect the mutation landscape at an unprecedented 
resolution. Frequently, scientists need to decide whether or not a region in a disease 
genome has more than the expected number of mutations, with somatic burden tests, to 
discover potential driver events that lead to complex diseases, such as cancer. Therefore, 
an accurate quantification of mutation burden is important to uncover the genetic cause of 
various diseases and then allow for targeted therapies in clinical studies. However, 
mutation burden test for somatic variants remains a challenge for several reasons.  

First, many state-of-the-art methods are optimally designed for designed for analysis 
of coding regions, which usually represents less than 2 percent of the human genome. 
Nowadays, a myriad of studies have shown that noncoding mutations could serve as 
driver events for diseases. For example, the well-known noncoding mutations in TERT 
promoter were found to be associated with cancer progression in multiple cancer types. 
Hence, a unified coding and noncoding analysis is needed to annotate the discovered 
hotspots. 

Second, some of the pioneer work analyzing WGS assumes a constant mutation rate 
across different regions or cancer genomes. However under this assumption, the mutation 
count data at the positional level often demonstrates larger than expected variances, 
resulting in many false positives and negatives. As a result, more sophisticated statistical 
models need to be introduced to handle such mutation heterogeneity in the somatic 
burden analysis. 

Lastly, numerous functional characteristic features, such as replication timing, 
chromatin organization, and sequence context information, have been reported to largely 
affect somatic mutation process. Therefore, accurate mutational burden analysis should 
remove such covariate effect. Unfortunately, none of the few current methods that 
integrate limited covariates demonstrates acceptable model extensibility. For example, 
MutsigCV was one of the first methods to consider covariates in coding region burden 
tests by estimating local background mutation rate using a small neighborhood of genes 
with similar covariates. However, as the number of covariates increases, the ‘curse of 
dimensionality’ will make it almost impossible to find a meaningful neighborhood in high 
dimension space. Similarly, Lochovsky et al only corrected replication timing with 
relatively low resolution. A large number of other genomic features were left behind in 
this methodology, and it is difficult to add them for further analysis under the same 
framework. Melton et al utilized a logistic regression framework to estimate a patient 
specific mutation rate at a single nucleotide resolution. Similar to MutsigCV, it only 
considered a limited number of covariates that explain a small part of variation in the 
mutation count data. Additionally in some quiet genomes with very few mutations such 
as Pilocytic Astrocytoma, usually there are less than 500 mutations across a single 
genome, resulting in poor model performance. 

In this article, we propose a Negative Binomial Regression based Integrative Method for 
Mutation Burden analysis (NIMBus) that solves the three challenges mentioned above. It 
intuitively treats different somatic mutation rates from various disease genomes as 
random variables with a scaled gamma distribution, and resultantly models the mutation 
counts by a type I negative binomial distribution to handle overdispersion. In addition, to 
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capture the background mutational rate variation due to other genomic features, we 
integrate the most extensive features in all possible tissues from the Roadmap 
Epigenomics Mapping Consortium (REMC) to create a covariate table and use a negative 
binomial regression to predict the local mutation rate with high precision. We also 
summarized the most comprehensive noncoding annotations from the ENCODE project 
and used these biologically meaningful blocks as natural units to facilitate the 
understanding of our results. The integrative approach employed in NIMBus enables us 
to effectively pinpoint the mutation hotspots that are solely related with disease 
progression and better interpret their biological mechanisms.  

 

2. Methods	  

2.1	  WGS	  variants	  data	  used	  	  

We collected 649 whole genome variant calls from public resources and our 
collaborators. This data set contains a broad spectrum of 7 different cancer types, 
including breast cancer (BRCA), gastric cancer (GACA), liver cancer (LICA), lung 
cancer (LUAD), prostate cancer (PRAD), Medulloblastoma (MB), and Pilocytic 
Astrocytoma (PA). Among these samples, 100 stomach cancer samples were from 
\cite{Wang}, and 95 prostate cancer samples were obtained from our collaborators. The 
remaining comes from samples published in Alexandrov.  

2.2	  Covariate	  table	  	  

Numerous studies showed that several functional characteristics data will affect the local 
mutation rate, and such covariate effect should be removed during somatic burden 
analysis. In step one, we collected all the signal files from major histone modification 
marks, chromatin status, methylation, and mRNA-seq data from the REMC at a 20 
nucleotides resolution. We then processed the signal files into bigWig format 
(https://genome.ucsc.edu/goldenpath/help/bigWig.html) for every available tissue. If 
multiple replicates were found in their original data, the averaged signal after 
normalization was used in the final bigwig file. We only used the experimental real data 
as opposed to imputed data. If some file, for example the chromatin accessibility, is 
missing in a specific tissue, we skipped it in our final covariate table. Since replication 
timing has been proved to be associated with mutation rate in several articles, we also 
collected 8 replication timing bigWig files from the ENCODE project. Lastly, as 
researchers have observed elevated mutation rates in regions wither lower GC content in 
certain diseases, we also include the GC percentage files in our covariate list. 

In step two, we aim to provide effective training of our model that is convenient for 
users. Different from the calibrated training data selection mentioned in XXX, we divided 
the whole genome into bins at a fixed length, such as 1mb, 100kb, 50kb, etc. Only 
autosomal chromosomes 1-22 and chromosome X were included in our analysis to 
remove the gender imbalance in either the mutation data or the covariates tissues. 
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Repetitive regions on human genome are known to generate artifacts in high throughput 
sequencing analysis mainly due to low mappability. We downloaded the mappability 
consensus excludable table used in the ENCODE project from 
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/wgE
ncodeDacMapabilityConsensusExcludable.bed.gz. Any generated fixed length bins that 
overlap with this table would be removed from the training process. We also downloaded 
the gap regions of hg19 from the UCSC genome browser, which include gaps from 
telomere, short_arm, heterochromatin, contig, and scaffold. The fixed length bins that 
intersect with these gap regions were also removed in the training process.  

All of the bigWig files generated in step one were used to calculate the average signal 
using the bigWigAverageOverBed tool for each fixed length bin we generated in step 
two. When calculating the GC percentage, if the sequence information is not available at 
a certain position (such as the Ns), such position will be excluded in the averaging 
process. In the end, we summarized all the covariates values in each bin into a covariate 
table, with columns indicating different features and rows representing different training 
bins. 

2.3	  Noncoding	  annotations	  lists	  from	  ENCODE	  projects	  

We collected the full list of noncoding annotations, which include promoter regions, 
transcription start sites (TSS), translated regions (UTR), transcription factor binding sites 
(TFBS), enhancers, ultra-conserved, and ultra-sensitive sites. Promoters and TSS sites 
were defined as the 2500 and 100 nucleotides (nt) before the genes that are annotated by 
GENCODE v16. We also collected all the TFBS and enhancers from all tissues that are 
uniformly processed through the ENCODE pipeline. In addition, the ultra-conserved and 
ultra-sensitive sites were defined as those under positive selection during transcription 
regulations in our previous method FunSeq.   

2.4	  Negative	  binomial	  based	  burden	  analysis	  model	  

When pulling the mutation counts from disease genomes of the same molecular subtype 
together, we assume that given the mutation rate λ in a specific region, the mutation 
counts y in this region should follow a Poisson distribution with the probability mass 
function (PMF) given in equation (1). 

pY y λ( ) = e
−λλ y

y!
                                                                 (1). 

However, as we mentioned in previous sections there is huge heterogeneity in the 
mutation counts data in different disease genomes. Hence, instead of modeling a constant 
mutation rate in XXX, we assumed that the mutation rate λ itself is a scaled gamma 
random variable in equation (2). 

 
λ = µγ ,γ ∼Gamma 1, 1σ 2( )                                                       (2). 
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Therefore, the marginal distribution of y can be represented by a negative binomial 
distribution of type I with PMF listed in (3).  

pY y µ,σ( ) =
Γ y + 1σ( )

Γ 1
σ( )Γ y +1( )

σµ
1+σµ

⎛
⎝⎜

⎞
⎠⎟

y
1

1+σµ
⎛
⎝⎜

⎞
⎠⎟

1
σ

                                   (3). 

  Where the mean and variance of Y can be written into µ and (1+δ) µ. In order to model 
the effect of K covariates x1, x2, …, xk, …, xK to the mutation rate, we assumed that  

g1 µ( ) = log µ( ) = β0 + β1x1 +!+ βk xk +!+ βK xK
g2 σ( ) = log σ( ) =α0

                                   (4). 

Therefore, we run the negative binomial regression using (4) on the training data set. 
Specifically, suppose there are i=1, 2, …, n different fixed length bins selected in section 
2.2.  For each bin we selected in section 2.2, mutation counts of all genomes of each 
cancer type is represented as a vector Y=vector(y1, … yi, …, yn), and matrix X represents 
the n×381 covariate matrix generated  in section 2.2. The goal of training is to accurately 
estimate (µ1, …, µi, …, µn) for each bin and δ as the local mutation rate parameters. For a 
target region to be tested, we first find its nearest bin µtarget and used µtarget and δ for P 
value evaluation. In most cases, the length of the target region is far smaller than the bin 
length used in the training process, so an offset of region length can be added to represent 
such exposure effect. 

We also used two other simple models to calculate P values as comparisons to 
NIMBus results. First, in the global Poisson model we assumed that a constant mutate 
rate across the whole genome and then used Poisson distribution to evaluate somatic 
burdens in target regions. Also, we assume that mutation rate varies in different regions 
using our estimated (µ1, …, µi, …, µn). But we treat the mutation rate from different 
patients as constant to derive the P values. This model is call the local Poisson model.  

2.5	  Training	  bin	  size	  selection	  	  

There are pros and cons to select certain a bin size for model training. On one hand, a 
shorter bin size will be advantageous in the P value evaluation as it can more effectively 
remove the heterogeneity in the local mutation process at a higher resolution. On the 
other hand, it sometimes will result in worse regression performance when estimating µ 
and δ. One reason is that in order to effectively estimate the mutation rate change with 
covariates, we need to obtain sensible mutation rate estimation in each single bin. 
However on the 3 billion bases genome, somatic mutation count data is usually sparse 
due to limited number of disease genomes available at the moment. In the extreme case, 
when the bin size is small enough so that most bins have mutations, it is difficult for the 
regression model to capture the relationship between mutations and covariates. Another 
reason is that some of the covariates are only reported to be functional in a large scale, so 
reducing the bin size will not necessarily introduce better prediction precision. The best 
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bin size selection for the training purpose is still a challenging question that needs further 
case-by-case investigation. In our analysis, we used a 1mb bin size for all cancer types. 

2.6	  Combining	  P	  values	  

Sometimes several related diseases, or diseases of different subtypes needs to be analyzed 
together to provide a combined P value. Since regression is run separately on each single 
disease/subtype of disease, either Fisher’s method can be used to combine the P values 
together.  

2.7	  Flowchart	  of	  NIMBus	  

To better illustrate how NIMBus works, its workflow is given in Figure 1.  

 

Figure 1. Flowchart of NIMBus 
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3. Results	  

3.1.	  Heterogeneity	   from	  various	   sources	   leads	   to	   large	  overdispersion	   in	  
mutation	  counts	  data	  

Pioneer genome wide somatic burden analysis usually assumes a homogeneous mutation 
rate, which consequently uses binomial or Poisson tests to evaluate P values. However, 
we found that mutation count data usually violates such an assumption because there are 
various sources of heterogeneity in the mutation rate. To demonstrate this, we collected 
WGS variants from 649 cancer patients and 7 cancer types as shown in Fig. 2A. First, we 
found that mutation count per genome varies from disease to disease. For instance, the 
median number of variants can be as low as 70 in PA and as high as 21287 in LUAD 

(Fig. 2B-C). Even within the same disease, mutation rate may dramatically change from 
sample to sample (lowest at1743 and highest at 145500 in LUAD).  In addition, there are 
also large regional mutation rate differences within the same sample (Fig. 3). Therefore, a 
binomial or Poisson distribution usually provides poor fitting to the real mutation counts 
data (Fig. 2D, dash lines with +). In light of these, we utilized a two parameter negative 
binomial distribution to further capture the overdispersed nature of mutation counts data, 
which improves fitting to real data significantly (dash lines with star in Fig. 2D). 

Figure 2. Mutation rate heterogeneity from various sources result in huge 
overdispersion in mutation count data. (A) Sample numbers for each cancer type in 
our analysis; (B) boxplots and scatter plots of mutation counts per sample; (C) 
summary of mutation counts; (D) fitting of Poisson and Negative binomial distribution  
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3.2	  Local	  mutation	  rate	  is	  confounded	  by	  other	  genomic	  features	  

Instead of homogeneously located across the genome in a random way, somatic mutation 
rate has been reported in literature to be confounded by several genomic features. For 
example, single stranded DNA during replication usually suffers from endogenous DNA 
damage, such as oxidation and deamination. Therefore, the accumulative damage effect 
in the later replicated regions will result in elevated mutation rate. Another well-known 
factor is the expression levels. The highly expressed regions often demonstrate lower 
mutation rate as compared to lowly expressed regions due to the transcription-coupled 
repair mechanism \{cite Mutsig and refer}. Furthermore, it has been reported that the 
chromatin organization, which arranges the genome into heterochromatin- and 
euchromatin-like domains, has a dominant influence on regional mutation-rate variation 
in human somatic cells \{cite 22820252}. We also find a similar trend in our data 
analysis. For instance, the normalized mutation rate of the first 100 1mb bins extracted in 
95 breast cancer samples was plotted in the black line in Fig. 3. It is notably correlated 
with GC content (red line) and chromatin accessibility (blue line) in matched breast 
tissue. 

3.3.	  Negative	  binomial	  regression	  precisely	  estimates	  local	  mutation	  rates	  
by	  correcting	  a	  list	  of	  genomic	  features	  

In light of the high correlation of individual genomic features with mutation rate in all 
cancer types, we try to investigate the joint collaborative effect of multiple features to 
predict mutation rate. It has been reported that most accurate prediction can be achieved 
by using the matched tissue. Hence, we specifically selected variants in two distinct 
cancer types BRCA and MB and predict their local mutation rate by features from 
different tissues. Relative error of each 1mb bin is defined by the absolute value of 
observed and predicted difference divided by the observed value and its mean value over 
all bins is used to compare the regression performance. As expected, regression using 
matched tissue features provides the lowest relative error. For example, using MB related 
features to predict variant counts in MB has a mean relative error of 0.183, less than that 
using BRCA features for MB (Fig. 4B, P value of two sided Wilcoxon test < 2.2e−16). 

Figure 3. Local mutation rate is correlated with many genomic features. The black 
line is the normalized mutation rate in 95 breast cancer sample. Normalized GC 
content (red line) and Chromatin accessibility (blue line) were significantly 
correlated with mutation rate. 
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However, non-matched tissue regression still provides insightful information during 
regression. For example, even when MB features are used to predict BRCA mutation 
rates, a decent although slightly poorer performance can still be achieved (0.135 for 
unmatched vs. 0.128 for matched).  One explanation is that these genomic features are 
highly correlated both within and across different tissues. A correlation plot is given in 
Fig. 4A. Size and darkness of color of each dot inside the matrix represent the absolute 
value of Pearson correlation, while blue and red represents positive and negative values 
respectively. Usually histone modification marks within the same tissue provides the 
highest correlation (e.g H3k4me1, H3k4me3, H36k4me3). However, these features in 
MB are also significantly associated with those in BRCA.  That is why these signals can 
be imputed using interpolation through data in other tissues \{cite 25690853}.  This 
conclusion is important for two reasons: (1) tissue matching is usually extremely difficult 
for complex disease such as cancer. For example, there are several sets of covariates for 
breast tissues in REMC, which come from different parts of breast tissue. However, the 
exact tumor location data is sometimes vaguely described or even missing. (2) Even if the 
perfectly matched tissue can be identified in some cases, the data matrix from REMC is 
far from complete. In our example, methylation data for breast tissue of this particular 

Figure 4. (A) Genomic features are highly correlated. B_* represents breast 
cancer related features and M_* indicates Medulloblastoma related features. (B) 
relative error of average mutation rate in each 1mb bin by different regressions. 
(C) Regression performance against number of PCs used in the regression. (D) 
performance of regression for all cancer types. 
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type is missing (Fig. 4A). Another example is that there is no prostate tissue in REMC, so 
there is no matched for prostate cancer. We still need to predict the local mutation rate in 
prostate cancer so correlated features in other related tissues would still provide 
additional information to boost regression performance. 

To overcome the multi-collinearly problem due to the correlated nature of genomic 
features, we first performed a principle component analysis (PCA) on the 381 features. 
The first principle component (PC) could explain up to 55.69% of variance in the 
covariate matrix.  It takes at least 15 and 106 PCs to capture 90% and 99% of variance 
respectively. However, PCA based regression is very sensitive to the PCs selected 
because sometimes the PCs that can best explain the variance in the mutation count data 
is not necessarily those that can best explain the variance in the covariate matrix. Hence, 
for each cancer type, we first ranked the individual PCs, and then only select the top 1, 
30, and all PCs to predict the local mutation rate. Fig. 4C shows that in all 7 cancer types, 
using more PCs can noticeably boost prediction performance. For example, in BRCA the 
Pearson correlation is only 0.472 if 1 PC is used in regression. However, correlation 
coefficient can rise to 0.655 and 0.709 if 15 and 30 PCs are used respectively, and it can 
eventually be increased to 0.818 after using all PCs. As a result, in all the following 
analysis, we used all PCs for accurate local mutation rate estimation. 

Our PCA based negative binomial regression can precisely capture the effect of 
various genomic features on somatic mutation process and accurately predict the local 
mutation rate in all cancer types. The Pearson correlations of the observed data and the 
predicted value vary from 0.668 in PA to 0.958 in LICA. Scatter plots are given in Fig. 
4D. It is worth mentioning that although there is no prostate tissue in REMC data, we can 
still achieve a very decent correlation of 0.81 with the help of 381 unmatched but 
correlated features. It indicates that when somatic mutation data of an unknown disease is 
given, our model could still achieve acceptable performance without the knowledge of 
related tissue information. In addition, our regression performance is affected but not 
limited to the total number of variants (bottom right figure in Fig. 4D). Obviously limited 
number of mutations could restrict the prediction precision, such as in very quiet somatic 
genomes like PA (lowest correlation at 0.668 among 7 cancer types). Other factors, such 
as number of effective covariates, quality of mutation calls, and molecular similarity of 
pooled samples of the same disease could also considerably influence the performance of 
our model. For instance, although there are a smaller number of variants in MB than in 
BRCA, our regression in MB still outperforms that in BRCA (0.865 VS. 0.818, Fig. 4D). 

3.4.	  NIMBus	  discovered	  a	  list	  of	  highly	  recurrent	  noncoding	  regions	  from	  
cancer	  WGS	  data	  

 We applied NIMBus on WGS variant calls on all 7 cancer types to deduce the individual 
somatic burden P values, and compared with the results from global and local Poisson 
models (details in section 2.4). As expected, both global and local Poisson models 
generated obviously too many burdened regions in all noncoding annotation categories 
because of the poor fitting of Poisson distributions to the mutation count data (Fig. 2D). 
For example, in the promoter regions, after P value correction, NIMBus provided 8 
promoters as highly mutated, while local and global Poisson models identified 47 and 
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406 respectively. It is very unlikely that in a single tissue, all these 47 or 406 promoters 
are all linked with tumor progression. Hence, our negative binomial assumption in 
NIMBus effectively captured the overdispersion and controlled the number of false 
positives. To further demonstrate this, we provided the Q-Q plots of P values from all 7 
cancer types were provided in Fig. 5B as quality check. In theory, if no significantly 
burdened regions are detected, the P values should follow uniform distribution. As it is 
seen in Fig. 5B, in all cancer types the majority of our P values for all cancer types 
follows the uniform assumption with a few outliers as the true signals, indicating 
reasonable P value distributions. Similar results have also been seen in other noncoding 
annotations (data not shown). 

To summary the mutation burdens from all cancer types, we used Fisher’s method to 
calculate the final P values for all three models. Similar to P values from a single cancer 
type, the combined P values are severely inflated in both global and local Poisson 
models, but are rigorously controlled by NIMBus (table C in Fig. 5). Take the TSS as an 
example, NIMBus reported only 65 sites as burdened, as compared with 273 and 465 for 
the other two methods. Additional, out of the 65 TSS elements, several of them have been 
experimentally validated or computationally predicted as associated with cancer in other 
work. For instance, TP53 is a well-studied oncogene that is related in many cancer types, 
and combined P value for TP53 TSS is ranked second in our analysis (P=4.26e−14). 
LMO3 interacts with the tumor suppressor TP53 and regulates its function, and it is 
ranked fourth in our analysis (P=3.25e−13). We also found that the fifth ranked gene 
RMRP (p=1.36e−10), which is the RNA component of mitochondrial RNA processing 
endoribonuclease, has been claimed to be associated with colorectal and breast cancers 
\{cite 26415221}. Another important example is the TSS sites in TERT, which is ranked 
sixth in our results (p=1.55e−10) and has been experimentally validated as associated 
with multiple types of cancer progression. The discovery of such validated results proved 
that NIMBus can serve as an powerful tool for driver events discovery in diseases. 

4. Discussion	  
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Thousands of somatic genomes are now available due to the fast development of whole 
genome sequencing technologies, providing us with increasing statistical power to 
scrutinize the somatic mutation landscape. At the same time, thanks to the collaborative 
effort of big consortiums, such as REMC and ENCODE, tens of thousands of functional 
characteristic data on human genomes has been released for immediate use to the whole 
community. Hence, integrative frameworks are of urgent need to explore the interplay 
between WGS data and the functional characteristic data. It will not only be important to 
accurately search for mutational hotspots as driver candidates for complex diseases but 
also to better interpret the underlying biological mechanism for clinicians and biologists. 

In this paper, we proposed a new integrative framework called NIMBus that uses a 
negative binomial regression to capture the effect of a widespread list of genomic 
features on mutation processes for accurate somatic burden analysis. Due to the 
heterogeneous nature of various somatic genomes, our model treated the mutation rates 
as a scaled gamma distribution to mimic the varying mutation baseline for different 
patients or disease subtypes. Resultantly, it modeled the mutation counts data using a two 
parameter negative binomial distribution, which improved the mutation counts fitting 
dramatically as compared to previous work (Fig. 2D). 

Unlike previous efforts which use very limited covariates to estimate local mutation 
rate in very qualitative way, we explored the whole REMC and ENCODE data and 
searched for 381 features that best describe chromatin organization, expression profiling, 
replication status, and context effect in all possible tissues to jointly predict the local 
mutation rate at high precision. In terms of covariate correction, NIMBus demonstrates 
three obvious advantages: 1) it incorporates the most comprehensive covariates that 
provides the most accurate, at least to our knowledge, background mutation rate 

Fig. 5 (A) number of detected prompter regions in all cancer types; (B) Q-Q plots of P 
values for promoter regions; (c) total number of over burdened regions in our 
noncoding annotations after merging P values from 7 cancer types. P_local: local 
Poisson Model, P_global: global Poisson Model  
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estimation; 2) it provides an integrative framework that can be extended to any number of 
covariates and successfully avoids the high dimensionality problem as in other methods 
\{cite mutsigCV}. This is extremely important since the amount of available functional 
characteristic data is growing rapidly as the time and money cost of sequencing 
technologies drops; 3) it automatically utilizes the genomic regions with highest 
credibility for training purposes so potential users are not bothered to perform carefully 
calibrated training data selection and complex covariate matching processes. 

In addition, we also put a lot of effort on NIMBus to explore the most extensive 
noncoding annotations. Noncoding regions represent more than 98% of the whole human 
genome, and are less investigated mainly due to limited knowledge to understand its 
biological functions. NIMBus collects the up to date full catalog of noncoding annotation 
of all possible tissue from the ENCODE project and our previous efforts from population 
genetics efforts in 1000 Genomes Project. All these included internal annotations of 
NIMBus can be either tested for somatic mutation burden or used to annotate the user 
specific input regions. 

We applied NIMBus on 649 cancer genomes of 7 different types collected from 
public data and collaborators. The individual burden test P values for each cancer type 
have been deduced and then Fisher’s method has been used to calculate the combined P 
values. As a result, a list of non-coding elements has been reported to have more than 
expected mutations (Table C in Fig. 5D). A list of already well-known regions, such as 
TP53, LMO, and TERT TSS, has also been reported in our analysis to be hypomutated, 
proving the effectiveness of NIMBus to identify functionally associated results. 

It is worth mentioning that although we demonstrate the effectiveness of NIMBus 
mostly on somatic mutation analysis, it can be immediately extended to germline variant 
analysis as well. In summary, NIMBus is the first method that can integrate thousands of 
functional characteristic experimental data to analyze the mutation burdens in disease 
genomes. Such external data does not only help to better estimate the background 
mutation rate for successful false positive and negative control, but also provide the most 
extensive noncoding annotations for users to interpret their results. It may serve as a 
powerful computation tool to accurately predict driver events in human genetic disease 
and potentially identify biological targets for drug discovery. 
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