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ABSTRACT 47!

The rapidly growing volume of data being produced by next-generation sequencing 48!

initiatives is enabling more in-depth analyses of conservation than previously possible. 49!

Deep sequencing is uncovering disease loci and regions under selective constraint, 50!

despite the fact that intuitive biophysical reasons for such constraint are sometimes 51!

absent. Allostery may often provide the missing explanatory link. We use models of 52!

protein conformational change to identify allosteric residues by finding essential surface 53!

cavities and information flow bottlenecks, and we develop a software tool 54!

(stress.molmovdb.org) that enables users to perform this analysis on their own proteins of 55!

interest. Though fundamentally 3D-structural in nature, our analysis is computationally 56!

fast, thereby allowing us to run it across the PDB and to evaluate general properties of 57!

predicted allosteric residues. We find that these tend to be conserved over diverse 58!

evolutionary time scales. Finally, we highlight examples of allosteric residues that help 59!

explain poorly understood disease-associated variants. 60!
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INTRODUCTION 71!

The ability to sequence large numbers of human genomes is providing a much 72!

deeper view into protein evolution than previously possible. When trying to understand 73!

the evolutionary pressures on a given protein, structural biologists now have at their 74!

disposal an unprecedented breadth of data regarding patterns of conservation, both across 75!

species and amongst humans. As such, there are greater opportunities to take an 76!

integrated view of the context in which a protein and its residues function. This view 77!

necessarily includes structural constraints such as residue packing, protein-protein 78!

interactions, and stability. However, deep sequencing is unearthing a class of conserved 79!

residues on which no obvious structural constraints appear to be acting. The missing link 80!

in understanding these regions may be provided by studying the protein’s dynamic 81!

behavior through the lens of the distinct functional and conformational states within an 82!

ensemble. 83!

The underlying energetic landscape responsible for the relative distributions of 84!

alternative conformations is dynamic in nature: allosteric signals or other external 85!

changes may reconfigure and reshape the landscape, thereby shifting the relative 86!

populations of states within an ensemble (Tsai et al., 1999). Landscape theory thus 87!

provides the conceptual underpinnings necessary to describe how proteins change 88!

behavior and shape under changing conditions. A primary driving force behind the 89!

evolution of these landscapes is the need to efficiently regulate activity in response to 90!

changing cellular contexts, thereby making allostery and conformational change essential 91!

components of protein evolution. 92!
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Given the importance of allosteric regulation, as well as its role in imparting 94!

efficient functionality, several methods have been devised for the identification of likely 95!

allosteric residues. Conservation itself has been used, either in the context of conserved 96!

residues (Panjkovich and Daura, 2012), networks of co-evolving residues (Halabi et al., 97!

2009; Lee et al., 2008; Lockless et al., 1999; Reynolds et al., 2011; Shulman et al., 2004; 98!

Süel et al., 2003), or local conservation in structure (Panjkovich and Daura, 2010). In 99!

related studies, both conservation and geometric-based searches for allosteric sites have 100!

been successfully applied to several systems (Capra et al., 2009). 101!

The concept of ‘protein quakes’ has been introduced to explain local 102!

conformational changes that are essential for global conformation transitions of 103!

functional importance (Ansari et al., 1985; Miyashita et al., 2003). These local changes 104!

cause strain within the protein that is relieved by subsequent relaxations (which are also 105!

termed functionally important motions) that terminate when the protein reaches the 106!

second equilibrium state. Such local perturbations often end with large conformational 107!

changes at the focal points of allosteric regulation, and these motions may be identified in 108!

a number of ways, including modified normal modes analysis (Miyashita et al., 2003) or 109!

time-resolved X-ray scattering (Arnlund et al., 2014). 110!

In addition to conservation and geometry, protein dynamics have also been used 111!

to predict allosteric residues. Normal modes analysis has been used to examine the extent 112!

to which bound ligands interfere with low-frequency motions, thereby identifying 113!

potentially important residues at the surface (Ming and Wall, 2005; Mitternacht and 114!

Berezovsky, 2011; Panjkovich and Daura, 2012). Normal modes have also been used by 115!

the Bahar group to identify important subunits that act in a coherent manner for specific 116!
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proteins (Chennubhotla and Bahar, 2006; Yang and Bahar, 2005). Rodgers et al. have 117!

applied normal modes to identify key residues in CRP/FNR transcription factors 118!

(Rodgers et al., 2013).  119!

With the objective of identifying allosteric residues within the interior, molecular 120!

dynamics (MD) simulations and network analyses have been used to identify residues 121!

that may function as internal allosteric bottlenecks (Csermely et al., 2013; Gasper et al., 122!

2012; Rousseau and Schymkowitz, 2005; Sethi et al., 2009; Vanwart et al., 2012). Ghosh 123!

et al. (2008) have taken a novel approach of combining MD and network principles to 124!

characterize allosterically important communication between domains in methionyl 125!

tRNA synthetase. In conjunction with NMR, Rivalta et al. have use MD and network 126!

analysis to identify important regions in imidazole glycerol phosphate synthase (Rivalta 127!

et al., 2012). 128!

Though having provided valuable insights, many of these approaches have been 129!

limited in terms of scale (the numbers of proteins which may feasibly be investigated), 130!

computational demands, or the class of residues to which the method is tailored (surface 131!

or interior). Here, we use models of protein conformational change to identify both 132!

surface and interior residues that may act as essential allosteric hotspots in a 133!

computationally tractable manner, thereby enabling high-throughput analysis. This 134!

framework directly incorporates information regarding 3D protein structure and 135!

dynamics, and it can be applied on a PDB-wide scale to proteins that exhibit 136!

conformational change. Throughout the PDB (Berman et al., 2000), the residues 137!

identified tend to be conserved both across species and amongst humans, and they may 138!

help to elucidate many of the otherwise poorly understood regions in proteins. In a 139!
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similar vein, several of our identified sites correspond to human disease loci for which no 142!

clear mechanism for pathogenesis had previously been proposed. Finally, we make the 143!

software associated with this framework (termed STRESS, for STRucturally-identified 144!

ESSential residues) publically available through a tool to enable users to submit their 145!

own structures for analysis. 146!

 147!

RESULTS  148!

Identifying Potential Allosteric Residues 149!

Allosteric residues at the surface generally play a regulatory role that is 150!

fundamentally distinct from that of allosteric residues within the protein interior. While 151!

surface residues often constitute the sources or sinks of allosteric signals, interior residues 152!

act to transmit such signals. We use models of protein conformational change to identify 153!

both classes of residues (Figure 1). Throughout, we term these potential allosteric 154!

residues at the surface and interior “surface-critical” and “interior-critical” residues, 155!

respectively.  156!

In order to gauge the effectiveness of our approach, we identified and analyzed 157!

critical residues within a set of 12 well-studied canonical systems (see Figure S1, as well 158!

as Table S1 for rationale). We then apply this protocol on a large scale across hundreds of 159!

proteins for which crystal structures of alternative conformations are available. 160!

 161!

Identifying Surface-Critical Residues 162!
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Allosteric ligands often act by binding to surface cavities and modulating protein 167!

conformational dynamics. The surface-critical residues, some of which may act as latent 168!

ligand binding sites and active sites, are first identified by finding cavities using Monte 169!

Carlo simulations to probe the surface with a flexible ligand (Figure 1A, top-left). The 170!

degree to which cavity occlusion by the ligand disrupts large-scale conformational 171!

change is used to assign a score to each cavity – sites at which ligand occlusion strongly 172!

interferes with conformational change earn high scores (Figure 1A, top-right), whereas 173!

shallow pockets (Figure 1A, bottom-left) or sites at which large-scale motions are largely 174!

unaffected (Figure 1A, bottom-right) earn lower scores. Further details are provided in SI 175!

Methods section 3.1-a. 176!

This approach is a modified version of the binding leverage framework 177!

introduced by Mitternacht and Berezovsky (Mitternacht and Berezovsky, 2011). The 178!

main modifications implemented here include the use of heavy atoms in the protein 179!

during the Monte Carlo search, in addition to an automated means of thresholding the list 180!

of ranked scores. These modifications were implemented to provide a more selective set 181!

of sites; without them, a very large fraction of the protein surface would be occupied by 182!

critical sites (Figure S2C). Within our dataset of proteins exhibiting alternative 183!

conformations, we find that this modified approach results in an average of ~2 distinct 184!

sites per domain (Figure S2A; see Figure S2B for the distribution for distinct sites within 185!

entire complexes). 186!

Within the canonical set of 12 proteins, we positively identify an average of 56% 187!

of the sites known to be directly involved in ligand or substrate binding (see Table 1, 188!

Figure S1, and SI Methods section 3.1-a-iv). Some of the sites identified do not directly 189!
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overlap with known binding regions, but we often find that these “false positives” 195!

nevertheless exhibit some degree of overlap with binding sites (Table S2). In addition, 196!

those surface-critical sites that do not match known binding sites may nevertheless 197!

correspond to latent allosteric regions: even if no known biological function is assigned 198!

to such regions, their occlusion may nevertheless disrupt hitherto unfound large-scale 199!

motions. 200!

 201!

Dynamical Network Analysis to Identify Interior-Critical Residues 202!

The binding leverage framework described above is intended to capture hotspot 203!

regions at the protein surface, but the Monte Carlo search employed is a priori excluded 204!

from the protein interior. Allosteric residues often act within the protein interior by 205!

functioning as essential information flow ‘bottlenecks’ within the communication 206!

pathways between distant regions. 207!

To identify such bottleneck residues, the protein is first modeled as a network, 208!

wherein residues represent nodes and edges represent contacts between residues (in much 209!

the same way that the protein is modeled as a network in constructing anisotropic 210!

network models, see below). In this regard, the problem of identifying interior-critical 211!

residues is reduced to a problem of identifying nodes that participate in network 212!

bottlenecks (see Figure 1B and SI Methods section 3.1-b for details). Briefly, the network 213!

edges are first weighted by the degree of strength in the correlated motions of contacting 214!

residues: a strong correlation in the motion between contacting residues implies that 215!

knowing how one residue moves better enables one to predict the motion of the other, 216!

thereby suggesting a strong information flow between the two residues. The weights are 217!
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used to assign ‘effective distances’ between connecting nodes, with strong correlations 226!

resulting in shorter effective node-node distances. 227!

Using the motion-weighted network, “communities” of nodes are identified using 228!

the Girvan-Newman formalism (Girvan et al., 2002). This formalism entails calculating 229!

the betweenness of each edge, where the betweenness of a given edge is defined as the 230!

number of shortest paths between all pairs of residues that pass through that edge (each 231!

path length is the sum of that path’s effective node-node distances assigned in the 232!

weighting scheme above). Each community identified is a group of nodes such that each 233!

node within the community is highly inter-connected, but loosely connected to other 234!

nodes outside the community. Communities are thus densely inter-connected regions 235!

within proteins. As tangible examples, the community partitions and the resultant critical 236!

residues for the canonical set are given in Figure 2. 237!

Those residues that are involved in the highest-betweenness edges between pairs 238!

of interacting communities are identified as the interior-critical residues. These residues 239!

are essential for information flow between communities, as their removal would result in 240!

substantially longer paths between the residues of one community to those of another. 241!

 242!

Software Tool: STRESS (STRucturally-identified ESSential residues) 243!

We have made the implementations for finding surface- and interior-critical 244!

residues available through a new software tool, STRESS, which may be accessed at 245!

stress.molmovdb.org (Figure 3A). Users may submit a PDB file or a PDB ID 246!

corresponding to a structure to be analyzed, and the output provided constitutes the set of 247!

identified critical residues. 248!
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Running times are minimized by using a scalable server architecture that runs on 258!

the Amazon cloud (Figure 3D). A light front-end server handles incoming user requests, 259!

and more powerful back-end servers, which perform the calculations, are automatically 260!

and dynamically scalable, thereby ensuring that they can handle varying levels of demand 261!

both efficiently and economically. In addition, the algorithmic implementation of our 262!

software is highly efficient, thereby obviating the need for long wait times. Relative to a 263!

naïve global Monte Carlo search implementation, local searches supported with hashing 264!

and additional algorithmic optimizations for computational efficiency reduce running 265!

times considerably (Figures 3B and 3C). A typical protein of ~500 residues takes only 266!

about 30 minutes on a 2.6GHz CPU. 267!

 268!

High-Throughput Identification of Alternative 269!

Conformations 270!

We use a generalized approach to systematically identify instances of alternative 271!

conformations throughout the PDB. We first perform multiple structure alignments 272!

(MSAs) across sequence-identical structures that are pre-filtered to ensure structural 273!

quality. We then use the resultant pairwise RMSD values to infer distinct conformational 274!

states (Figure S3; see also SI Methods section 3.2). 275!

The distributions of the resultant numbers of conformations for domains and 276!

chains are given in Figures S3D and S3E, respectively, and an overview is given in 277!

Figure S3F. We note that the alternative conformations identified arise in an extremely 278!

diverse set of biological contexts, including conformational transitions that accompany 279!
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ligand binding, protein-protein or protein-nucleic acid interactions, post-translational 294!

modifications, changes in oxidation or oligomerization states, etc. The dataset of 295!

alternative conformations identified is provided as a resource in File S1 (see also Figure 296!

S3G). 297!

 298!

Evaluating Conservation of Critical Residues 299!

Using Various Metrics and Sources of Data  300!

The large dataset of dynamic proteins culled throughout the PDB, coupled with 301!

the high algorithmic efficiency of our critical residue search implementation, provide a 302!

means of identifying and evaluating general properties of a large pool of critical residues. 303!

In particular, we use a variety of conservation metrics and data sources to measure the 304!

inter- and intra-species conservation of the residues within this pool. As discussed below, 305!

we find that both surface- (Figures 4A-D) and interior-critical residues (Figures 4E-H) 306!

are consistently more conserved than non-critical residues. We emphasize that the 307!

signatures of conservation identified not only provide a means of rationalizing many of 308!

the otherwise poorly understood regions of proteins, but they also reinforce the functional 309!

importance of the residues predicted to be allosteric. 310!

 311!

Conservation Across Species 312!

 When evaluating conservation across species, we find that both surface- and 313!

interior-critical residues tend to be significantly more conserved than non-critical residues 314!

with the same degree of burial (Figures 4B and 4F, respectively; note that negative 315!

conservation scores designate stronger conservation – see SI Methods section 3.3-a). 316!
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 319!

Leveraging Next-Generation Sequencing to Measure Conservation Amongst 320!
Humans 321!

In addition to measuring inter-species conservation, we have also used fully 322!

sequenced human genomes and exomes to investigate conservation among human 323!

populations, as many constraints may be species-specific and active in more recent 324!

evolutionary history. Commonly used metrics for quantifying intra-species conservation 325!

include minor allele frequency (MAF) and derived allele frequency (DAF). Low MAF or 326!

DAF values are interpreted as signatures of deleteriousness, as purifying selection is 327!

prone to reduce the frequencies of harmful variants (see SI Methods section 3.3-b). 328!

Non-synonymous single-nucleotide variants (SNVs) from the 1000 Genomes 329!

dataset (McVean et al., 2012) that intersect surface-critical residues tend to occur at 330!

lower DAF values than do SNVs that intersect non-critical residues (Figure 4C). Though 331!

this difference is not observed to be significant, the significance improves when 332!

examining the shift in DAF distributions, as evaluated with a KS test (p=!0.159, Figure 333!

S4A), and we point out only a limited number of proteins (thirty-two) for which these 334!

1000 Genomes SNVs intersect with surface-critical sites. Furthermore, the long tail 335!

extending to lower DAF values for surface-critical residues may suggest that only a 336!

subset of the residues in our prioritized binding sites is essential. In contrast to surface-337!

critical residues, however, interior-critical residues intersect 1000 Genomes SNVs with 338!

significantly lower DAF values than do non-critical residues (Figure 4G; see also Figure 339!

S4B). 340!
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option might be to put this text in the Discussion instead of the Results, but I don’t feel 350!

too strongly either way]] When analyzing human polymorphism data, a variety of 351!

statistical measures relating SNVs to selective constraint may be calculated, and the 352!

results obtained (along with their associated significance levels) are highly dependent on 353!

sample size. 1000 Genomes datasets are attractive partially because of their status as a 354!

well-established “blue chip” set of variants in human populations. However, given the 355!

relatively limited number of proteins that intersect with 1000 Genomes SNVs, we also 356!

analyzed the larger dataset provided by the Exome Aggregation Consortium (ExAC) 357!

(Exome Aggregation Consortium, 2015). Though this dataset has been released much 358!

more recently (and is consequently not yet as well established as 1000 Genomes), ExAC 359!

provides sequence data from more than 60,000 individuals, and samples are sequenced at 360!

much higher coverage, thereby ensuring better data quality. This larger dataset enables us 361!

to more easily examine trends in the data as they relate to critical and non-critical 362!

residues. 363!

Using MAF as a conservation metric, we performed a similar analysis using this 364!

data. MAF distributions for surface- and non-critical residues in the same set of proteins 365!

are given in Figure 4D. Although the mean value of the MAF distribution for surface-366!

critical residues is slightly higher than that of non-critical residues, the median for 367!

surface-critical residues is substantially lower than that for non-critical residues, 368!

demonstrating that the majority of proteins are such that MAF values are lower in 369!

surface- than in non-critical residues. In addition, the overall shifts of these distributions 370!

also point to a trend of lower MAF values in surface-critical residues (Figure S5A, KS 371!

test p=9.49e-2). 372!
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Interior-critical residues exhibit significantly lower MAF values than do non-375!

critical residues in the same set of proteins. MAF distributions for interior- and non-376!

critical residues are given in Figure 4H (see also Figure S5B). 377!

 In addition to analyzing overall allele frequency distributions, we also evaluate 378!

the fraction of rare alleles as a metric for measuring selective pressure. This fraction is 379!

defined as the ratio of the number of rare (i.e., low-DAF or low-MAF) non-synonymous 380!

SNVs to the number of all non-synonymous SNVs in a given protein annotation (such as 381!

all surface-critical residues of the protein, for example; see SI Methods section 3.3-b). A 382!

higher fraction is interpreted as a proxy for greater conservation (Khurana et al., 2013; 383!

Sethi et al., 2015). Using variable DAF (MAF) cutoffs to define rarity for 1000 Genomes 384!

(ExAC) SNVs, both surface- and interior-critical residues are shown to harbor a higher 385!

fraction of rare alleles than do non-critical residues, further suggesting a greater degree of 386!

evolutionary constraint on critical residues (See Figure 5). 387!

 388!

Comparisons Between Different Models of Protein Motions 389!

The identification of surface- and interior-critical residues entails using sets of 390!

vectors (on each protein residue) to describe conformational change. Notably, our 391!

framework enables one to determine these vectors in multiple ways. Conformational 392!

changes may be modeled using vectors connecting residues in crystal structures from 393!

alternative conformations. We term this approach “ACT”, for “absolute conformational 394!

transitions” (see SI Methods section 3.2-c). The crystal structures of such paired 395!

conformations may be obtained using the framework discussed above. The protein 396!

motions may also be inferred from anisotropic network models (ANMs) (Atilgan et al., 397!

2001). ANMs entail modeling interacting residues as nodes linked by flexible springs, in 398!
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a manner similar to elastic network models (Fuglebakk et al., 2015; Tirion, 1996) or 399!

normal modes analysis (Figure 1B). ANMs are not only simple and straightforward to 400!

apply on a database scale, but unlike using alternative crystal structures, the motion 401!

vectors inferred may be generated using a single structure. 402!

We find that modeling conformational change using vectors from either ACTs or 403!

ANMs gives the same general trends in terms of the disparities in conservation between 404!

critical and non-critical residues. Our framework is thus general with respect to how the 405!

motion vectors are obtained (see Figure 6 and SI Methods section 3.2-c for further 406!

details). 407!

 408!

Critical Residues in the Context of Human Disease Variants 409!

Directly related to conservation is confidence with which an SNV is believed to 410!

be disease-associated. SIFT (Ng and Henikoff, 2001) and PolyPhen (Adzhubei et al., 411!

2010) are two tools for predicting SNV deleteriousness. ExAC SNVs that intersect 412!

critical residues exhibit significantly higher PolyPhen scores relative to non-critical 413!

residues, suggesting the potentially higher disease susceptibility at critical residues 414!

(Figure S6). Significant disparities were not observed in SIFT scores (Figure S7). 415!

Using HGMD (Stenson et al., 2014) and ClinVar (Landrum et al., 2014), we 416!

identify proteins with critical residues that coincide with disease-associated SNVs (Figure 417!

7A and File S2). Several critical residues coincide with known disease loci for which the 418!

mechanism of pathogenicity is otherwise unclear (File S3). The fibroblast growth factor 419!

receptor (FGFR) is a case-in-point (Figure 7). SNVs in FGFR have been linked to 420!

craniofacial defects. Dotted lines in Figure 7B highlight poorly understood disease SNVs 421!

that coincide with critical residues. In addition, we identify Y328 as a surface-critical 422!
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residue, which coincides with a disease-associated SNV from HGMD, despite the lack of 425!

confident predictions of deleteriousness by several widely used tools for predicting 426!

disease-associated SNVs, including PolyPhen (Adzhubei et al., 2010), SIFT (Ng and 427!

Henikoff, 2001), and SNPs&GO (Calabrese et al., 2009). Together, these results suggest 428!

that the incorporation of surface- and interior-critical residues introduces a valuable layer 429!

of annotation to the protein sequence, and may help to explain otherwise poorly 430!

understood disease-associated SNVs.  431!

 432!

DISCUSSION & CONCLUSIONS 433!

The same principles of energy landscape theory that dictate protein folding are 434!

integral to how proteins explore different conformations once they adopt their fully 435!

folded states. These landscapes are shaped not only by the protein sequence itself, but 436!

also by extrinsic conditions. Such external factors often regulate protein activity by 437!

introducing allosteric-induced changes, which ultimately reflect changes in the shapes 438!

and population distributions of the energetic landscape. In this regard, allostery provides 439!

an ideal platform from which to study protein behavior in the context of their energetic 440!

landscapes. To investigate allosteric regulation, and to simultaneously add an extra layer 441!

of annotation to conservation patterns, an integrated framework to identify potential 442!

allosteric residues is essential. We introduce a framework to select such residues, using 443!

knowledge of conformational change. 444!

When applied to many proteins with distinct conformational changes in the PDB, 445!

we investigate the conservation of potential allosteric residues in both inter-species and 446!

intra-human genomes contexts, and find that these residues tend to exhibit greater 447!
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conservation in both cases. In addition, we identify several disease-associated variants for 448!

which plausible mechanisms had been unknown, but for which allosteric mechanisms 449!

provide a reasonable rationale. 450!

Unlike the characterization of many other structural features, such as secondary 451!

structure assignment, residue burial, protein-protein interaction interfaces, disorder, and 452!

even stability, allostery inherently manifests through dynamic behavior. It is only by 453!

considering protein motions and changes in these motions can a fuller understanding of 454!

allosteric regulation be realized. As such, MD and NMR are some of the most common 455!

means of studying allostery and dynamic behavior (Kornev and Taylor, 2015). However, 456!

these methods have limitations when studying large and diverse protein datasets. MD is 457!

computationally expensive and impractical when studying large numbers of proteins. 458!

NMR structure determination is extremely labor-intensive and better suited to certain 459!

classes of structures or dynamics. In addition, NMR structures constitute a relatively 460!

small fraction of structures currently available. 461!

Despite these limitations in MD and NMR, allosteric mechanisms and signaling 462!

pathways may be conserved across many different but related proteins within the same 463!

family, suggesting that such computationally- or labor-intensive approaches for all 464!

proteins may not be entirely essential. Flock et al. have carefully demonstrated that the 465!

allosteric mechanisms responsible for regulating G proteins through GPCRs tend to be 466!

conserved (Flock et al., 2015). Investigations into representative families have also been 467!

enlightening in other contexts. In one of the early studies employing network analysis, 468!

del Sol et al. conduct a detailed study of several allosteric protein families (including 469!

GPCRs) to demonstrate that residues important for maintaining the integrity of short 470!
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paths within residue contact networks are essential to enabling signal transmission 472!

between distant sites (del Sol et al., 2006). Another notable result in the same work is that 473!

these key residues (which match experimental results) may become redistributed when 474!

the protein undergoes conformational change, thereby changing optimal communication 475!

routes as a means of conferring different regulatory properties. 476!

There are several notable implications of our dynamics-based analysis across a 477!

database of proteins. Relative to sequence data, allostery and dynamic behavior are far 478!

more difficult to evaluate on a large scale. The framework described here enables one to 479!

evaluate dynamic behavior in a systemized and efficient way across many proteins, while 480!

simultaneously capturing residues on both the surface and within the interior. That this 481!

pipeline can be applied in a high-throughput manner enables the investigation of system-482!

wide phenomena, such as the roles of potential allosteric hotspots in protein-protein 483!

interaction networks.  484!

It is only by analyzing a large dataset of proteins can one investigate general 485!

trends in predicted allosteric residues. In addition, the implementation detailed here 486!

enables one to match structural features with the high-throughput data generated through 487!

deep sequencing initiatives, which are providing an unprecedented window into 488!

conservation patterns, many of which may be human-specific. 489!

We anticipate that, within the next decade, deep sequencing will enable structural 490!

biologists to study evolutionary conservation using sequenced human exomes just as 491!

routinely as cross-species alignments. Furthermore, intra-species metrics for conservation 492!

provide added value in that the confounding factors of cross-species comparisons are 493!

removed: different species evolve in various evolutionary contexts and at different rates, 494!
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and it can be difficult to decouple these different effects from one another. Cross-species 497!

metrics of protein conservation entail comparisons between proteins that may be very 498!

different in structure and function. Sequence-variable regions across species may not be 499!

conserved, but nevertheless impart essential functionality. Intra-species comparisons, 500!

however, can often provide a more direct and sensitive evaluation of constraint.  501!

In particular, selective constraints within human populations are particularly 502!

relevant to understanding human disease. Formalisms for analyzing large structural and 503!

sequence datasets will become increasingly important in the context of human health. We 504!

anticipate that the framework and formalisms detailed here, along with the accompanying 505!

web tool we have introduced, will help to further motivate future studies along these 506!

directions. 507!

 508!

METHODS 509!

An overview of the framework for finding surface- and interior-critical residues is 510!

given in Figure 1. Figure S3 provides a schematic of our pipeline for identifying 511!

alternative conformations throughout the PDB. Cross-species conservation scores were 512!

analyzed in those PDBs for which full ConSurf files are available through the ConSurf 513!

server. 1000 Genomes SNVs were taken from the Phase 3 release, and ExAC SNVs were 514!

downloaded in May 2015. Further details on all protocols are provided in SI Methods. 515!
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 646!

 647!

CAPTIONS 648!

Figure 1.  Schematic overviews of methods for finding surface- and interior-critical 649!

residues. (A) A simulated ligand probes the protein surface in a series of Monte Carlo 650!

simulations (top-left). The cavities identified may be such that occlusion by the ligand 651!

strongly interferes with conformational change (top-right; such a site is likely to be 652!

identified as surface-critical, in red), or they may have little effect on conformational 653!

change, as in the case of shallow pockets (bottom-left) or pockets in which large-scale 654!

motions do not drastically affect pocket volume (bottom-right). (B) Interior-critical 655!
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residues are identified by weighting residue-residue contacts (edges) on the basis of 656!

correlated motions, and then identifying communities within the weighted network. 657!

Residues involved in the highest-betweenness interactions between communities (in red) 658!

are selected as interior-critical residues. 659!

 660!

Figure 2.  Community partitioning for canonical systems. Different network 661!

communities are colored differently, and communities were identified using the 662!

dynamical network-based analysis with the GN formalism discussed in the main text and 663!

in SI Methods section 3.1-b. Residues shown as spheres are interior-critical residues, and 664!

they are colored based on community membership, and black lines connecting pairs of 665!

critical residues represent the highest-betweenness edges between the corresponding 666!

communities. 667!

 668!

Figure 3.  STRESS web server front page, running times, and server architecture. 669!

(A) The server enables users to either provide PDB IDs or to upload their own PDB files 670!

for proteins of interest. Users may opt to identify surface-critical residues, interior-critical 671!

residues, or both. (B) Running times are shown for systems of various sizes. Shown in 672!

red are the running times without optimizing for speed, and green shows running times 673!

with algorithmic optimization. (C) The same data is represented as a log-log plot. The 674!

slopes of these two approaches demonstrate that our algorithm reduces the computational 675!

complexity by an order of magnitude. Our speed-optimized algorithm scales at O(n1.3), 676!

where n is the number of residues. (D) A thin front-end server handles incoming user 677!

requests, and more powerful back-end servers perform the heavier algorithmic 678!
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calculations. The back-end servers are dynamically scalable, making them capable of 691!

handling wide fluctuations in user demand. Amazon’s Simple Queue Service is used to 692!

coordinate between user requests at the front end and the back-end compute nodes: when 693!

the front-end server receives a request, it adds the job to the queue, and back-end servers 694!

pull that job from the queue when ready. Source code is available through Github 695!

(github.com/gersteinlab/STRESS). 696!

 697!

Figure 4.  Multiple metrics and datasets reveal that critical residues tend to be 698!

conserved. Surface- and interior-critical residues (red) in phosphofructokinase (PDB 699!

3PFK) are given in (A) and (E), respectively. Distributions of cross-species conservation 700!

scores, 1000 Genomes SNV DAF averages, and ExAC SNV MAF averages for surface- 701!

and non-critical residue sets are given in (B), (C), and (D), respectively. The same 702!

distributions corresponding to interior- and non-critical residue sets are given in (F), (G), 703!

and (H), respectively. In (B), mean inter-species conservation scores for surface-critical 704!

sets are -0.131, whereas non-critical residue sets with the same degree of burial have a 705!

mean score of +0.059 (p < 2.2e-16). In (F), mean inter-species conservation scores for 706!

interior-critical sets are -0.179, whereas non-critical residue sets with the same degree of 707!

burial have a mean score of -0.102 (p=3.67e-11). In (C), means for surface- and non-708!

critical sets are 9.10e-4 and 8.34e-4, respectively (p=0.309); corresponding means in (D) 709!

are 4.09e-04 and 2.26e-04, respectively (p=1.49e-3). In (G), means for interior- and non-710!

critical sets are 2.82e-4 and 3.12e-3, respectively (p=1.80e-05); corresponding means in 711!

(H) are 3.08e-05 and 3.27e-04, respectively (p=7.98e-09). N = 421, 32, 84, 517, 31, and 712!
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90 structures for panels B, C, D, F, G, and H, respectively. P-values are based on 713!

Wilcoxon-rank sum tests. See SI Methods for further details. 714!

 715!

Figure 5.  Critical residues are shown to be more conserved, as measured by the 716!

fraction of rare alleles. Protein regions with high fractions of rare variants are believed 717!

to be more sensitive to sequence variants than other regions, thereby explaining why such 718!

variants occur infrequently in the population. Panels (A) and (C) show distributions for 719!

rare (low DAF) non-synonymous SNVs (taken from the 1000 Genomes dataset) in which 720!

the critical residues are defined to be the surface-critical (A) and interior-critical (C) 721!

residues. Panels (B) and (D) show distributions for rare (low MAF) non-synonymous 722!

SNVs (taken from the ExAC dataset) in which the critical residues are defined to be the 723!

surface-critical (B) and interior-critical (D) residues. For varying thresholds to define 724!

rarity, there are more structures in which the fraction of rare variants is higher in critical 725!

residues than in non-critical residues. Cases in which the fraction is equal in both 726!

categories are not shown. We consider all structures such that at least one critical and at 727!

least one non-critical residue intersect a non-synonymous SNV. Panels (A), (B), (C), and 728!

(D) represent data from 31, 90, 32, and 84 structures, respectively. 729!

 730!

Figure 6.  Modeling protein conformational change through a direct use of crystal 731!

structures from alternative conformations using absolute conformational transitions 732!

(ACT). (A) Distributions (155 structures) of the mean conservation scores on surface-733!

critical (red) and non-critical residues with the same degree of burial (blue). (B) 734!

Distributions (159 structures) of the mean conservation scores for interior-critical (red) 735!
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and non-critical residues with the same degree of burial (blue). Mean values are given in 737!

parentheses. Results for single-chain proteins are shown, and p-values were calculated 738!

using a Wilcoxon rank sum test. 739!

 740!

Figure 7.  Potential allosteric residues add a layer of annotation to structures in the 741!

context of disease-associated SNVs. The structure shown (A) is that of the fibroblast 742!

growth-factor receptor (FGFR) in VMD Surf rendering, with HGMD SNVs shown in 743!

orange, bound to FGF2, in ribbon rendering (PDB 1IIL). (B) A linear representation of 744!

structural annotation for FGFR. Dotted lines highlight loci which correspond to HGMD 745!

sites that coincide with critical residues, but for which other annotations fail to coincide. 746!

Deeply-buried residues are defined to be those that exhibit a relative solvent-exposed 747!

surface area of 5% or less, and binding site residues are defined as those for which at 748!

least one heavy atom falls within 4.5 Angstroms of any heavy atom in the binding partner 749!

(heparin-binding growth factor 2). The loci of PTM sites were taken from UniProt 750!

(accession P21802). 751!

 752!

Table 1.  Statistics on the surfaces of apo structures within the canonical set of 753!

proteins 754!

For each apo structure within the canonical set of proteins, statistics relating surface-755!

critical sites to known ligand-binding sites are reported. The surface of a given structure 756!

is defined to be the set of all residues that have a relative solvent accessibility of at least 757!

50%, where relative solvent accessibility is evaluated using all heavy atoms in both the 758!

main-chain and side-chain of a given residue. Mean values are given in the bottom row. 759!
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NACCESS is used to calculate relative solvent accessibility (Hubbard and Thornton, 760!

1993) . Column 1: PDB IDs for each structure; Column 2: among these surface residues, 761!

the fraction that constitute surface-critical residues; Column 3: among surface residues, 762!

the fraction that constitute known ligand-binding residues (known ligand-binding 763!

residues are taken to be those within 4.5 Angstroms of the ligand in the holo structure; 764!

Table S1); Column 4: the Jaccard similarity between the sets of residues represented in 765!

columns 2 and 3 (i.e., surface-critical and known-ligand binding residues), where values 766!

given in parentheses represent the expected Jaccard similarity, given a null model in 767!

which surface-critical and ligand-binding residues are randomly distributed throughout 768!

the surface (for each structure, 10,000 simulations are performed to produce random 769!

distributions, and the expected values reported here constitute the mean Jaccard similarity 770!

among the 10,000 simulations for each structure); Column 5: the number of distinct 771!

surface-critical sites identified in each structure; Column 6: the number of known ligand-772!

binding sites in each structure; Column 7: the number of known ligand-binding sites 773!

which are positively identified within the set of surface-critical sites, where a positive 774!

match occurs if a majority of the residues in a surface-critical site coincide with the 775!

known ligand-binding site; Column 8: The fraction of ligand-binding sites captured is 776!

simply the ratio of the values in column 7 to those in column 6. 777!

 778!
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