a. SIGNIFICANCE
a.1. Non-coding variants are significant for disease but less well-studied than coding ones
Numerous studies have been conducted on the mutations that lie in coding regions5-8. Not as much has been done on non-coding ones. However, several initial studies suggest that variants in non-coding regions can significantly influence an organism’s phenotype9, and they are often implicated in diseases10,11. Many non-coding variants impact regulatory elements. Such variation in the human genome can modulate gene expression12, and changes in this expression have been implicated in cancer and other diseases13-18.
a.2. Rare variants are important for disease but have received less attention than common ones
There have been a large number of GWAS studies19-23, which have primarily focused on associating common genetic variants with diseases. However, growing evidence suggests that rare genetic variants may have strong effects in many human diseases, including cancers24. Increased disease susceptibility is often attributed to the cumulative effect produced by multiple rare variants25 – e.g., rare germline variants in the CHEK2 and HBOX genes were associated with breast and prostate cancer, respectively26, 27.
a.3. Recent progress in annotating non-coding regions of the genome provides new opportunities for variant interpretation
Annotating non-coding regions is essential for investigating genome evolution28, understanding important biological functions (including gene regulation and RNA processing)29, and for elucidating how SNPs and structural variation may influence disease30. The Encyclopedia of DNA Elements (ENCODE) and the model organism ENCODE (modENCODE) Project provide extensive comparative genomic annotation of human, mouse, fly and worm genomes31-33. Furthermore, regulatory variations in the human genome have been investigated by large-scale mRNA and miRNA sequencing34-37. Recently, large-scale efforts (e.g., the Epigenome Roadmap and GTEx projects) have also been directed toward annotating human epigenomic data38-42, as well as understanding the influence of genomic variation on the gene expression profiles43-47 . These Expression Quantitative Trait Loci (eQTL) can further be utilized to investigate disease mechanisms48. 
a.4. Molecular phenotypes help understand epistasis and identify actionable drug targets
Our STRO-seq assay measures the variant’s impact on enhancer activities at the molecular level. We are interested in the molecular phenotypes of variants, because all genetic lesions leading to organismal disease phenotypes or affecting overall fitness must have an underlying molecular basis1. We fully acknowledge that some variants with significant molecular phenotypes will not lead to any disease or traits. This can happen due to epistasis between TREs/genes with redundant functions. In fact, epistasis is a major roadblock to studying these TREs/genes genetically at the cellular and organismal level2-4. Our approach bypasses this limitation by directly examining the effects of variants on gene regulation at the molecular level. Even though mutations on one of these functionally redundant TREs/genes may not cause a disease phenotype, if these mutations disrupt the function of the corresponding TRE/gene (which can be measured by the methods proposed here), they will significantly increase the predisposing risk for disease5-7. Furthermore, accurate measurement of each variant’s impact on gene regulation are essential for generating concrete hypotheses about disease etiology based on molecular mechanisms8. Such specific predictions are also vital for selecting actionable drug targets9,10 and ultimately for making tailored therapeutic decisions11,12, which are all crucial for the Precision Medicine Initiative13.

b. INNOVATION
b.1. STRO-seq: Self-Transcribing nuclear Run-On and Sequencing assay 
STARR-seq (self-transcribing active regulatory region-sequencing) is a recently established method that can identify enhancer elements genome-wide14. Briefly, short genomic fragments are cloned en masse into the 3’ untranslated region of a simple transcription unit between paired-end sequencing primers. After transfection of this fragment library into cells, enhancer activity is quantified by counting the number of unique fragments from a particular genomic locus that give rise to detectable mRNA. Importantly, STARR-seq does not quantify the enhancer activity of individual candidate fragments, but instead requires creation of a complex library of unique but overlapping fragments for each candidate region to be tested. It also requires that enhancer sequences can exist as stable mRNAs, and is thus confounded by post-transcriptional effects. Furthermore, >98% of sequencing reads are discarded because multiple mRNA molecules are often produced from a single unique DNA fragment (see Supplemental Figure 2E of Arnold et al14). 
To circumvent these difficulties, we will develop a self-transcribing run-on sequencing (STRO-seq) protocol to allow direct quantification of enhancer activity for an individual enhancer sequence (Fig. 2). After preparation of an enhancer library and transfection into cells, nascent RNA will be captured as in our established GRO-seq protocol. Importantly, candidate enhancer activity will be quantified as the number of nascent eRNAs produced per transfected plasmid. This approach offers many advantages: (1) reduced bias from post-transcriptional effects, (2) quantification of transcription driven by a specific enhancer fragment, and (3) more efficient use of sequencing reads. We anticipate that these improvements will significantly simplify high-throughput studies of candidate enhancer sequences, and increase assay sensitivity compared with STARR-seq.[image: ]
Fig. 2. Self-transcribing run-on & sequencing (STRO-seq).


b.2. Our approach to clone and examine ~15,000 noncoding mutations on ~3,000 enhancers is unique
Our MegaPfunkel-seq allows massively-parallel site-directed mutagenesis to generate one and only one specific mutation per DNA molecule for thousands of enhancers. It is distinct from what was used in the most closely related previous studies: the massively parallel functional dissection (MSFD) approach15 and the massively parallel reporter assay (MSRA)16,17.  For MSFD, random mutagenesis was used to generate mutations for three mammalian enhancers15. In random mutagenesis, control of the number of mutations generated on each DNA sequence is impossible. To improve coverage, most random mutagenesis pipelines generate on average two or more mutations on each DNA molecule18 and in the MSFD approach “each synthetic enhancer molecule contained, on average, three mutations per 100 bp, randomly distributed along its length”15. This prevents assessment of the functional impact of each individual mutation. 
For MSRA, microarray-based oligo synthesis was used to generate mutations16,17. Although specific mutations can be generated in this approach, the length limit is <150 bp. However, depending on the definition used, mammalian enhancers can be 1 kb or longer15. We have used our MegaPfunkel-seq to generate hundreds of mutant TRE clones with an average length of ~500 bp. We will have no problem cloning enhancers (up to 4kb) and their mutations in their entirety. 

b.3. MegaPFunkel-seq is distinct from Clone-seq with a much higher throughput
Our MegaPfunkel-seq allows massively-parallel site-directed mutagenesis to generate one and only one specific mutation per DNA molecule for thousands of enhancers. It is distinct from what was used in the most closely related previous studies

c. APPROACH
c.1. Specific Aim 1:  MegaPFunkel-seq: a massively-parallel site-directed mutagenesis pipeline.
In this aim, we will build upon our experience in developing the Clone-seq pipeline to establish the MegaPFunkel-seq pipeline with a much higher throughput (at least one two orders of magnitude higher).

c.1.1. Preliminary Studies
c.1.1.1. Clone-seq: a massively-parallel cloning pipeline. Current protocols for cloning require the selection of individual colonies and subsequent sequencing of each colony using Sanger sequencing to find the correct clone19. The standard approach is both labor intensive and expensive, and does not scale well to high-throughput applications. In Clone-seq20, we implement a “smart-pooling” strategy to put single colonies of each cloning attempt into one pool and combine multiple pools through multiplexing for one Illumina sequencing run such that we can distinguish sequencing reads for each colony of each clone computationally afterwards. We have successfully generated 1,034 clones in an optimized high-throughput fashion20. Using our customized variant calling software, we identified correct clones free of any other unwanted mutations introduced during PCR. We achieved a conservative estimate in cost-savings of at least 10-fold over conventional cloning20, which can be further improved with implementation of newer sequencing platforms (e.g., NextSeq 500). 
Clone-seq is very versatile. It can be used to generate wild type gene/TRE clones or specific mutant clones20. We have successfully generate ~800 wild type TRE (enhancers and promoters) clones. Our results confirm that Clone-seq can successfully generate clones for the ~3,000 wild type enhancers within the proposed time frame.

c.1.1.2 MegaPFunkel-seq, an en masse (“pooled”) site-directed mutagenesis pipeline. Owing to the nature of our STRO-seq assay, there is no need to generate separate clones for each individual mutant TRE. Here we propose to implement an en masse (“pooled”) site-directed mutagenesis pipeline, MegaPFunkel-seq (Fig. 5), for introducing mutations in TREs of interest. We developed our MegaPFunkel-seq pipeline by incorporating mutagenesis megaprimers (electrochemically synthesized in large scale59) into a previously published method named PFunkel60. MegaPFunkel-seq is a high-throughput site-directed mutagenesis pipeline, so only pre-determined mutation(s) are introduced to targeted DNA sequences and each mutagenized DNA molecule will only contain those pre-determined mutation(s). Based on our preliminary studies, we can generate >500 specific mutations to different DNA clones with minimal undesired mutations in one MegaPFunkel-seq reaction, consistent with previous PFunkel publications60,61. Therefore, we are confident that we will be able to generate ~10,000 noncoding mutation clones through pooling and multiplexing.






































Fig. 6. Generation of adaptor-free Megaprimers.














Fig. 5. Schematic illustration of MegaPFunkel-seq.


c.1.2. Research Design
c.1.2.1. High-throughput cloning of ~3,000 WT TREs using Clone-seq. Sequence-specific forward and reverse primers containing attB1 and attB2 sequences, respectively, will be synthesized in bulk as “Trumer Oligo” plates by Eurofins Genomics36. Using human genomic DNA as template, the selected TREs (Table 1) will be PCR amplified in 96-well format with high-fidelity Phusion DNA polymerase to minimize introduction of unintended mutations. We will perform large-scale Gateway BP reactions to clone each PCR product into pDONR223 vector. Entry clones containing the intended TREs will be identified through our Clone-seq protocol36. The verified entry clones will be used for the site-directed mutagenesis by MegaPFunkel-seq. These WT entry clones will also be subjected to Gateway LR reaction to transfer TREs in the entry vector to our modified pDEST-hSTRO destination vectors via recombination. The resulting expression clones will be pooled, maxipreped, and subjected to STRO-seq analysis in GM12878 cell line to serve as the baseline control. 
c.1.2.2. Generation of ~10,000 noncoding mutation clones through MegaPFunkel-seq. Megaprimer design and synthesis. The mutagenesis primers (“megaprimers”) are ssDNA oligos electrochemically synthesized on a programmable DNA microarray and released into solution (CustomArrray). The total length of each megaprimer will be 160nt, which includes 120nt of template (TRE)-priming region flanked by two 20nt adaptors and is 5’-phosphorylated. The template-priming region contains the designed mutations. The 5’-adaptor contains different barcodes and always ends with a T. The 3’-adaptor always begins with an A. PCR with amplification primers complementary to the adaptors will be used to amplify the megaprimers. The forward and reverse amplification primers both contain a U at the 3’-end (complementary to the last base in both adaptors). The special design/modification of megaprimers and amplification primers allows for the selective amplification of subgroups of primers of interest for “smart pooling” (see c.2.2.4), as well as easy removal of both adaptors before the mutagenesis reaction (Fig. 6). In addition, a primer complementary to the entry clone backbone sequence (PBB) will be synthesized with a 5’-phosphate.
The en masse site-directed mutagenesis pipeline. To prepare uracil-containing WT TRE template, entry clones carrying TREs of interest will be propagated in CJ236 E. coli. Uracil-containing entry clone plasmids and their corresponding mutagenesis megaprimers (adaptors removed) will be combined in a single MegaPfunkel reaction. In addition to plasmid templates and megaprimers, the MegaPFunkel reaction mix also contains PfuTurbo Cx hotstart DNA polymerase, dNTPs, Tag ligase, DTT, NAD+, and reaction buffer. A two-step PCR followed by a ligation step will be performed before Uracil-DNA glycosylase (UDG) and Exonuclease III are added to remove the WT uracil-containing TRE templates while leaving the circular, mutation-carrying, and uracil-free ssDNA intact. After heat inactivation of the nuclease, the primer complementary to the entry clone backbone sequence (PBB) will be added to the reaction mixture and the complementary strand will be synthesized by one cycle of PCR. A ligation step will be performed afterwards to generate circular, uracil-free dsDNA with the desired mutation, which will be transformed into TOP10 E. coli through electroporation. 
Confirmation of mutant TRE entry clone library by Illumina sequencing. The mutant TREs will be amplified by PCR with primers annealing to backbone regions flanking the TREs in the entry clone plasmids. The mutant TREs will be ligated to a sequencing adaptor with the NEBNext DNA library prep master mix set for Illumina and sequenced with a 2×250 bp MiSeq run.

c.1.2.3. Measuring effects of ~15,000 TRE mutations on enhancer activity by STRO-seq. The mutant TRE entry clones will be subcloned into pDEST-STRO-dCP and pDEST-STRO-hkCP vectors by high-throughput Gateway LR reactions. The enhancer activities of the WT and mutant TREs will be carefully examined by our STRO-seq experiments as described in c.1.2.2. A subset of mutations that show significant effects on enhancer activity (either up or down) will be further validated by high-throughput Luciferase assays as described in c.1.2.3. 

c.1.2.4 Potential pitfalls and alternative approaches. We will perform MegaPFunkel-seq and STRO-seq in three batches: we will first generate and test ~2,000 mutations to further ensure that every step in our pipeline works well in high-throughput fashion; we will then generate the remaining mutant TRE constructs in batches of ~3,000 and ~5,000 mutations.
A relatively high WT allele background was observed in the original Kunkel method77 and its derivative, e.g. PFunkel60,61, and is considered to result from fragmented WT templates priming to circular WT templates during the first round of PCR reaction. To minimize the WT allele background, we use megaprimers of 160nt in length instead of regular mutagenesis primers of ~35nt in length. Such modification allows us to use a much higher annealing temperature and thus more efficient annealing of megaprimers. Although undesired mutations were shown to be rare when using the PFunkel method by previous publications60,61 and our preliminary results, we are still prepared to tackle the problem by controlling the three major sources of undesired mutations: (1) errors introduced by DNA polymerase during PCR, (2) simultaneous annealing of multiple different mutagenesis primers to the same WT template, and (3) non-specific priming. Using PfuTurbo Cx Hotstart DNA polymerase for mutagenesis PCR reaction will help minimize the DNA replication error, as it is the only high-fidelity DNA polymerase that efficiently reads through a uracil base. Using long megaprimers and high annealing temperature will help reduce undesired mutations from both source (2) and (3). If simultaneous annealing of multiple megaprimers to the same template becomes a problem for long target TREs, we will use a “smart pooling” strategy: each megaprimer pool (associated with one barcode) will be amplified selectively with corresponding amplification primers and added to individual mutagenesis reactions to keep the one-to-one megaprimer-to-TRE relationship in each reaction, eliminating undesired simultaneous priming. 
Last but not least, if we have difficulty generating certain mutant alleles with MegaPFunkel-seq, we will use our robust Clone-seq pipeline to generate these mutant clones. Our Clone-seq pipeline has been optimized and used to generate >3,000 mutant clones in our lab and is more than capable of generating >5,000 TRE mutants within the proposed timeframe and budget.

c.2. Specific Aim 2: STRO-seq: a massively-parallel quantitative assay for measuring enhancer activity
With the WT and mutant enhancer clones generated in Aim 1, we will develop the STRO-seq assay to quantitatively measure the enhancer activity of each clone and detect mutations that significantly change the enhance activities over the corresponding WT clones.
c.1.1. Preliminary Studies
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Fig. 3. Our results agree well with published data.







  

c.1.1.1. Modified Gateway-compatible STRO-seq vectors. To make the STARR-seq compatible with our high-throughput cloning/mutagenesis pipeline, we modified the original STARR-seq vector by substituting the flanking homology arms with a Gateway cassette (attR1-R2) and retaining the Developmental Core Promoter (dCP). Our modified vector (called pDEST-hSTRO-dCP) behaves like the original vector in transfection assays.  We generated entry clones carrying four genomic DNA fragments (HS001, 002, 005, 006) that showed enhancer activity and one (HS018) that did not as measured by STARR-seq previously20. We cloned the five fragments in pDEST-hSTRO-dCP by Gateway LR reaction, transfected them into HeLa cells, and quantified transcripts from each by qRT-PCR. Additionally, all five fragments were also cloned into pGL4.23-DEST-dCP vector and their enhancer activity was also confirmed by the dual luciferase assay as described in c.1.2.3. Both experiments (Fig. 3) successfully recapitulated the data published in the original STARR-seq paper20. Thus, the Gateway-compatible STRO-seq vector is compatible with our high-throughput cloning/mutagenesis pipeline, and provides reliable quantification of the enhancer activity of target DNA fragments. To ensure coverage of the main classes of enhancers, we will use STRO-seq vectors representing the two major classes of core promoters44: one that is responsive to developmental enhancers (pDEST-hSTRO-dCP) and one responsive to housekeeping enhancers (pDEST-hSTRO-hkCP).

c.2.2. Research Design
c.2.2.2.  Developing the STRO-seq assay. STRO-seq library transfection. The ~2,000 entry clones generated in c.1.2.1 will be cloned into both pDEST-hSTRO-dCP and pDEST-hSTRO-hkCP vectors by Gateway LR reaction. Each resulting STRO-seq library carrying ~2,000 TREs will be transfected into GM12878 cells by electroporation.
Self-transcribing run-on reaction. Nuclei will be isolated at 24h post-transfection. Run-on reactions using biotinylated uridine triphosphate (biotin-UTP) will be performed, as we have previously described35. Plasmids will be purified on an EZNA Plasmid DNA column from the nuclear lysate after capturing nascent RNA on streptavidin beads. Nuclear run-ons have been successfully performed on plasmids transfected into human cells45, further supporting the feasibility of this approach.
Illumina sequencing library preparation and HiSeq sequencing. Biotinylated RNAs captured from the run-on reaction will be reverse transcribed from priming sites specific to pDEST-hSTRO vectors. PCR-amplification will be performed as previously described20. Briefly, 1st-strand cDNA will be synthesized with a vector backbone-specific primer downstream of the cloning site (Fig. 2). This primer will contain the Illumina adaptor sequence, and a random barcode to enable removal of PCR duplicates. We will use multiplex-barcoded PCR primers to enable pooling of multiple samples in a single high-throughput sequencing lane. The barcoded TREs will then be sequenced with 1×100bp HiSeq run. Library plasmid DNA harvested from transfected cells will also be amplified and multiplexed using similar PCR conditions as that for cDNA amplification, and sequenced within the same HiSeq run as an input control. In addition, library plasmid DNA (pre-transfection) will also be processed and sequenced in the same run as a control for overall library quality.

c.1.2.3. High-throughput dual luciferase assay confirmation of STRO-seq results. The luciferase reporter vector pGL4.23 (Promega) was modified into two Gateway compatible vectors, pGL4.23-DEST-dCP and pGL4.23-DEST-hkCP. These vectors contain a Gateway cassette upstream of the corresponding core promoter (dCP and hkCP) followed by a luc2 (synthetic firefly luciferase) reporter gene. Based on our STRO-seq results with two different core promoters, TREs of interest will be LR-cloned into these reporter vectors accordingly. pGL4.75 vector (Promega), which contains a CMV enhancer/promoter and a downstream hRluc (synthetic Renilla luciferase) gene, is used as transfection control. TRE-containing reporter vector and control vector will be co-transfected into GM12878 cells by electroporation. The enhancer activity of TREs as indicated by the intensity of bioluminescence will be measured by with Dual-Glo luciferase assay system.

c.1.2.4. Interpretation, potential pitfalls, and alternative approaches. Being a non-tumor Tier 1 cell line in the ENCODE project, GM12878, a lymphoblastoid cell line, is one of the best options for our proposed study. On the other hand, we are aware that chemical-based transfection efficiency is low in GM12878 cells, so we will use electroporation as our transfection method, which has been shown to have good efficiency46. If the electroporation efficiency of GM12878 falls below our expectation, we will use K562 cell line as an alternative. K562, though derived from a leukemia patient, is also a lymphoblastoid Tier 1 cell line in the ENCODE project and it also has all necessary data available in the pattern of divergent transcription by GRO-cap1, histone modifications13, and DHS14. Moreover, >70% transfection efficiency can be achieved by electroporation in K562 cells, which makes it a suitable alternative for GM12878 in our study. We have extensive experience with GRO-seq1,34,41,47-55; therefore, we are highly confident that our STRO-seq experiments, an integration of STARR-seq and GRO-seq, will be successful. If we run into an unforeseen problem, we can always fall back on the standard STARR-seq protocol.
A confounding factor in STARR-seq and related applications, including STRO-seq, is the interplay of the candidate enhancer, which is embedded in the transcription unit, and the core promoter used to drive the transcription of the transgene. Active enhancers are themselves transcribed, and the relative strength of transcription emanating from the enhancer (divergent transcription going away from the enhancer in both directions) and the promoter (towards the downstream enhancer fragment) may interfere with the enhancer activity. This interference may arise through modifications of histones that put elongation marks on site of transcription initiation56. In STARR-seq and STRO-seq the enhancers are intragenic and therefore subject to promoter crosstalk, while native intergenic enhancers are immune from this crosstalk. High-throughput luciferase assays with an intergenic cloning site will be used to screen for such confounding effects, as will analysis at native sites of the most interesting mutation phenotypes in Aim 3.
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D.  Approach
D-1  Approach Aim 1 - Convert & extend the FunSeq somatic variant pipeline for germline prioritization
D-1-a  Preliminary results for Aim 1
D-1-a-i  We have experience in annotating non-coding regions of the genome, including both TF-binding sites and non-coding RNAs
Our proposed work is based on our past experience in non-coding annotation, as part of our 10-year history with the ENCODE and modENCODE projects. Our TF work includes the development of methods to define the binding peaks of TFs[1], prediction of a TF’s target genes[2], and new machine learning techniques[3]. Furthermore, we developed methods that integrate ChIP-seq, chromatin, conservation, sequence and gene annotation data to identify gene-distal enhancers[4], which we have partially validated[5]. We also constructed linear and non-linear models that utilize TF binding and histone modification signals to accurately predict the transcriptional output of a gene in different cell types of several organisms including yeast, worm, fly, and human. [6-10] We have also constructed regulatory networks for human and model organisms[11, 12], and completed many analyses on them (Fig 1) 
[5, 7, 11, 13-26]. Furthermore, we conducted large-scale multi-organism regulatory and coexpression network comparisons, along with transcriptome and pseudogene lineage analyses[26-30]. We also have extensive experience conducting integrated analyses of RNA-Seq datasets generated by the ENCODE, modENCODE, BrainSpan and exRNA consortia[7, 31-34]. In particular, we developed RSEQtools and IQseq for gene model creation and transcript quantification[35, 36]. We also developed tools that specifically analyze features of ncRNAs, including incRNA and ncVAR for finding and characterizing these elements[37, 38]. 
[[ANS: Need better transition]]
D-1-a-ii  We have experience in allelic analyses
A specific class of regulatory variants is one that is related to allele-specific events. These are variants that are associated with allele-specific binding (ASB), particularly of transcription factors or DNA-binding proteins, and allele-specific expression (ASE)[39, 40]. We have previously developed a tool, AlleleSeq,[24] for the detection of candidate variants associated with ASB and ASE. Using this we have generated comprehensive lists of allelic variants for ENCODE and 1000 Genomes and found that allelic variants are under differential selection from non-allelic ones[11, 22, 32]. By constructing regulatory networks based on ASB of TFs and ASE of their target genes, we further revealed substantial coordination between allele-specific binding and expression[11]. Furthermore, we have constructed a personal diploid genome and transcriptome of NA12878 on[41].
D-1-a-iii  Experience in relating annotation to variation: the FunSeq pipeline
We have extensively analyzed patterns of variation in non-coding regions, along with their coding targets[5, 11, 38]. We used metrics, such as diversity and fraction of rare variants, to characterize selection on various classes and subclasses of functional annotations[38]. In addition, we have also defined variants that are disruptive to a TF-binding motif in a regulatory region[31]. Further studies showed relationships between selection and protein network topology (for instance, quantifying selection in hubs relative to proteins on the network periphery[21, 23]).
In recent studies[22, 42], we have integrated and extended these methods to develop a prioritization pipeline called FunSeq (Fig 2). It identifies sensitive and ultra-sensitive regions (i.e., those annotations under strong selective pressure, as determined using genomes from many individuals from diverse populations). FunSeq links each non-coding mutation to target genes, and prioritizes such variants based on scaled network connectivity. It identifies deleterious variants in many non-coding functional elements, including TF binding sites, enhancer elements, and regions of open chromatin corresponding to DNase I hypersensitive sites. It also detects their disruptiveness in TF binding sites (both loss-of and gain-of function events). Integrating large-scale data from various resources (including ENCODE and The 1000 Genomes Project) with cancer genomics data, our method is able to prioritize the known TERT promoter driver mutations, and it scores somatic recurrent mutations higher than those that are non-recurrent. Using FunSeq, we identified ~100 non-coding candidate drivers in ~90 WGS medulloblastoma, breast and prostate cancer samples [22]. Drawing on this experience, we are currently co-leading the ICGC PCAWG-2 (analysis of mutations in regulatory regions) group.


D-1-b  Research plan for Aim 1
We plan to convert and extend the current FunSeq prototype from its focus on somatic variants to allow the identification of germline variants associated with large gene expression changes (Fig 3). Our new approach called ReEnAct (Regulation of Enhancer Activity) will iteratively create a model of high impact variant.  It will have several features tailoring it to germline analysis, including 1) identifying functional sites among the conserved regions of the human genome and ncRNA regulatory elements; 2) investigating the allelic elements. We will iteratively train and test our model on the results of the Stro-seq experiments to refine its parameters. 

[[LS: Remove the discussion of rare variants.  Now we’re just looking at variants]]

D-1-b-i  Consistently prioritizing non-coding elements from polymorphism data
In order to define rare variants with highly impactful events, we will use both intra-human variation data (from The 1000 Genomes Project) as well as cross-species evolutionary conservation (using classical measures such as GERP score[43]).

Due to the development of a number of massively parallel assays for identifying regulatory regions in the genomes, we have been able to identify the epigenetic signatures underpinning active enhancers.  We will use this information to make  better enhancer predictions and utilize information provided by the Epigenome Roadmap [44-46], and more recently from ENCODE projects. In particular, we will develop a new machine learning framework that combines pattern recognition within the signal of various epigenomic features and transcription of enhancer RNA (eRNA) with sequence-based features to predict active enhancers across different brain regions and other tissues in the Epigenome Roadmap project. – [[ANS: change to whatever cells HY is using.  This paragraph may need a transition]]


We will first update the TF binding non-coding elements from the original FunSeq approach. Here, we will use the better enhancer definition provided by the Epigenome Roadmap [44-46], and more recently from ENCODE. In particular, we will develop a new machine learning framework that utilizes pattern recognition within the signal of various epigenomic features and transcription of enhancer RNA (eRNA) to predict active enhancers across different tissues.
[[deleted ncRNA stuff]]

D-1-b-ii  Identifying high-impact mutations: breaking & creating motifs
For impactful events at TF binding sites, we will use motif breakers and formers to define loss-of- and gain-of-function events, respectively, as these events are more likely to have deleterious consequences[22, 38, 47-51]. Variants altering the position-weight matrix (PWM) scores for TF binding sites could potentially either decrease (loss-of-function) or increase (gain-of-function) the binding strength of TFs. A key improvement that we plan to utilize is to employ ancestral alleles to get a more accurate determination of these events.

[[deleted ncRNA stuff]]

D-1-b-iii  Variant prioritization based on allelic activity [[SKL may add a paragraph about his new method on allelic activity]]
Allele-specific variants potentially provide a most direct readout of the functional impact of a variant. For example, if we can associate the differential binding effect of a particular transcription factor with different alleles of an SNV, then we can identify loci that have potential functional impacts in regulation. However, because allelic variants are enriched for rare variants[52], it will be difficult to match the specific variants in a personal genome of interest to prioritize against those earlier determined to be allelic in a functional genomics experiment on a cell line. Hence, instead of prioritizing by the direct overlap of allelic variants, we need to prioritize by the presence of allelic variants within 'allelic elements', or allelic regions in the genome (Fig 4).

We derive allelic elements by first identifying allelic variants from hundreds of individuals. These individuals will be amassed from The 1000 Genomes Project[53]. We will match them with their corresponding RNA-Seq and ChIP-seq experiments from multiple disparate studies, such as gEUVADIS[52] and ENCODE[31]. Because these separate studies typically have various inconsistencies in terms of tools and parameters used in processing their data, we have to reprocess and harmonize the heterogeneous data and detect allelic variants in a uniform fashion. Also, while the conventional way to detect allelic variants is using the binomial test, previous studies have found that the distributions of the allelic ratios in ChIP-seq and RNA-seq experiments have been empirically observed to give a broader, or an ‘overdispersed’, distribution than a binomial distribution[54-56]. To identify and remove problematic "outlier" datasets and to account for overdispersion of read distributions, we will extend our detection pipeline (AlleleSeq) to include the calculation of an overdispersion parameter for each ChIP-seq and RNA-seq dataset; the beta-binomial test (which parametrizes the overdispersion) will be used to detect allelic variants instead of the binomial test.

Subsequently, allelic variants (rare and common) identified across hundreds of genomes can be aggregated into ‘allelic genomic elements’. Each element will be assigned an ‘allelicity’ score based on not only its enrichment of allelic variants within the element (in comparison to accessible variants within the elements and having sufficient coverage to make an allelic activity call), but also across the number of individuals having allelic variants in a consistent allelic direction. The scoring system by element is useful in two ways: (1) it allows continuous ranking of genomic elements based on its allelic impact across multiple individuals (as opposed to defining a threshold to make a binary decision of whether an element is ‘allelic’) and (2) it enables incorporation of ASE and ASB into the main prioritization scheme; input variants (even those which are rare, but lie in highly-ranked allelic genomic elements) will be upweighted according to their scores.

D-1-b-iv  Identifying likely target genes for distal regulatory elements & assessing the impact of variants on network connectivity
To interpret the likely functional consequences of non-coding variants, we will comprehensively define associations between many non-coding regulatory elements and their target protein-coding genes. The correlation between enhancer and promoter activity across the ENCODE cell-lines and different tissues will be used to identify significant associations between regulatory elements and candidate target genes, as done by Yip et al[4]. A single regulatory variant may affect the expression of multiple genes, either because it directly regulates multiple genes or because the target gene is itself a regulatory factor.

We further developed an ENGINE(Enhancer Gene Interaction detection) method to detect enhancer gene linkage. ENGINE will integrate both static and dynamic genomic information. The sequence features are denoted by K-mer profile and co-occurrence matrix, while the dynamic features include DNase I,  histone modification and TF binding information. We convert histone mark/DNase signals to a pseudo image and extract informative features that can tell positive from negative datasets. Meanwhile, gene expression variance as an addition information information,is also integrated together into a statistical model to predict enhancer gene linkage.

We will use the regulatory element-target gene pairs to connect the non-coding variants into a variety of networks -- e.g. regulatory network, metabolic pathways, etc. We will examine their network centralities, such as hubs, bottlenecks and hierarchies, as we know that disruption of highly connected genes or their regulatory elements is more likely to be deleterious[21, 23]. 
[[Deleted RNA stuff]] 
[[SKL to add something about ENGINE]]
D-1-b-v  We will use a unified weighted scoring scheme for combining all ReEnAct features to prioritize variants
To integrate the various features mentioned above, we plan to elaborate the weighting system in FunSeq.[42]. Constrained by selective pressure, common variations tend to arise in functionally unimportant regions. Thus, features that are enriched with common polymorphisms are less likely to contribute to the deleteriousness of variants and are weighted less. In general, features can be classified into two classes: discrete (e.g., within or outside of a given functional annotation) and continuous (e.g., the PWM change in ‘motif-breaking’). We will weigh these two sets of features with different strategies.

For each discrete feature , such as sentitive region overlap, ultraconserve region overlap, and HOT region overlap, we calculate the probability  that it overlaps with common polymorphisms. We then calculate the information content to denote the value of discret features  + , where  and can be used for score optimization.

The situation is more complex for continuous features, as different feature values have different probabilities of being observed in natural polymorphisms. Thus, one weight cannot suffice for varied feature values. For a continuous feature  , such as motif gain, motif break and GERP etc, which is associated with a value , the probability  is firstly estimated using common variants: . The score of continuous feature is defined as . We then fit a smoothing curve and estimate parameters ’s according to empirical distribution . 
The eleVAR score (eS) is calculated by summing up the values of all its features. We will also consider the feature dependency structure when calculating the scores (e.g., removing redundant features or performing dimension reduction techniques).


D-2-b-i  Statistical framework for parameter tuning using Bayesian updates
[[Very important, need to update.  Will have many rounds of testing/training.]]
The initial feature parameter  () (given  number of features) assigned in D-1-b-v will be further optimized with newly available “gold standard” datasets. We plan to tune these parameters using an incremental Bayesian learning strategy. For a variant , given eleVAR score  (equation 3 in D-1-b-v), the probability that  is functional ( designates a positive result, whereas  denotes a negative result) follows a logistic function  ( are scaling parameters). To update  with training data , we implement Bayes’ rule:. 
The likelihood ratio is defined as:  , and then MCMC (Monte Carlo Markov Chain) will be used to find the most probable . The updated  will then be used as tuned parameters in eleVAR to prioritize variants. The procedure will be iterated in several rounds. In the first round of tuning, feature weights obtained in D-1-b-v will be used to construct priors . In subsequent rounds, the updated weights will be set as new priors.

D-2-b-iii  Generating an initial list of prioritized variants & then running them through eleVAR
We’ll get variants from 1000G Phase 3. [[MG: remove to PCAWG]][[SKL: to cut this part? 

D-2-b-iv  Round 1 of tuning based on publicly available datasets
To perform the initial round of performance assessment and parameter tuning, we plan to use publicly available datasets from various resources. These datasets include known disease-causing mutations from molecular studies, high throughput reporter assays on enhancer activities .

The Human Gene Mutation Database (HGMD)[57] and ClinVar[58] catalogue large numbers of regulatory disease-causing mutations discovered in molecular studies. Several high-throughput technologies have also been developed to test the phenotypic impacts of non-coding genomic variants. For example, Kwasnieski et al used CRE-seq[59] to assay over 1,000 single- and double-nucleotide mutations in promoter regions. Kheradpour et al.[47] used MPRA to test variants affecting regulatory motifs in over 2,000 human enhancers. We will utilize these datasets to perform comparisons with other variant prioritization methods, such as CADD [60], to obtain a preliminary evaluation of method performance. We will then tune our parameters using the scheme described above.

D-2-b-v  Round 2 [[How many rounds of tuning?]] of tuning using high-throughput experiments done in this project
  - gtechr01 disc. 
        1. We talked about change it to 4 aims, 10K mutation first year, then 5000 mutations for Yrs 2 and 3. 10 CRISPRs per year for Yrs 2, 3, and 4. However, I also talked to John this afternoon, he wants to keep the CRISPR part in aim 2 to avoid this grant to be too similar to the one we just submitted. I think it can be a good idea because this RFA is focused on technology development and the CRISPR experiments are really just validation, so maybe it is good not to have it as a separate aim.

[[[Try to get all done by late tomorrow]]

[[/SKL: add in references w SK]]

[[SKL try in conversation w JZ, ANS & T G to update the below as best you can taking into account the above]]

[[MRS to read & to send another cover to HY]]


We expect an average of ~3M germline variants per genome[53]. Since they rarely recur at the exact same position, we anticipate a prioritized list of ~8M variants (=40K * 250 genomes, based on the the expected size of the prostate compendium). We will select 3000 functional regions of appreciable size that contain highly ranked variants. Assuming ~8M variants are distributed evenly across the human genome, taking an average element size of 3kb, the number of variants per element will be ~4. Variants on the same element are expected to have different functional impacts. For each element, we will prioritize at least one of these variants to be of high impact, and the remaining variants to be of a lower impact. Specifically, we will have a total of  15K variants in the year1 and 5000 in the subsequence years (two fifth with a high impact and  three fifth with a low impact). Subsequent tuning and refinement of the eleVAR parameters will be based on further experimental characterization of these 15K variants in first year (6K highly prioritized and 9K lowly, respectively). We will validate these variants through functional genomic screens using the [[change cloneseq]] [[SKL:Done]]STRO-seq technology coupled with luciferase reporter assays. Overall, this refinement will be accomplished in two rounds, each round per year, as detailed in Aim 3 and the timeline (Fig 6). Finally, during the last year of the proposed work, we will perform a careful assessment of our model. We will again prioritize our full list of variants and select a final set of 5000 top ranked variants for an unbiased validation. This will allow us to construct a precise ROC curve in order to measure the accuracy of our predictions.
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TG quick updates: 
No disease, 
No cacner, no rna, no elevar (reenact), no network 
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FIG 3 - Description of  eleVAR workflow & data context 
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FIG 1 - ENCODE regulatory network analysis 
(original in paper ) [[Probably won’t be included in final version, because we are de-emphasizing networks]]
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FIG 2 - Filtering of somatic variants from a prostate cancer sample leading to identification of candidate drivers
(original in the paper)
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FIG 4 - Workflow for generating allelic variants and elements 
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