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ABSTRACT 47	
  

The rapidly growing volume of data being produced by next-generation sequencing 48	
  

initiatives is enabling more in-depth analyses of conservation than previously possible. 49	
  

Deep sequencing is uncovering disease loci and regions under selective constraint, 50	
  

despite the fact that intuitive biophysical reasons for such constraint are sometimes 51	
  

absent. Allostery may often provide the missing explanatory link. We use models of 52	
  

protein conformational change to identify allosteric residues by finding essential surface 53	
  

cavities and information flow bottlenecks, and we develop a software tool 54	
  

(stress.molmovdb.org) that enables users to perform this analysis on their own proteins of 55	
  

interest. Though fundamentally 3D-structural in nature, our analysis is computationally 56	
  

fast, thereby allowing us to run it across the PDB and to evaluate general properties of 57	
  

predicted allosteric residues. We find that these tend to be conserved over diverse 58	
  

evolutionary time scales. Finally, we highlight examples of allosteric residues that help 59	
  

explain poorly understood disease-associated variants. 60	
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INTRODUCTION 68	
  

The ability to sequence large numbers of human genomes is providing a much 69	
  

deeper view into protein evolution than previously possible. When trying to understand 70	
  

the evolutionary pressures on a given protein, structural biologists now have at their 71	
  

disposal an unprecedented breadth of data regarding patterns of conservation, both across 72	
  

species and amongst humans. As such, there are greater opportunities to take an 73	
  

integrated view of the context in which a protein and its residues function. This view 74	
  

necessarily includes structural constraints such as residue packing, protein-protein 75	
  

interactions, and stability. However, deep sequencing is unearthing a class of conserved 76	
  

residues on which no obvious structural constraints appear to be acting. The missing link 77	
  

in understanding these regions may be provided by studying the protein’s dynamic 78	
  

behavior through the lens of the distinct functional and conformational states within an 79	
  

ensemble. 80	
  

The underlying energetic landscape responsible for the relative distributions of 81	
  

alternative conformations is dynamic in nature: allosteric signals or other external 82	
  

changes may reconfigure and reshape the landscape, thereby shifting the relative 83	
  

populations of states within an ensemble (Tsai et al., 1999). Landscape theory thus 84	
  

provides the conceptual underpinnings necessary to describe how proteins change 85	
  

behavior and shape under changing conditions. A primary driving force behind the 86	
  

evolution of these landscapes is the need to efficiently regulate activity in response to 87	
  

changing cellular contexts, thereby making allostery and conformational change essential 88	
  

components of protein evolution. 89	
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Given the importance of allosteric regulation, as well as its role in imparting 90	
  

efficient functionality, several methods have been devised for the identification of likely 91	
  

allosteric residues. Conservation itself has been used, either in the context of conserved 92	
  

residues (Panjkovich and Daura, 2012), networks of co-evolving residues (Halabi et al., 93	
  

2009; Lee et al., 2008; Lockless et al., 1999; Reynolds et al., 2011; Shulman et al., 2004; 94	
  

Süel et al., 2003), or local conservation in structure (Panjkovich and Daura, 2010). In 95	
  

related studies, both conservation and geometric-based searches for allosteric sites have 96	
  

been successfully applied to several systems (Capra et al., 2009). 97	
  

The concept of ‘protein quakes’ has been introduced to explain local 98	
  

conformational changes that are essential for global conformation transitions of 99	
  

functional importance (Ansari et al., 1985; Miyashita et al., 2003). These local changes 100	
  

cause strain within the protein that is relieved by subsequent relaxations (which are also 101	
  

termed functionally important motions) that terminate when the protein reaches the 102	
  

second equilibrium state. Such local perturbations often end with large conformational 103	
  

changes at the focal points of allosteric regulation, and these motions may be identified in 104	
  

a number of ways, including modified normal modes analysis (Miyashita et al., 2003) or 105	
  

time-resolved X-ray scattering (Arnlund et al., 2014). 106	
  

In addition to conservation and geometry, protein dynamics have also been used 107	
  

to predict allosteric residues. Normal modes analysis has been used to examine the extent 108	
  

to which bound ligands interfere with low-frequency motions, thereby identifying 109	
  

potentially important residues at the surface (Ming and Wall, 2005; Mitternacht and 110	
  

Berezovsky, 2011; Panjkovich and Daura, 2012). Normal modes have also been used by 111	
  

the Bahar group to identify important subunits that act in a coherent manner for specific 112	
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proteins (Chennubhotla and Bahar, 2006; Yang and Bahar, 2005). Rodgers et al. have 113	
  

applied normal modes to identify key residues in CRP/FNR transcription factors 114	
  

(Rodgers et al., 2013).  115	
  

With the objective of identifying allosteric residues within the interior, molecular 116	
  

dynamics (MD) simulations and network analyses have been used to identify residues 117	
  

that may function as internal allosteric bottlenecks (Csermely et al., 2013; Gasper et al., 118	
  

2012; Rousseau and Schymkowitz, 2005; Sethi et al., 2009; Vanwart et al., 2012). Ghosh 119	
  

et al. (2008) have taken a novel approach of combining MD and network principles to 120	
  

characterize allosterically important communication between domains in methionyl 121	
  

tRNA synthetase. In conjunction with NMR, Rivalta et al. have use MD and network 122	
  

analysis to identify important regions in imidazole glycerol phosphate synthase (Rivalta 123	
  

et al., 2012). 124	
  

Though having provided valuable insights, many of these approaches have been 125	
  

limited in terms of scale (the numbers of proteins which may feasibly be investigated), 126	
  

computational demands, or the class of residues to which the method is tailored (surface 127	
  

or interior). Here, we use models of protein conformational change to identify both 128	
  

surface and interior residues that may act as essential allosteric hotspots in a 129	
  

computationally tractable manner, thereby enabling high-throughput analysis. This 130	
  

framework directly incorporates information regarding 3D protein structure and 131	
  

dynamics, and it can be applied on a PDB-wide scale to proteins that exhibit 132	
  

conformational change. Throughout the PDB (Berman et al., 2000), the residues 133	
  

identified tend to be conserved both across species and amongst humans, and they may 134	
  

help to elucidate many of the otherwise poorly understood regions in proteins. In a 135	
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similar vein, several of our identified sites correspond to human disease loci for which no 136	
  

clear mechanism for pathogenesis had previously been proposed. Finally, we make the 137	
  

software associated with this framework (termed STRESS, for STRucturally-identified 138	
  

ESSential residues) publically available through a tool to enable users to submit their 139	
  

own structures for analysis. 140	
  

 141	
  

RESULTS  142	
  

Identifying Potential Allosteric Residues 143	
  

Allosteric residues at the surface generally play a regulatory role that is 144	
  

fundamentally distinct from that of allosteric residues within the protein interior. While 145	
  

surface residues often constitute the sources or sinks of allosteric signals, interior residues 146	
  

act to transmit such signals. We use models of protein conformational change to identify 147	
  

both classes of residues (Figure 1). Throughout, we term these potential allosteric 148	
  

residues at the surface and interior “surface-critical” and “interior-critical” residues, 149	
  

respectively.  150	
  

In order to gauge the effectiveness of our approach, we identified and analyzed 151	
  

critical residues within a set of 12 well-studied canonical systems (see Figure S1, as well 152	
  

as Table S1 for rationale). We then apply this protocol on a large scale across hundreds of 153	
  

proteins for which crystal structures of alternative conformations are available. 154	
  

 155	
  

Identifying Surface-Critical Residues 156	
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Allosteric ligands often act by binding to surface cavities and modulating protein 157	
  

conformational dynamics. The surface-critical residues, some of which may act as latent 158	
  

ligand binding sites and active sites, are first identified by finding cavities using Monte 159	
  

Carlo simulations to probe the surface with a flexible ligand (Figure 1A, top-left). The 160	
  

degree to which cavity occlusion by the ligand disrupts large-scale conformational 161	
  

change is used to assign a score to each cavity – sites at which ligand occlusion strongly 162	
  

interferes with conformational change earn high scores (Figure 1A, top-right), whereas 163	
  

shallow pockets (Figure 1A, bottom-left) or sites at which large-scale motions are largely 164	
  

unaffected (Figure 1A, bottom-right) earn lower scores. Further details are provided in SI 165	
  

Methods section 3.1-a. 166	
  

This approach is a modified version of the binding leverage framework 167	
  

introduced by Mitternacht and Berezovsky (Mitternacht and Berezovsky, 2011). The 168	
  

main modifications implemented here include the use of heavy atoms in the protein 169	
  

during the Monte Carlo search, in addition to an automated means of thresholding the list 170	
  

of ranked scores. These modifications were implemented to provide a more selective set 171	
  

of sites; without them, a very large fraction of the protein surface would be occupied by 172	
  

critical sites (Figure S2C). Within our dataset of proteins exhibiting alternative 173	
  

conformations, we find that this modified approach results in an average of ~2 distinct 174	
  

sites per domain (Figure S2A; see Figure S2B for the distribution for distinct sites within 175	
  

entire complexes). 176	
  

Within the canonical set of 12 proteins, we positively identify an average of 56% 177	
  

of the sites known to be directly involved in ligand or substrate binding (see Table 1, 178	
  

Figure S1, and SI Methods section 3.1-a-iv). Some of the sites identified do not directly 179	
  



	
   8	
  

overlap with known binding regions, but we often find that these “false positives” 180	
  

nevertheless exhibit some degree of overlap with binding sites (Table S2). In addition, 181	
  

those surface-critical sites that do not match known binding sites may nevertheless 182	
  

correspond to latent allosteric regions: even if no known biological function is assigned 183	
  

to such regions, their occlusion may nevertheless disrupt hitherto unfound large-scale 184	
  

motions. 185	
  

 186	
  

Dynamical Network Analysis to Identify Interior-Critical Residues 187	
  

The binding leverage framework described above is intended to capture hotspot 188	
  

regions at the protein surface, but the Monte Carlo search employed is a priori excluded 189	
  

from the protein interior. Allosteric residues often act within the protein interior by 190	
  

functioning as essential information flow ‘bottlenecks’ within the communication 191	
  

pathways between distant regions. 192	
  

To identify such bottleneck residues, the protein is first modeled as a network, 193	
  

wherein residues represent nodes and edges represent contacts between residues (in much 194	
  

the same way that the protein is modeled as a network in constructing anisotropic 195	
  

network models, see below). In this regard, the problem of identifying interior-critical 196	
  

residues is reduced to a problem of identifying nodes that participate in network 197	
  

bottlenecks (see Figure 1B and SI Methods section 3.1-b for details). Briefly, the network 198	
  

edges are first weighted by the degree of strength in the correlated motions of contacting 199	
  

residues: a strong correlation in the motion between contacting residues implies that 200	
  

knowing how one residue moves better enables one to predict the motion of the other, 201	
  

thereby suggesting a strong information flow between the two residues. The weights are 202	
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used to assign ‘effective distances’ between connecting nodes, with strong correlations 203	
  

resulting in shorter effective node-node distances. 204	
  

Using the motion-weighted network, “communities” of nodes are identified using 205	
  

the Girvan-Newman formalism (Girvan et al., 2002). This formalism entails calculating 206	
  

the betweenness of each edge, where the betweenness of a given edge is defined as the 207	
  

number of shortest paths between all pairs of residues that pass through that edge (each 208	
  

path length is the sum of that path’s effective node-node distances assigned in the 209	
  

weighting scheme above). Each community identified is a group of nodes such that each 210	
  

node within the community is highly inter-connected, but loosely connected to other 211	
  

nodes outside the community. Communities are thus densely inter-connected regions 212	
  

within proteins. As tangible examples, the community partitions and the resultant critical 213	
  

residues for the canonical set are given in Figure 2. 214	
  

Those residues that are involved in the highest-betweenness edges between pairs 215	
  

of interacting communities are identified as the interior-critical residues. These residues 216	
  

are essential for information flow between communities, as their removal would result in 217	
  

substantially longer paths between the residues of one community to those of another. 218	
  

 219	
  

Software Tool: STRESS (STRucturally-identified ESSential residues) 220	
  

We have made the implementations for finding surface- and interior-critical 221	
  

residues available through a new software tool, STRESS, which may be accessed at 222	
  

stress.molmovdb.org (Figure 3A). Users may submit a PDB file or a PDB ID 223	
  

corresponding to a structure to be analyzed, and the output provided constitutes the set of 224	
  

identified critical residues. 225	
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Running times are minimized by using a scalable server architecture that runs on 226	
  

the Amazon cloud (Figure 3D). A light front-end server handles incoming user requests, 227	
  

and more powerful back-end servers, which perform the calculations, are automatically 228	
  

and dynamically scalable, thereby ensuring that they can handle varying levels of demand 229	
  

both efficiently and economically. In addition, the algorithmic implementation of our 230	
  

software is highly efficient, thereby obviating the need for long wait times. Relative to a 231	
  

naïve global Monte Carlo search implementation, local searches supported with hashing 232	
  

and additional algorithmic optimizations for computational efficiency reduce running 233	
  

times considerably (Figures 3B and 3C). A typical protein of ~500 residues takes only 234	
  

about 30 minutes on a 2.6GHz CPU. 235	
  

 236	
  

High-Throughput Identification of Alternative 237	
  

Conformations 238	
  

We use a generalized approach to systematically identify instances of alternative 239	
  

conformations throughout the PDB. We first perform multiple structure alignments 240	
  

(MSAs) across sequence-identical structures that are pre-filtered to ensure structural 241	
  

quality. We then use the resultant pairwise RMSD values to infer distinct conformational 242	
  

states (Figure S3; see also SI Methods section 3.2). 243	
  

The distributions of the resultant numbers of conformations for domains and 244	
  

chains are given in Figures S3D and S3E, respectively, and an overview is given in 245	
  

Figure S3F. We note that the alternative conformations identified arise in an extremely 246	
  

diverse set of biological contexts, including conformational transitions that accompany 247	
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ligand binding, protein-protein or protein-nucleic acid interactions, post-translational 248	
  

modifications, changes in oxidation or oligomerization states, etc. The dataset of 249	
  

alternative conformations identified is provided as a resource in File S1 (see also Figure 250	
  

S3G). 251	
  

 252	
  

Evaluating Conservation of Critical Residues 253	
  

Using Various Metrics and Sources of Data  254	
  

The large dataset of dynamic proteins culled throughout the PDB, coupled with 255	
  

the high algorithmic efficiency of our critical residue search implementation, provide a 256	
  

means of identifying and evaluating general properties of a large pool of critical residues. 257	
  

In particular, we use a variety of conservation metrics and data sources to measure the 258	
  

inter- and intra-species conservation of the residues within this pool. As discussed below, 259	
  

we find that both surface- (Figures 4A-D) and interior-critical residues (Figures 4E-H) 260	
  

are consistently more conserved than non-critical residues. We emphasize that the 261	
  

signatures of conservation identified not only provide a means of rationalizing many of 262	
  

the otherwise poorly understood regions of proteins, but they also reinforce the functional 263	
  

importance of the residues predicted to be allosteric. 264	
  

 265	
  

Conservation Across Species 266	
  

 When evaluating conservation across species, we find that both surface- and 267	
  

interior-critical residues tend to be significantly more conserved than non-critical residues 268	
  

with the same degree of burial (Figures 4B and 4F, respectively; note that negative 269	
  

conservation scores designate stronger conservation – see SI Methods section 3.3-a). 270	
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 271	
  

Leveraging Next-Generation Sequencing to Measure Conservation Amongst 272	
  

Humans 273	
  

In addition to measuring inter-species conservation, we have also used fully 274	
  

sequenced human genomes and exomes to investigate conservation among human 275	
  

populations, as many constraints may be species-specific and active in more recent 276	
  

evolutionary history. Commonly used metrics for quantifying intra-species conservation 277	
  

include minor allele frequency (MAF) and derived allele frequency (DAF). Low MAF or 278	
  

DAF values are interpreted as signatures of deleteriousness, as purifying selection is 279	
  

prone to reduce the frequencies of harmful variants (see SI Methods section 3.3-b). 280	
  

Non-synonymous single-nucleotide variants (SNVs) from the 1000 Genomes 281	
  

dataset (McVean et al., 2012) that intersect surface-critical residues tend to occur at 282	
  

lower DAF values than do SNVs that intersect non-critical residues (Figure 4C). Though 283	
  

this difference is not observed to be significant, the significance improves when 284	
  

examining the shift in DAF distributions, as evaluated with a KS test (p=	
  0.159, Figure 285	
  

S4A), and we point out only a limited number of proteins (thirty-two) for which these 286	
  

1000 Genomes SNVs intersect with surface-critical sites. Furthermore, the long tail 287	
  

extending to lower DAF values for surface-critical residues may suggest that only a 288	
  

subset of the residues in our prioritized binding sites is essential. In contrast to surface-289	
  

critical residues, however, interior-critical residues intersect 1000 Genomes SNVs with 290	
  

significantly lower DAF values than do non-critical residues (Figure 4G; see also Figure 291	
  

S4B). 292	
  

[[DC2MG(dec18): The paragraph added below was introduced after you 293	
  

suggested that we discuss the stats issue in the most recent annotated PDF. Another 294	
  



	
   13	
  

option might be to put this text in the Discussion instead of the Results, but I don’t feel 295	
  

too strongly either way]] When analyzing human polymorphism data, a variety of 296	
  

statistical measures relating SNVs to selective constraint may be calculated, and the 297	
  

results obtained (along with their associated significance levels) are highly dependent on 298	
  

sample size. 1000 Genomes datasets are attractive partially because of their status as a 299	
  

well-established “blue chip” set of variants in human populations. However, given the 300	
  

relatively limited number of proteins that intersect with 1000 Genomes SNVs, we also 301	
  

analyzed the larger dataset provided by the Exome Aggregation Consortium (ExAC) 302	
  

(Exome Aggregation Consortium, 2015). Though this dataset has been released much 303	
  

more recently (and is consequently not yet as well established as 1000 Genomes), ExAC 304	
  

provides sequence data from more than 60,000 individuals, and samples are sequenced at 305	
  

much higher coverage, thereby ensuring better data quality. This larger dataset enables us 306	
  

to more easily examine trends in the data as they relate to critical and non-critical 307	
  

residues. 308	
  

Using MAF as a conservation metric, we performed a similar analysis using this 309	
  

data. MAF distributions for surface- and non-critical residues in the same set of proteins 310	
  

are given in Figure 4D. Although the mean value of the MAF distribution for surface-311	
  

critical residues is slightly higher than that of non-critical residues, the median for 312	
  

surface-critical residues is substantially lower than that for non-critical residues, 313	
  

demonstrating that the majority of proteins are such that MAF values are lower in 314	
  

surface- than in non-critical residues. In addition, the overall shifts of these distributions 315	
  

also point to a trend of lower MAF values in surface-critical residues (Figure S5A, KS 316	
  

test p=9.49e-2). 317	
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Interior-critical residues exhibit significantly lower MAF values than do non-318	
  

critical residues in the same set of proteins. MAF distributions for interior- and non-319	
  

critical residues are given in Figure 4H (see also Figure S5B). 320	
  

 In addition to analyzing overall allele frequency distributions, we also evaluate 321	
  

the fraction of rare alleles as a metric for measuring selective pressure. This fraction is 322	
  

defined as the ratio of the number of rare (i.e., low-DAF or low-MAF) non-synonymous 323	
  

SNVs to the number of all non-synonymous SNVs in a given protein annotation (such as 324	
  

all surface-critical residues of the protein, for example; see SI Methods section 3.3-b). A 325	
  

higher fraction is interpreted as a proxy for greater conservation (Khurana et al., 2013; 326	
  

Sethi et al., 2015). Using variable DAF (MAF) cutoffs to define rarity for 1000 Genomes 327	
  

(ExAC) SNVs, both surface- and interior-critical residues are shown to harbor a higher 328	
  

fraction of rare alleles than do non-critical residues, further suggesting a greater degree of 329	
  

evolutionary constraint on critical residues (See Figure 5). 330	
  

 331	
  

Comparisons Between Different Models of Protein Motions 332	
  

The identification of surface- and interior-critical residues entails using sets of 333	
  

vectors (on each protein residue) to describe conformational change. Notably, our 334	
  

framework enables one to determine these vectors in multiple ways. Conformational 335	
  

changes may be modeled using vectors connecting residues in crystal structures from 336	
  

alternative conformations. We term this approach “ACT”, for “absolute conformational 337	
  

transitions” (see SI Methods section 3.2-c). The crystal structures of such paired 338	
  

conformations may be obtained using the framework discussed above. The protein 339	
  

motions may also be inferred from anisotropic network models (ANMs) (Atilgan et al., 340	
  

2001). ANMs entail modeling interacting residues as nodes linked by flexible springs, in 341	
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a manner similar to elastic network models (Fuglebakk et al., 2015; Tirion, 1996) or 342	
  

normal modes analysis (Figure 1B). ANMs are not only simple and straightforward to 343	
  

apply on a database scale, but unlike using alternative crystal structures, the motion 344	
  

vectors inferred may be generated using a single structure. 345	
  

We find that modeling conformational change using vectors from either ACTs or 346	
  

ANMs gives the same general trends in terms of the disparities in conservation between 347	
  

critical and non-critical residues. Our framework is thus general with respect to how the 348	
  

motion vectors are obtained (see Figure 6 and SI Methods section 3.2-c for further 349	
  

details). 350	
  

 351	
  

Critical Residues in the Context of Human Disease Variants 352	
  

Directly related to conservation is confidence with which an SNV is believed to 353	
  

be disease-associated. SIFT (Ng and Henikoff, 2001) and PolyPhen (Adzhubei et al., 354	
  

2010) are two tools for predicting SNV deleteriousness. ExAC SNVs that intersect 355	
  

critical residues exhibit significantly higher PolyPhen scores relative to non-critical 356	
  

residues, suggesting the potentially higher disease susceptibility at critical residues 357	
  

(Figure S6). Significant disparities were not observed in SIFT scores (Figure S7). 358	
  

Using HGMD (Stenson et al., 2014) and ClinVar (Landrum et al., 2014), we 359	
  

identify proteins with critical residues that coincide with disease-associated SNVs (Figure 360	
  

7A and File S2). Several critical residues coincide with known disease loci for which the 361	
  

mechanism of pathogenicity is otherwise unclear (File S3). The fibroblast growth factor 362	
  

receptor (FGFR) is a case-in-point (Figure 7). SNVs in FGFR have been linked to 363	
  

craniofacial defects. Dotted lines in Figure 7B highlight poorly understood disease SNVs 364	
  

that coincide with critical residues. In addition, we identify Y328 as a surface-critical 365	
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residue, which coincides with a disease-associated SNV from HGMD, despite the lack of 366	
  

confident predictions of deleteriousness by several widely used tools for predicting 367	
  

disease-associated SNVs, including PolyPhen (Adzhubei et al., 2010), SIFT (Ng and 368	
  

Henikoff, 2001), and SNPs&GO (Calabrese et al., 2009). Together, these results suggest 369	
  

that the incorporation of surface- and interior-critical residues introduces a valuable layer 370	
  

of annotation to the protein sequence, and may help to explain otherwise poorly 371	
  

understood disease-associated SNVs.  372	
  

 373	
  

DISCUSSION & CONCLUSIONS 374	
  

The same principles of energy landscape theory that dictate protein folding are 375	
  

integral to how proteins explore different conformations once they adopt their fully 376	
  

folded states. These landscapes are shaped not only by the protein sequence itself, but 377	
  

also by extrinsic conditions. Such external factors often regulate protein activity by 378	
  

introducing allosteric-induced changes, which ultimately reflect changes in the shapes 379	
  

and population distributions of the energetic landscape. In this regard, allostery provides 380	
  

an ideal platform from which to study protein behavior in the context of their energetic 381	
  

landscapes. To investigate allosteric regulation, and to simultaneously add an extra layer 382	
  

of annotation to conservation patterns, an integrated framework to identify potential 383	
  

allosteric residues is essential. We introduce a framework to select such residues, using 384	
  

knowledge of conformational change. 385	
  

When applied to many proteins with distinct conformational changes in the PDB, 386	
  

we investigate the conservation of potential allosteric residues in both inter-species and 387	
  

intra-human genomes contexts, and find that these residues tend to exhibit greater 388	
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conservation in both cases. In addition, we identify several disease-associated variants for 389	
  

which plausible mechanisms had been unknown, but for which allosteric mechanisms 390	
  

provide a reasonable rationale. 391	
  

Unlike the characterization of many other structural features, such as secondary 392	
  

structure assignment, residue burial, protein-protein interaction interfaces, disorder, and 393	
  

even stability, allostery inherently manifests through dynamic behavior. It is only by 394	
  

considering protein motions and changes in these motions can a fuller understanding of 395	
  

allosteric regulation be realized. As such, MD and NMR are some of the most common 396	
  

means of studying allostery and dynamic behavior (Kornev and Taylor, 2015). However, 397	
  

these methods have limitations when studying large and diverse protein datasets. MD is 398	
  

computationally expensive and impractical when studying large numbers of proteins. 399	
  

NMR structure determination is extremely labor-intensive and better suited to certain 400	
  

classes of structures or dynamics. In addition, NMR structures constitute a relatively 401	
  

small fraction of structures currently available. 402	
  

Despite these limitations in MD and NMR, allosteric mechanisms and signaling 403	
  

pathways may be conserved across many different but related proteins within the same 404	
  

family, suggesting that such computationally- or labor-intensive approaches for all 405	
  

proteins may not be entirely essential. Flock et al. have carefully demonstrated that the 406	
  

allosteric mechanisms responsible for regulating G proteins through GPCRs tend to be 407	
  

conserved (Flock et al., 2015). Investigations into representative families have also been 408	
  

enlightening in other contexts. In one of the early studies employing network analysis, 409	
  

del Sol et al. conduct a detailed study of several allosteric protein families (including 410	
  

GPCRs) to demonstrate that residues important for maintaining the integrity of short 411	
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paths within residue contact networks are essential to enabling signal transmission 412	
  

between distant sites (del Sol et al., 2006). Another notable result in the same work is that 413	
  

these key residues (which match experimental results) may become redistributed when 414	
  

the protein undergoes conformational change, thereby changing optimal communication 415	
  

routes as a means of conferring different regulatory properties. 416	
  

There are several notable implications of our dynamics-based analysis across a 417	
  

database of proteins. Relative to sequence data, allostery and dynamic behavior are far 418	
  

more difficult to evaluate on a large scale. The framework described here enables one to 419	
  

evaluate dynamic behavior in a systemized and efficient way across many proteins, while 420	
  

simultaneously capturing residues on both the surface and within the interior. That this 421	
  

pipeline can be applied in a high-throughput manner enables the investigation of system-422	
  

wide phenomena, such as the roles of potential allosteric hotspots in protein-protein 423	
  

interaction networks.  424	
  

It is only by analyzing a large dataset of proteins can one investigate general 425	
  

trends in predicted allosteric residues. In addition, the implementation detailed here 426	
  

enables one to match structural features with the high-throughput data generated through 427	
  

deep sequencing initiatives, which are providing an unprecedented window into 428	
  

conservation patterns, many of which may be human-specific. 429	
  

We anticipate that, within the next decade, deep sequencing will enable structural 430	
  

biologists to study evolutionary conservation using sequenced human exomes just as 431	
  

routinely as cross-species alignments. Furthermore, intra-species metrics for conservation 432	
  

provide added value in that the confounding factors of cross-species comparisons are 433	
  

removed: different species evolve in various evolutionary contexts and at different rates, 434	
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and it can be difficult to decouple these different effects from one another. Cross-species 435	
  

metrics of protein conservation entail comparisons between proteins that may be very 436	
  

different in structure and function. Sequence-variable regions across species may not be 437	
  

conserved, but nevertheless impart essential functionality. Intra-species comparisons, 438	
  

however, can often provide a more direct and sensitive evaluation of constraint.  439	
  

In particular, selective constraints within human populations are particularly 440	
  

relevant to understanding human disease. Formalisms for analyzing large structural and 441	
  

sequence datasets will become increasingly important in the context of human health. We 442	
  

anticipate that the framework and formalisms detailed here, along with the accompanying 443	
  

web tool we have introduced, will help to further motivate future studies along these 444	
  

directions. 445	
  

 446	
  

METHODS 447	
  

An overview of the framework for finding surface- and interior-critical residues is 448	
  

given in Figure 1. Figure S3 provides a schematic of our pipeline for identifying 449	
  

alternative conformations throughout the PDB. Cross-species conservation scores were 450	
  

analyzed in those PDBs for which full ConSurf files are available through the ConSurf 451	
  

server. 1000 Genomes SNVs were taken from the Phase 3 release, and ExAC SNVs were 452	
  

downloaded in May 2015. Further details on all protocols are provided in SI Methods. 453	
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 585	
  

 586	
  

CAPTIONS 587	
  

Figure 1.  Schematic overviews of methods for finding surface- and interior-critical 588	
  

residues. (A) A simulated ligand probes the protein surface in a series of Monte Carlo 589	
  

simulations (top-left). The cavities identified may be such that occlusion by the ligand 590	
  

strongly interferes with conformational change (top-right; such a site is likely to be 591	
  

identified as surface-critical, in red), or they may have little effect on conformational 592	
  

change, as in the case of shallow pockets (bottom-left) or pockets in which large-scale 593	
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motions do not drastically affect pocket volume (bottom-right). (B) Interior-critical 594	
  

residues are identified by weighting residue-residue contacts (edges) on the basis of 595	
  

correlated motions, and then identifying communities within the weighted network. 596	
  

Residues involved in the highest-betweenness interactions between communities (in red) 597	
  

are selected as interior-critical residues. 598	
  

 599	
  

Figure 2.  Community partitioning for canonical systems. Different network 600	
  

communities are colored differently, and communities were identified using the 601	
  

dynamical network-based analysis with the GN formalism discussed in the main text and 602	
  

in SI Methods section 3.1-b. Residues shown as spheres are interior-critical residues, and 603	
  

they are colored based on community membership, and black lines connecting pairs of 604	
  

critical residues represent the highest-betweenness edges between the corresponding 605	
  

communities. 606	
  

 607	
  

Figure 3.  STRESS web server front page, running times, and server architecture. 608	
  

(A) The server enables users to either provide PDB IDs or to upload their own PDB files 609	
  

for proteins of interest. Users may opt to identify surface-critical residues, interior-critical 610	
  

residues, or both. (B) Running times are shown for systems of various sizes. Shown in 611	
  

red are the running times without optimizing for speed, and green shows running times 612	
  

with algorithmic optimization. (C) The same data is represented as a log-log plot. The 613	
  

slopes of these two approaches demonstrate that our algorithm reduces the computational 614	
  

complexity by an order of magnitude. Our speed-optimized algorithm scales at O(n1.3), 615	
  

where n is the number of residues. (D) A thin front-end server handles incoming user 616	
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requests, and more powerful back-end servers perform the heavier algorithmic 617	
  

calculations. The back-end servers are dynamically scalable, making them capable of 618	
  

handling wide fluctuations in user demand. Amazon’s Simple Queue Service is used to 619	
  

coordinate between user requests at the front end and the back-end compute nodes: when 620	
  

the front-end server receives a request, it adds the job to the queue, and back-end servers 621	
  

pull that job from the queue when ready. Source code is available through Github 622	
  

(github.com/gersteinlab/STRESS). 623	
  

 624	
  

Figure 4.  Multiple metrics and datasets reveal that critical residues tend to be 625	
  

conserved. Surface- and interior-critical residues (red) in phosphofructokinase (PDB 626	
  

3PFK) are given in (A) and (E), respectively. Distributions of cross-species conservation 627	
  

scores, 1000 Genomes SNV DAF averages, and ExAC SNV MAF averages for surface- 628	
  

and non-critical residue sets are given in (B), (C), and (D), respectively. The same 629	
  

distributions corresponding to interior- and non-critical residue sets are given in (F), (G), 630	
  

and (H), respectively. In (B), mean inter-species conservation scores for surface-critical 631	
  

sets are -0.131, whereas non-critical residue sets with the same degree of burial have a 632	
  

mean score of +0.059 (p < 2.2e-16). In (F), mean inter-species conservation scores for 633	
  

interior-critical sets are -0.179, whereas non-critical residue sets with the same degree of 634	
  

burial have a mean score of -0.102 (p=3.67e-11). In (C), means for surface- and non-635	
  

critical sets are 9.10e-4 and 8.34e-4, respectively (p=0.309); corresponding means in (D) 636	
  

are 4.09e-04 and 2.26e-04, respectively (p=1.49e-3). In (G), means for interior- and non-637	
  

critical sets are 2.82e-4 and 3.12e-3, respectively (p=1.80e-05); corresponding means in 638	
  

(H) are 3.08e-05 and 3.27e-04, respectively (p=7.98e-09). N = 421, 32, 84, 517, 31, and 639	
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90 structures for panels B, C, D, F, G, and H, respectively. P-values are based on 640	
  

Wilcoxon-rank sum tests. See SI Methods for further details. 641	
  

 642	
  

Figure 5.  Critical residues are shown to be more conserved, as measured by the 643	
  

fraction of rare alleles. Protein regions with high fractions of rare variants are believed 644	
  

to be more sensitive to sequence variants than other regions, thereby explaining why such 645	
  

variants occur infrequently in the population. Panels (A) and (C) show distributions for 646	
  

rare (low DAF) non-synonymous SNVs (taken from the 1000 Genomes dataset) in which 647	
  

the critical residues are defined to be the surface-critical (A) and interior-critical (C) 648	
  

residues. Panels (B) and (D) show distributions for rare (low MAF) non-synonymous 649	
  

SNVs (taken from the ExAC dataset) in which the critical residues are defined to be the 650	
  

surface-critical (B) and interior-critical (D) residues. For varying thresholds to define 651	
  

rarity, there are more structures in which the fraction of rare variants is higher in critical 652	
  

residues than in non-critical residues. Cases in which the fraction is equal in both 653	
  

categories are not shown. We consider all structures such that at least one critical and at 654	
  

least one non-critical residue intersect a non-synonymous SNV. Panels (A), (B), (C), and 655	
  

(D) represent data from 31, 90, 32, and 84 structures, respectively. 656	
  

 657	
  

Figure 6.  Modeling protein conformational change through a direct use of crystal 658	
  

structures from alternative conformations using absolute conformational transitions 659	
  

(ACT). (A) Distributions (155 structures) of the mean conservation scores on surface-660	
  

critical (red) and non-critical residues with the same degree of burial (blue). (B) 661	
  

Distributions (159 structures) of the mean conservation scores for interior-critical (red) 662	
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and non-critical residues with the same degree of burial (blue). Mean values are given in 663	
  

parentheses. Results for single-chain proteins are shown, and p-values were calculated 664	
  

using a Wilcoxon rank sum test. 665	
  

 666	
  

Figure 7.  Potential allosteric residues add a layer of annotation to structures in the 667	
  

context of disease-associated SNVs. The structure shown (A) is that of the fibroblast 668	
  

growth-factor receptor (FGFR) in VMD Surf rendering, with HGMD SNVs shown in 669	
  

orange, bound to FGF2, in ribbon rendering (PDB 1IIL). (B) A linear representation of 670	
  

structural annotation for FGFR. Dotted lines highlight loci which correspond to HGMD 671	
  

sites that coincide with critical residues, but for which other annotations fail to coincide. 672	
  

Deeply-buried residues are defined to be those that exhibit a relative solvent-exposed 673	
  

surface area of 5% or less, and binding site residues are defined as those for which at 674	
  

least one heavy atom falls within 4.5 Angstroms of any heavy atom in the binding partner 675	
  

(heparin-binding growth factor 2). The loci of PTM sites were taken from UniProt 676	
  

(accession P21802). 677	
  

 678	
  

Table 1.  Statistics on the surfaces of apo structures within the canonical set of 679	
  

proteins 680	
  

For each apo structure within the canonical set of proteins, statistics relating surface-681	
  

critical sites to known ligand-binding sites are reported. The surface of a given structure 682	
  

is defined to be the set of all residues that have a relative solvent accessibility of at least 683	
  

50%, where relative solvent accessibility is evaluated using all heavy atoms in both the 684	
  

main-chain and side-chain of a given residue. Mean values are given in the bottom row. 685	
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NACCESS is used to calculate relative solvent accessibility (Hubbard and Thornton, 686	
  

1993) . Column 1: PDB IDs for each structure; Column 2: among these surface residues, 687	
  

the fraction that constitute surface-critical residues; Column 3: among surface residues, 688	
  

the fraction that constitute known ligand-binding residues (known ligand-binding 689	
  

residues are taken to be those within 4.5 Angstroms of the ligand in the holo structure; 690	
  

Table S1); Column 4: the Jaccard similarity between the sets of residues represented in 691	
  

columns 2 and 3 (i.e., surface-critical and known-ligand binding residues), where values 692	
  

given in parentheses represent the expected Jaccard similarity, given a null model in 693	
  

which surface-critical and ligand-binding residues are randomly distributed throughout 694	
  

the surface (for each structure, 10,000 simulations are performed to produce random 695	
  

distributions, and the expected values reported here constitute the mean Jaccard similarity 696	
  

among the 10,000 simulations for each structure); Column 5: the number of distinct 697	
  

surface-critical sites identified in each structure; Column 6: the number of known ligand-698	
  

binding sites in each structure; Column 7: the number of known ligand-binding sites 699	
  

which are positively identified within the set of surface-critical sites, where a positive 700	
  

match occurs if a majority of the residues in a surface-critical site coincide with the 701	
  

known ligand-binding site; Column 8: The fraction of ligand-binding sites captured is 702	
  

simply the ratio of the values in column 7 to those in column 6. 703	
  

 704	
  


