
RESPONSE LETTER 
 

Reviewer #1 
-- Ref 1.0 – Emphasis on Deep Sequencing -- 

Reviewer 
Comment 

This manuscript presents what seems to be a useful method. 
Even though the authors highlight deep sequencing, in 
practice it is a 3-D method. To predict 
allostery/allosteric residues one needs structures … I 
would also suggest to the authors to reconsider their 
title. Even though I understand their wish is to highlight 
"deep sequencing", some readers may find this title 
confusing, since eventually the authors use structures. 

Author 
Response 

We would first like to thank the reviewer for taking to time to carefully 
read through our study, and we also thank the reviewer for valuable 
suggestions on how we may improve this work. 
 
We agree that the method is fundamentally 3-D structural in nature, and 
we feel that that the vast majority of readers would have the same 
reaction as the reviewer. Thus, we have decided to change our title 
accordingly. The revised title is “Predicting Allosteric Hotspots Using 
Dynamics-Based Formalisms with Sequence Analyses Across Diverse 
Evolutionary Timescales” 

 

-- Ref 1.1 – General Comments Regarding Novelty and Value -- 
Reviewer 
Comment 

The approach itself is not novel. It is a modified version 
of an earlier one (by Berezovsky et al), with the 
modifications appearing to efficiently filter and trim the 
output. Modeling the protein as a network, with residues 
representing nodes and edges representing contacts between 
residues is not new either, and neither is the analysis of 
residue conservation in the networks. The finding that 
allosteric residues are significantly conserved over both 
long and short evolutionary time scales is also not new 
and indeed expected, as is the observation that not all 
conserved residues can be explained by protein-protein 
interactions or in close-packed hydrophobic core. 
 
Despite this lack of conceptual novelty, the usefulness of 
the paper whose main thrust is the efficient streamlined 
method, its broad application and its availability can 
merit its publication. Allostery and allosteric residues 
and their identification is gaining increasing interest in 
the community. Having the atlas that they produced along 
with an efficient accessible method is important. 

Author 
Response 

We thank the reviewer for these comments. It is true that the allosteric 
prediction methods themselves are not fundamentally novel. It is our 
expectation, however, that our streamlined pipeline and publically 
available server and source code will facilitate the identification of 
allosteric residues throughout the protein surface and interior. In 
addition, we anticipate that the atlas provided may further motivate 



other studies into allosteric residues on a database scale. 
 
In addition, we have now done more to highlight our server/tool by 
including its associated images within the main text (now Fig. 3 in the 
main text). 

 
-- Ref 1.2 – Citing Early Work on Network Analysis -- 

Reviewer 
Comment 

I have only a couple of minor comments. With regard to 
conserved residues, networks, information and 
communication, it would be appropriate to cite an early 
paper in this direction, Mol Syst Biol. 2006;2:2006.0019. 
Residues crucial for maintaining short paths in network 
communication mediate signaling in proteins.(PMID: 
16738564). 
Additionally, though a different implementation, still the 
papers by S. Vishveshwara (e.g. Biochemistry. 2008 Nov 
4;47(44):11398-407. doi: 10.1021/bi8007559) also deserve 
citing. 

Author 
Response 

We thank the reviewer for bringing these studies to our attention, and 
we now introduce these works within the main text. Specifically, we 
mention the study by Ghosh et al. as part of our introduction to 
previously developed methods, and we discuss some of the key 
findings of interest by del Sol et al. within the discussion. 

Excerpt From 
Revised Manuscript 

… Ghosh et al. have taken a novel approach of combining MD and network 
principles to characterize allosterically important inter-domain communication 
in methionyl tRNA synthetase (Ghosh et al., 2008). 
 
…Investigations into representative families have also been enlightening in 
other contexts. In one of the early studies employing network analysis, del Sol 
et al. conduct a detailed study of several allosteric protein families (including 
GPCRs) to demonstrate that residues important for maintaining the integrity of 
short paths within residue contact networks are essential to enabling signal 
transmission between distant sites (del Sol et al, 2006). Notably, many of the 
key sites identified correspond to residues that had been experimentally 
determined to be important for allostery. Another notable result in the same 
work is that these key residues may become redistributed when the protein 
undergoes conformational change, thereby changing optimal communication 
routes in different conformations as a means of conferring different regulatory 
properties. 

 
 
 
 
 
 
 



Reviewer #2 
-- Ref 2.0 – General Overview -- 

Reviewer 
Comment 

This paper presents the reimplementation of two methods 
for detecting allosteric sites, a server/program for 
applying the method, the application of the methods to a 
number of proteins, and an evaluation of the conservation 
of the identified residues. There are a number of issues 
with the manuscript which I would like to see addressed. 

Author 
Response 

Firstly, we thank the reviewer for taking to time to carefully read through 
our study, as well as for valuable feedback on how this work may be 
improved. Below, we respond to the various issues raised. Before we 
address each of these points individually, however, we note that many 
of the items raised involve ambiguities or the need for clarification in 
certain sections. We strongly agree with the reviewer in the areas 
referenced, and upon examining our work further, we feel that there are 
also other areas (especially within the Supplement) that might benefit 
from clearer organization and greater detail. Thus, we have tried to 
make it easier for readers to use the Supplementary material by: 

• providing more details regarding some of the methods and their 
implementation 

• providing more contextual language and perspective around the 
methods employed 

• providing numbered sub-headings (as well as a more local sub-
headings scheme) within the various sections, thereby making it 
easier to find information and reference other parts of the 
Supplement; the overall layout is given in the first page of the 
Supporting Information 

• removing potentially extraneous figures (specifically the original 
Figures S4, S10, S20, S21, S2) that may otherwise distract 
readers from essential information 

• clarifying language in some areas by tightening the prose in an 
effort to prevent the Supplement from becoming needlessly 
verbose 

 
-- Ref 2.1 – Selection of 12 Canonical Systems -- 

Reviewer 
Comment 

How were the 12 'canonical' systems chosen? A quick check 
of a couple of them indicated to me that the functional 
role of the ligands in allostery has been established. If 
this is the case for all of them, I think it would be of 
benefit to the reader to indicate this. 

Author 
Response 

Given the importance of the canonical set in our study, we thank the 
reviewer bringing this ambiguity to our attention. We have clarified the 
motivating factors behind our choice of a canonical system, and this 
clarification is now provided in the caption of Table S1, where we fully 
list the proteins and their ligands (a pointer to this rationale is also given 
in the main text). 

Excerpt From 
Revised Manuscript 

Table S1: Set of 12 canonical proteins, organized by state (apo or holo) 
These 12 proteins were chosen to constitute the canonical set for several 



reasons: the allosteric mechanisms of their natural ligands are well understood, 
and both the holo and apo states for each system are available and clearly 
distinguishable; in addition, these proteins have been extensively investigated 
in the contexts of both binding leverage and allostery in general. 

 
-- Ref 2.2-1 – Parameterization Values -- 

Reviewer 
Comment 

In the supplementary methods for the MC search, although 
an attractive potential in the -0.05 to -0.75 range is 
sampled, it is unclear what the repulsive and strongly 
repulsive energies were. The same as the Mitternacht and 
Berezovsky values (3 and 10)? These are not stated, but 
would have a significant effect on the sampling. 

Author 
Response 

We thank the reviewer for bringing it to our attention that these details 
were missing, as the parameters and the means of optimizing them are 
essential to how surface-critical residues are identified. We have now 
clarified these items in Supplementary Methods section 3.1-a-i. 

Excerpt From 
Revised Manuscript 

…the optimized set of parameters were as follows (here, Dlig-prot designates the 
distance, in Angstroms, between a ligand atom and a protein atom): 

 ∞   >  Dlig-prot  ≥  4.5: Energy = 0 
4.5  >  Dlig-prot  ≥  3.5: Energy = - 0.35 (attractive) 
3.5  >  Dlig-prot  ≥  3.0: Energy = +10 (repulsive) 
3.0  >  Dlig-prot  ≥  0.0: Energy = +10000 (strongly repulsive) 

 
-- Ref 2.2-2 – Parameters being optimized -- 

Reviewer 
Comment 

I am also a little confused as to what else is being 
optimized in the MC scheme. As far as I can tell it is 
just one parameter, the depth of the well, but the text 
refers to an "optimal set of parameters" and a 
"combination of parameters" which best identifies known 
ligand binding sites. 

Author 
Response 

We thank the reviewer for pointing out that this was not clear. Again, 
this is an essential aspect in our search for surface-critical residues. We 
have now clarified these items in what is now Supplementary Section 
3.1-a-i. 

Excerpt From 
Revised Manuscript 

Specifically, the parameters to be optimized include (1) the ranges of favorable and 
unfavorable interactions (i.e., potential function widths) and (2) the attractive and 
repulsive energies themselves (i.e., potential function depths and heights). In addition, 
we also determined that setting the number of MC steps to 10,000 times the size of the 
simulation box (see above) provided the best convergence across multiple simulations 
on the same protein – that is, this number of steps better enabled us to recapture the 
same set of sites when running the simulations multiple times. 

 

-- Ref 2.3-1 – List of Sites from MC -- 
Reviewer 
Comment 

There appear to be a couple of important steps missing 
from the supplementary methods. For instance, how is the 
MC ensemble turned into a list of sites? 

Author 
Response 

We thank the reviewer for bringing this to our attention as well. This 
information is now provided in 3.1-a. 

Excerpt From After all candidate sites are identified, pairs of sites with extremely high overlap are 



Revised Manuscript merged by combining any pair of sites that have a Jaccard similarity of at least 0.7. 
After merging sites in this way, the residues of a given site are listed by their local 
closeness, and no more than 10 residues for a site are used. Local closeness is a 
geometric metric that provides a measure of the degree of a residue in the residue-
residue contact network; see (Mitternacht and Berezovsky (2011) for further 
discussion. This entire process results in a list of sites on which binding leverage 
calculations can be performed. 

 

-- Ref 2.3-2 – Calculating Binding Leverage Scores -- 
Reviewer 
Comment 

How are the leverage scores for these sites calculated? 

Author 
Response 

We thank the reviewer for emphasizing the importance of providing this 
information. Although our previous Supplement points readers to the 
work of Mitternacht and Berezovsky for the full formulas, these formulas 
should indeed be provided explicitly in the Supplement, especially given 
the fact that this will facilitate those reading our study. This information 
is now provided in 3.1-a-ii. 

Excerpt From 
Revised Manuscript 

Specifically, the binding leverage score for a given site is calculated as 
 

 
 
Where the outer sum is taken over the 10 modes, and the pair of inner sums are taken 
over all pairs of residues (i,j) such that the line connecting the pair lies within 3.0 
Angstroms of any atom within the simulated ligand. The value ∆dij(m) for each residue 
pair (i,j) represents the change in the distance between residues i and j when this 
distance is calculated using mode m. Thus, one may think of binding leverage as 
qualitatively measuring the extent to which a surface pocket is deformed when the 
protein undergoes conformational transitions … when using ACT vectors, the binding 
leverage score for a given site is simply calculated as: 
 

 
 
where the sum is taken over all pairs of residues (i,j) such that the line connecting the 
pair lies within 3.0 Angstroms of any atom within the simulated ligand, and the value 
∆dij for each residue pair (i,j) represents the change in the distance between residues i 
and j when this distance is calculated in alternative crystal structure. Thus, for each 
residue, the 10 vectors provided by the normal modes are simply replaced by the single 
ACT vector that defines the change in position of that residue when going from the 
protein conformation given by one representative structure to the conformation given 
by the other representative. 

 

-- Ref 2.4 – Table with Statistics on Surface Residues -- 
Reviewer 
Comment 

It is difficult to gauge the strength of the predictions 
in Table S2. For instance, for 2hnp, 67% of the residues 
are predicted as surface-critical, but over 20% of the 
residues are buried. Although this is the extreme case, it 
seems odd to include the interior residues when 
calculating the fraction of predicted residues and the 
fraction of ligand-binding residues, when these residues 
are a priori excluded from both lists. I think it would be 
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more meaningful to report the fraction of surface residues 
predicted within critical sites, the fraction that are 
known ligand-binding residues, and the overlap between 
these two sets, as well as the number of critical sites 
identified, number of binding sites and the number of 
strongly overlapping sites. This would make table 3 
redundant, put all the relevant information in the same 
place, and greatly aid interpretation. 

Author 
Response 

We thank to reviewer for raising these important points. We agree that 
only the surface residues should be included in these calculations, our 
presentation of this information can be clarified by keeping all of the 
information within one table, and more statistics would aid in 
interpretation. Along these lines, we have done the following: 

• Our analysis has been revised to consider the surface residues 
specifically (specifically, we define surface residues by using 
NACCESS [[cite]] to select those residues with a relative solvent 
accessibility exceeding 50%). 

• These two tables have been merged and expanded, and 
additional data (such as the number of known ligand-binding 
sites) is now included. 

• We have also decided to move this merged Table from the 
Supplement into the main text of the manuscript. 

Excerpt From 
Revised Manuscript 

 
Table 1: Statistics on the surfaces of apo structures within the canonical set of 
proteins 
For each apo structure within the canonical set of proteins, statistics relating surface-
critical sites to known ligand-binding sites are reported. The surface of a given 
structure is defined to be the set of all residues that have a relative solvent accessibility 
of at least 50%, where relative solvent accessibility is evaluated using all heavy atoms 
in both the main-chain and side-chain of a given residue. Mean values are given in the 
bottom row. Column 1: PDB IDs for each structure; Column 2: among these surface 
residues, the fraction that constitute surface-critical residues; Column 3: among surface 
residues, the fraction that constitute known ligand-binding residues (known ligand-
binding residues are taken to be those within 4.5 Angstroms of the ligand in the holo 
structure; Table S1); Column 4: the Jaccard similarity between the sets of residues 
represented in columns 2 and 3 (i.e., surface-critical and known-ligand binding 
residues), where values given in parentheses represent the expected Jaccard similarity, 
given a null model in which surface-critical and ligand-binding residues are randomly 
distributed throughout the surface (for each structure, 10,000 simulations are 
performed to produce random distributions, and the expected values reported here 
constitute the mean Jaccard similarity among the 10,000 simulations for each 
structure); Column 5: the number of distinct surface-critical sites identified in each 
structure; Column 6: the number of known ligand-binding sites in each structure; 

PDB$ID
Fract.$of$surface$

covered$by$
critical$residues

Fract.$of$surface$
covered$by$known$
ligand;binding$

residues

Jaccard$overlap$btwn$
[critical$reidues$on$surface]

$&$[known$lig;binding$
residues$on$surface]$

#$of$distinct$
surface;critical$

sites

#$of$known$
ligand;

binding$sites

#$of$strongly$
overlapping$sites$(i.e.,$

captured$known$lig;binding$
sites)

Fract.$of$
known$ligand;
binding$sites$
captured

3pfk 0.51 0.204 0.255+(0.155) 19 3 3 1
4ake 0.454 0.178 0.274+(0.154) 29 2 2 1
1cd5 0.589 0.1 0.153+(0.096) 24 2 1 0.5
1j3h 0.066 0.08 0.25+(0.041) 2 1 1 1
1bks 0.343 0.097 0.079+(0.079) 24 4 1 0.25
1e5x 0.207 0.093 0.139+(0.077) 17 3 2 0.667
1efk 0.055 0.086 0.03+(0.036) 10 10 0 0
1nr7 0.149 0.175 0.187+(0.102) 45 24 6 0.25
1xtt 0.298 0.196 0.295+(0.154) 31 5 5 1
2hnp 0.739 0.133 0.16+(0.134) 25 2 2 1
3d7s 0.267 0.137 0.054+(0.064) 26 9 0 0
3ju5 0.016 0.039 0+(0.013) 1 2 0 0
mean 0.308 0.127 0.156+(0.092) 21.083 5.583 1.917 0.556



Column 7: the number of known ligand-binding sites which are positively identified 
within the set of surface-critical sites, where a positive match occurs if a majority of 
the residues in a surface-critical site coincide with the known ligand-binding site; 
Column 8: The fraction of ligand-binding sites captured is simply the ratio of the 
values in column 7 to those in column 6. 

 

-- Ref 2.5 – GN vs. Infomap for Network Analysis -- 
Reviewer 
Comment 

"... the mean fraction of GN-identified interior-critical 
residues that match Infomap-identified residues is 0.30 
(the expected mean, based on a uniformly-random 
distribution of critical residues throughout the protein, 
is 0.21, p-value=0.058), further justifying our decision 
to focus on GN)" - I am unclear how this adds to the 
justification for choosing GN over Infomap. 

Author 
Response 

We thank to reviewer for highlighting this item. As previously written, 
our argument was not only unclear, but upon closer inspection, it had 
an arbitrary nature: originally, the rationale was that there is a measure 
of agreement between the residues identified by GN and Infomap, and 
that one may therefore opt to choose one method or the other (in that 
regard, the choice of GN over Infomap may be interpreted as arbitrary). 
However, the more important issue is actually the fact that GN is far 
more selective than Infomap in identifying important network elements 
(i.e., interior-critical residues), as evidenced by the data presented in 
Table S3 (previously Table S4). Furthermore, not only does GN provide 
a more selective set of residues, but the network modularity given by 
GN is somewhat better than that provided by Infomap, which is also 
given in Table S3. 

 

-- Ref 2.6-1 – Overemphasis on structural clustering scheme -- 
Reviewer 
Comment 

The paper appears unbalanced. An unusually large effort is 
dedicated to explaining, illustrating and analysing the 
structural clustering scheme, including a section in the 
main text, figure 2C-E, supplementary figures S8, S9, S10, 
S21, S22, S23, and over three pages of supplementary 
methods… 

Author 
Response 

We thank the reviewer for this observation, and we agree that we had 
devoted a large amount of our discussion to what is more of a 
preliminary protocol. Accordingly, we have tried to trim some of the 
relevant content. Specifically, we have: 

• moved Fig. 2C-E out of the main text and into the SI (now Fig. 
S3) 

• merged what was previously SI Figs. S8, S9, and S12 (along 
with what was previously Fig. 2C-E) into one SI item (now as 
Fig. S3) 

• condensed the relevant text in the Supplement (now SI Methods 
sections 3.2-a and 3.2-b) from 3 pages to less than 2; and 

• completely removed Figs S10, S21, S22, and S23, which we 
consider to be somewhat extraneous (as noted before). 

 



We note, however, that because the structural clustering scheme is not 
a previously established method, considerable care had to be devoted 
to ensuring that it was working as intended. Our discussion regarding 
the clustering scheme and its importance in this study might be clarified 
in our response to Comment 2-6.2 below.  

 

-- Ref 2.6-2 – Clarifications Regarding ANMs & ACT Vectors -- 
Reviewer 
Comment 

…The purpose of all this [structural clustering scheme], 
it seems, is to apply the interior and surface critical 
methods using these motions instead of the ANM modes. 
However, how this in done is barely described. How is a 
set of representative cluster members turned into the 
equivalent of NMA eigenvectors? Both the surface- and 
interior-critical method use 10 eigenvectors, but it 
appears that there are always fewer than 10 cluster 
members for all proteins investigated, with the reader 
left to speculate on how this discrepancy is resolved. The 
results of this extended application only appear in the 
main text as a pointer to supplementary figure S17. 

Author 
Response 

We thank to reviewer for highlighting these ambiguities. In our response 
here, we try to clarify these protocols by first providing the motivating 
factors behind the clustering scheme. We then go on to speak more 
specifically about what we did with the output from this scheme. 

 
The purpose of developing and implementing the clustering scheme is 
three-fold: 

1) We are primarily interested in those structures that exhibit 
distinct conformations, as we are focusing on cases for which 
pronounced global conformational change play essential roles in 
allosteric mechanisms. 

2) The clustering scheme ultimately enables us to perform an 
important control. Namely, it enables us to address the 
question: are the results robust to alternative methods of 
inferring information about conformational change? ANMs 
provide only one means of defining the vectors for modeled 
conformational change. However, another approach is to use 
the displacement vectors from the crystal structures of 
alternative conformations. This alternative constitutes a method 
that we term “absolute conformational change” (ACT). 

3) Because ANMs constitute the bulk of our analysis (see below), 
we must be confident that the structures being analyzed with 
ANMs are suitable for normal modes analysis: if a given protein 
is not believed to undergo significant conformational change, it 
may not be appropriate to apply ANMs, as the ANMs can 
incorrectly predict large-scale conformational change where no 
such change is likely to occur. 

 
To describe what we do with the output from our structural clustering 
scheme, we discuss a hypothetical example case consisting of a 
multiple structure alignment of 8 structures (this discussion has now 



been added in 3.2-c-i). Suppose that these 8 structures may be 
grouped into 2 distinct clusters by our scheme (4 structures in cluster A, 
and 4 structures in cluster B, for instance). A representative structure is 
taken from each of these two clusters (structure A and structure B). 
These two representatives are taken to represent the alternative 
conformations for the protein. Separately, ANMs are then applied to 
structure A and also to structure B. By now, we have 10 modes to 
describe the motion for structure A, and 10 modes to describe the 
motion for structure B. Given that ANMs are straightforward to apply to 
large numbers of multi-chain proteins, they constitute the bulk of our 
analysis for identifying surface- and interior-critical residues. Once the 
surface- and interior-critical residues are identified using the ANMs, 
downstream analysis (such as measuring conservation) is performed. 
 As mentioned, the so-called “ACT” analysis supplies us with the 
ability to evaluate our results when using an alternative approach to 
study conformational change. Staying with our example scenario, we 
still have the two distinct conformations for a protein in the form of 
crystal structures (structure A and also to structure B). Instead of using 
ANMs, we can try to infer information about the protein’s global 
conformational shifts by assigning a displacement vector to each 
residue (for instance, residue Y140), where the displacement vector is 
simply defined by the two corresponding residues in the different 
structures within the structure alignment (i.e., Y140 within structure A 
and Y140 within structure B). If each of the two structures represents a 
sequence-identical protein consisting of 200 residues, then 200 ACT 
vectors are drawn in order to represent the conformational change in 
transitioning from one conformation to the other. These 200 ACT 
vectors for the protein may then be used to identify surface- and 
interior-critical residues, and downstream analysis on these residues is 
then performed. 

Excerpt From 
Revised Manuscript 

Unless otherwise specified, we use normal modes analysis to model conformational 
change throughout this study. However, one potential concern with this approach is 
that normal modes may not faithfully represent plausible conformational changes. 
Thus, in order to determine whether or not the results are robust to different means of 
inferring motions (especially those results relevant to the conservation of critical 
residues), we also model protein motions using vectors connecting pairs of 
corresponding residues in crystal structures of alternative conformations. We term this 
approach “absolute conformational transitioning” (ACT). This more direct model of 
conformational change is especially straightforward to apply to single-chain proteins; 
applying ACT on a database scale to multi-chain complexes introduces confounding 
factors related to chain-chain correspondence between such complexes when each 
complex has multiple copies of a given chain. 
 
Inferring Protein Motions Using Displacement Vectors from Alternative 
Conformations 

Given a particular protein, how are these ACT vectors defined in order to 
calculate critical residues? We discuss a hypothetical example consisting of a multiple 
structure alignment of 8 sequence-identical structures. Starting with the protein’s 
multiple-structure alignment using all 8 structures, we determine the optimal number 
of clusters represented by the structure alignment using the K-means algorithm with 
the gap statistic (see the above SI Methods sub-section titled “Identifying Distinct 
Conformations within a Multiple Structure Alignment”). Suppose that these 8 
structures may be grouped into 2 distinct clusters by our scheme (4 structures in 



cluster A, and 4 structures in cluster B, for instance). A representative structure is 
taken from each of these two clusters (structure A and structure B). These two 
representatives are taken to represent the alternative conformations for the protein. As 
an alternative to using ANMs, we may use structure A and structure B to try to infer 
information about the protein’s global conformational shifts by assigning a 
displacement vector to each residue (for instance, residue Y140), where the 
displacement vector is simply defined by the two corresponding residues in the 
different structures within the structure alignment (i.e., Y140 within structure A of the 
structure alignment and Y140 within structure B of the structure alignment). Because 
the structure alignment was performed on sequence-identical structures, each residue 
in one of these two representative structures matches a corresponding residue on the 
other representative structure. If each of the two structures represents a sequence-
identical protein consisting of 200 residues, then 200 ACT vectors are drawn in order 
to represent the conformational change in transitioning from one conformation to the 
other. These 200 ACT vectors for the protein may then be used to identify surface- and 
interior-critical residues, and downstream analysis on these residues is then performed. 

 
 

-- Ref 2.7 – ConSurf Normalization -- 
Reviewer 
Comment 

All ConSurf scores are normalised to zero, but is the 
variation also set to unity? 

Author 
Response 

We thank to reviewer for noting this omission. Indeed, value for σ2 is 
set to unity, and this is now indicated in Supplement Section 3.3-a. 

Excerpt From 
Revised Manuscript 

ConSurf scores for each protein chain are normalized to have a mean ConSurf score of 
0 (the ConSurf score variance is 1 for each chain). 

 

-- Ref 2.8 – Minor Issues -- 
Reviewer 
Comment 

There is an asterix next to two entries in Table S2, and 
next to one entry in Table S3, but these are not explained 
in the captions or the main text. 
 
"allosteric ligand has a global affect on a protein's 
functionally important motions" affect -> effect 
 
jaccard -> Jaccard, three occurrances 
 
line 279: "However 1000 Genomes SNVs tend hit..." -> tend 
to 

Author 
Response 

We thank the reviewer for pointing out these points. With respect to the 
asterix symbols in Table S2, and next to one entry in Table S3 (now 
merged into what is now Table 1, as noted), these were originally 
intended to highlight structures for which the identification of biological 
ligand-binding sites was previously known to be especially difficult. 
However, we now feel that the including this information is extraneous 
and potentially distracting. Thus, the asterix symbols have been 
removed, and this is no longer considered. 
 
We have also corrected the other two issues raised here, and thank the 
reviewer again for a very careful review of this work. 

 



 
 
 
 
 
 
 
 
 


