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ABSTRACT 59!

The rapidly growing volume of data being produced by next-generation sequencing 60!

initiatives is enabling more in-depth analyses of conservation than previously possible. 61!

Deep sequencing is uncovering disease loci and regions under selective constraint, 62!

despite the fact that intuitive biophysical reasons for such constraint are sometimes 63!

missing. Allostery may often provide the missing explanatory link. We use models of 64!

protein conformational change to identify allosteric residues by finding essential surface 65!

cavities and information flow bottlenecks, and we develop a software tool 66!

(stress.molmovdb.org) that enables users to perform this analysis on their own proteins of 67!

interest. Though fundamentally 3D-structural in nature, our analysis is computationally 68!

fast, thereby allowing us to run it across the PDB and to evaluate general properties of 69!

predicted allosteric residues. We find that these tend to be conserved over diverse 70!

evolutionary time scales. Finally, we highlight examples of allosteric residues that help 71!

explain poorly understood disease-associated variants. 72!
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 88!

 89!

 90!

INTRODUCTION 91!

The ability to sequence large numbers of human genomes is providing a much 92!

deeper view into protein evolution than previously possible. When trying to understand 93!

the evolutionary pressures on a given protein, structural biologists now have at their 94!

disposal an unprecedented breadth of data regarding patterns of conservation, both across 95!

species and between humans. As such, there are greater opportunities to take an 96!

integrated view of the context in which a protein and its residues function. This view 97!

necessarily includes structural constraints such as residue packing, protein-protein 98!

interactions, and stability. However, deep sequencing is unearthing a class of conserved 99!

residues on which no obvious structural constraints appear to be acting. The missing link 100!

in understanding these regions may be provided by studying the protein’s dynamic 101!

behavior through the lens of the distinct functional and conformational states within an 102!

ensemble. 103!

The underlying energetic landscape responsible for the relative distributions of 104!

alternative conformations is dynamic in nature: allosteric signals or other external 105!

changes may reconfigure and reshape the landscape, thereby shifting the relative 106!

populations of states within an ensemble (Tsai et al., 1999). Landscape theory thus 107!

provides the conceptual underpinnings necessary to describe how proteins change 108!
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behavior and shape under changing conditions. A primary driving force behind the 116!

evolution of these landscapes is the need to efficiently regulate activity in response to 117!

changing cellular contexts, thereby making allostery and conformational change essential 118!

components of protein evolution. 119!

Given the importance of allosteric regulation, as well as its role in imparting 120!

efficient functionality, several methods have been devised for the identification of likely 121!

allosteric residues. Conservation itself has been used, either in the context of conserved 122!

residues (Panjkovich and Daura, 2012), networks of co-evolving residues (Halabi et al., 123!

2009; Lee et al., 2008; Lockless et al., 1999; Reynolds et al., 2011; Shulman et al., 2004; 124!

Süel et al., 2003), or local conservation in structure (Panjkovich and Daura, 2010). In 125!

related studies, both conservation and geometric-based searches for allosteric sites have 126!

been successfully applied to several systems (Capra et al., 2009). 127!

The concept of ‘protein quakes’ has been introduced to explain local 128!

conformational changes that are essential for global conformation transitions of 129!

functional importance (Ansari et al., 1985; Miyashita et al., 2003). These local changes 130!

cause strain within the protein that is relieved by subsequent relaxations (which are also 131!

termed functionally important motions) that terminate when the protein reaches the 132!

second equilibrium state. Such local perturbations often end with large conformational 133!

changes at the focal points of allosteric regulation, and these motions may be identified in 134!

a number of ways, including modified normal modes analysis (Miyashita et al., 2003) or 135!

time-resolved X-ray scattering (Arnlund et al., 2014). 136!

In addition to conservation and geometry, protein dynamics have also been used 137!

to predict allosteric residues. Normal modes analysis has been used to examine the extent 138!
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to which bound ligands interfere with low-frequency motions, thereby identifying 165!

potentially important residues at the surface (Ming and Wall, 2005; Mitternacht and 166!

Berezovsky, 2011; Panjkovich and Daura, 2012). Normal modes have also been used by 167!

the Bahar group to identify important subunits that act in a coherent manner for specific 168!

proteins (Chennubhotla and Bahar, 2006; Yang and Bahar, 2005). Rodgers et al. have 169!

applied normal modes to identify key residues in CRP/FNR transcription factors 170!

(Rodgers et al., 2013).  171!

With the objective of identifying allosteric residues within the interior, molecular 172!

dynamics (MD) simulations and network analyses have been used to identify residues 173!

that may function as internal allosteric bottlenecks (Csermely et al., 2013; Gasper et al., 174!

2012; Rousseau and Schymkowitz, 2005; Sethi et al., 2009; Vanwart et al., 2012). Ghosh 175!

et al. (2008) have taken a novel approach of combining MD and network principles to 176!

characterize allosterically important communication between domains in methionyl 177!

tRNA synthetase. In conjunction with NMR, Rivalta et al. have use MD and network 178!

analysis to identify important regions in imidazole glycerol phosphate synthase (Rivalta 179!

et al., 2012). 180!

Though having provided valuable insights, many of these approaches have been 181!

limited in terms of scale (the numbers of proteins which may feasibly be investigated), 182!

computational demands, or the class of residues to which the method is tailored (surface 183!

or interior). Here, we use models of protein conformational change to identify both 184!

surface and interior residues that may act as essential allosteric hotspots in a 185!

computationally tractable manner, thereby enabling high-throughput analysis. This 186!

framework directly incorporates information regarding 3D protein structure and 187!
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dynamics, and it can be applied on a PDB-wide scale to proteins that exhibit 197!

conformational change (Berman et al., 2000). The residues identified tend to be 198!

conserved both across species and between humans, and they may help to elucidate many 199!

of the otherwise poorly understood regions in proteins. In a similar vein, several of our 200!

identified sites correspond to human disease loci for which no clear mechanism for 201!

pathogenesis had previously been proposed. Finally, we make the software associated 202!

with this framework (termed STRESS, for STRucturally-identified ESSential residues) 203!

publically available through a tool to enable users to submit their own structures for 204!

analysis. 205!

 206!

RESULTS  207!

Identifying Potential Allosteric Residues 208!

Allosteric residues at the surface generally play a regulatory role that is 209!

fundamentally distinct from that of allosteric residues within the protein interior. While 210!

surface residues may often constitute the sources or sinks of allosteric signals, interior 211!

residues act to transmit such signals. We use models of protein conformational change to 212!

identify both classes of residues (Figure 1). Throughout, we term these potential allosteric 213!

residues at the surface and interior “surface-critical” and “interior-critical” residues, 214!

respectively.  215!

Critical residues are identified and analyzed within a set of 12 well-studied 216!

canonical systems (see Figure S1, as well as Table S1 for rationale), and they are then 217!
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investigated on a large scale across hundreds of proteins for which crystal structures of 232!

alternative conformations are available. 233!

 234!

Identifying Surface-Critical Residues 235!

Allosteric ligands often act by binding to surface cavities and modulating protein 236!

conformational dynamics. The surface-critical residues, some of which may act as latent 237!

ligand binding sites and active sites, are first identified by finding cavities using Monte 238!

Carlo simulations to probe the surface with a flexible ligand (Figure 1A, top-left). The 239!

degree to which cavity occlusion by the ligand disrupts large-scale conformational 240!

change is used to assign a score to each cavity – sites at which ligand occlusion strongly 241!

interferes with conformational change earn high scores (Figure 1A, top-right), whereas 242!

shallow pockets (Figure 1A, bottom-left) or sites at which large-scale motions are largely 243!

unaffected (Figure 1A, bottom-right) earn lower scores. Further details are provided in SI 244!

Methods section 3.1-a. 245!

This approach is a modified version of the binding leverage framework 246!

introduced by Mitternacht and Berezovsky (Mitternacht and Berezovsky, 2011). The 247!

main modifications implemented here include the use of heavy atoms in the protein 248!

during the Monte Carlo search, in addition to an automated means of thresholding the list 249!

of ranked scores. These modifications were implemented to provide a more selective set 250!

of sites; without them, an exceedingly large fraction of the protein surface would be 251!

captured (Figure 2C). Within our dataset of proteins exhibiting alternative conformations, 252!

we find that this modified approach results in an average of ~2 distinct sites per domain 253!

(Figure 2A; see Figure 2B for the distribution for distinct sites within entire complexes). 254!
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Within the canonical set of 12 proteins, we positively identify an average of 56% 262!

of the sites known to be directly involved in ligand or substrate binding (see Table 1, 263!

Figure S1, and SI Methods section 3.1-a-iv). Some of the sites identified do not directly 264!

overlap with known binding regions, but we often find that these “false positives” 265!

nevertheless exhibit some degree of overlap with binding sites (Table S2). In addition, 266!

those surface-critical sites that do not match known binding sites may nevertheless 267!

correspond to latent allosteric regions: even if no known biological function is assigned 268!

to such regions, their occlusion may nevertheless disrupt hitherto unfound large-scale 269!

motions [[DC2MG(12/11): I actually don’t know if I fully agree with this change that 270!

was introduced: when we talk about latent allosteric sites, the thing this was previously 271!

unfound is not the motions themselves, but rather the pockets which were not previously 272!

known to disrupt already-known motions. We can discuss during P2 struct]]. 273!

 274!

Dynamical Network Analysis to Identify Interior-Critical Residues 275!

The binding leverage framework described above is intended to capture hotspot 276!

regions at the protein surface, but the Monte Carlo search employed is a priori excluded 277!

from the protein interior. Allosteric residues often act within the protein interior by 278!

functioning as essential information flow ‘bottlenecks’ within the communication 279!

pathways between distant regions. 280!

To identify such bottleneck residues, the protein is first modeled as a network, 281!

wherein residues represent nodes and edges represent contacts between residues (in much 282!

the same way that the protein is modeled as a network in constructing anisotropic 283!

network models, see below). In this regard, the problem of identifying interior-critical 284!

residues is reduced to a problem of identifying nodes that participate in network 285!
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bottlenecks (see Figure 1B and SI Methods section 3.1-b for details). Briefly, the network 298!

edges are first weighted by the degree of strength in the correlated motions of contacting 299!

residues: a strong correlation in the motion between contacting residues implies that 300!

knowing how one residue moves better enables one to predict the motion of the other, 301!

thereby suggesting a strong information flow between the two residues. The weights are 302!

used to assign ‘effective distances’ between connecting nodes, with strong correlations 303!

resulting in shorter effective node-node distances. 304!

Using the motion-weighted network, “communities” of nodes are identified using 305!

the Girvan-Newman formalism (Girvan et al., 2002). A community is a group of nodes 306!

such that each node within the community is highly inter-connected, but loosely 307!

connected to other nodes outside the community. Communities are thus densely inter-308!

connected regions within proteins. As tangible examples, the community partitions and 309!

the resultant critical residues for the canonical set are given in Figures S2. 310!

Finally, the betweenness of each edge is calculated. The betweenness of an edge 311!

is defined as the number of shortest paths between all pairs of residues that pass through 312!

that edge, with each path representing the sum of effective node-node distances assigned 313!

in the weighting scheme above. Those residues that are involved in the highest-314!

betweenness edges between pairs of interacting communities are identified as the 315!

interior-critical residues. These residues are essential for information flow between 316!

communities, as their removal would result in substantially longer paths between the 317!

residues of one community to those of another. 318!

 319!

Software Tool: STRESS (STRucturally-identified ESSential residues) 320!
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We have made the implementations for finding surface- and interior-critical 321!

residues available through a new software tool, STRESS, which may be accessed at 322!

stress.molmovdb.org (Figure 3A). Users may submit a PDB file or a PDB ID 323!

corresponding to a structure to be analyzed, and the output provided constitutes the set of 324!

identified critical residues. 325!

Obviating the need for long wait times, the algorithmic implementation of our 326!

software is highly efficient (Figures 3B and 3C). Running times are minimized by using a 327!

scalable server architecture that runs on the Amazon cloud (Figure 3D). Relative to a 328!

naïve global Monte Carlo search implementation, local searches supported with hashing 329!

and additional algorithmic optimizations for computational efficiency also reduce 330!

running times considerably. A typical protein of ~500 residues takes only about 30 331!

minutes on a 2.6GHz CPU. 332!

A light front-end server handles incoming user requests, and more powerful back-333!

end servers, which perform the calculations, are automatically and dynamically scalable, 334!

thereby ensuring that they can handle varying levels of demand both efficiently and 335!

economically. 336!

 337!

High-Throughput Identification of Alternative 338!

Conformations 339!

We use a generalized approach to systematically identify instances of alternative 340!

conformations throughout the PDB. We first perform multiple structure alignments 341!

(MSAs) across sequence-identical structures that are pre-filtered to ensure structural 342!
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quality. We then use the resultant pairwise RMSD values to infer distinct conformational 357!

states (Figure S3; see also SI Methods section 3.2). 358!

The distributions of the resultant numbers of conformations for domains and 359!

chains are given in Figures S3D and S3E, respectively, and an overview is given in 360!

Figure S3F. We note that the alternative conformations identified arise in an extremely 361!

diverse set of biological contexts, including conformational transitions that accompany 362!

ligand binding, protein-protein or protein-nucleic acid interactions, post-translational 363!

modifications, changes in oxidation or oligomerization states, etc. The dataset of 364!

alternative conformations identified is provided as a resource in File S1 (see also Figure 365!

S3G). 366!

 367!

Evaluating Conservation of Critical Residues 368!

Using Various Metrics and Sources of Data  369!

The large dataset of dynamic proteins culled throughout the PDB, coupled with 370!

the high algorithmic efficiency of our critical residue search implementation, provide a 371!

means of evaluating general properties within the large pool of critical residues 372!

identified. In particular, we use a variety of conservation metrics and data sources to 373!

measure the inter- and intra-species conservation of the residues within this pool. As 374!

discussed below, we find that both surface- (Figures 4A-D) and interior-critical residues 375!

(Figures 4E-H) are consistently more conserved than non-critical residues. We emphasize 376!

that the signatures of conservation identified not only provide a means of rationalizing 377!
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many of the otherwise poorly understood regions of proteins, but they also reinforce the 387!

functional importance of the residues predicted to be allosteric. 388!

 389!

Conservation Across Species 390!

 When evaluating conservation across species, we find that both surface- and 391!

interior-critical residues tend to be significantly more conserved than non-critical residues 392!

with the same degree of burial (Figures 4B and 4F, respectively; note that negative 393!

conservation scores designate stronger conservation – see SI Methods section 3.3-a). 394!

 395!

Leveraging Next-Generation Sequencing to Measure Conservation Between 396!

Humans 397!

In addition to measuring inter-species conservation, we have also used fully 398!

sequenced human genomes and exomes to investigate conservation among human 399!

populations, as many constraints may be species-specific and active in more recent 400!

evolutionary history. Commonly used metrics for quantifying intra-species conservation 401!

include minor allele frequency (MAF) and derived allele frequency (DAF). Low MAF or 402!

DAF values are interpreted as signatures of deleteriousness, as purifying selection is 403!

prone to reduce the frequencies of harmful variants (see SI Methods section 3.3-b). 404!

Non-synonymous single-nucleotide variants (SNVs) from the 1000 Genomes 405!

dataset (McVean et al., 2012) that hit surface-critical residues tend to occur at lower DAF 406!

values (Figure 4C). Though this trend is not observed to be significant, the significance 407!

improves when examining the shift in DAF distributions, as evaluated with a KS test (p=!408!

0.159, Figure S4A), and we point out the limited number of proteins (thirty-two) for 409!

which these 1000 Genomes SNVs coincide with surface-critical sites. Furthermore, the 410!
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long tail extending to lower DAF values for surface-critical residues may suggest that 434!

only a subset of the residues in our prioritized binding sites is essential. In contrast to 435!

surface-critical residues, however, interior-critical residues are hit by 1000 Genomes 436!

SNVs with significantly lower DAF values than non-critical residues (Figure 4G; see also 437!

Figure S4B). 438!

 Given the limited number of proteins to be hit by 1000 Genomes SNVs, we also 439!

analyzed the larger dataset provided by the Exome Aggregation Consortium (ExAC, 440!

Cambridge MA 2015). ExAC provides sequence data from more than 60,000 individuals, 441!

and samples are sequenced at much higher coverage, thereby ensuring better data quality. 442!

Using MAF as a conservation metric, we performed a similar analysis using this data. 443!

MAF distributions for surface- and non-critical residues in the same set of proteins are 444!

given in Figure 4D. Although the mean value of the MAF distribution for surface-critical 445!

residues is slightly higher than that of non-critical residues, the median for surface-446!

critical residues is substantially lower than that for non-critical residues, demonstrating 447!

that the majority of proteins are such that MAF values are lower in surface- than in non-448!

critical residues. In addition, the overall shifts of these distributions also point to a trend 449!

of lower MAF values in surface-critical residues (Figure S5A, KS test p=9.49e-2). 450!

Interior-critical residues exhibit significantly lower MAF values than do non-451!

critical residues in the same set of proteins. MAF distributions for interior- and non-452!

critical residues are given in Figure 4H (see also Figure S5B). 453!

 In addition to analyzing overall allele frequency distributions, we also evaluate 454!

the fraction of rare alleles as a metric for measuring selective pressure. This fraction is 455!

defined as the ratio of the number of rare (i.e., low-DAF or low-MAF) non-synonymous 456!
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SNVs to the number of all non-synonymous SNVs in a given protein annotation (such as 467!

all surface-critical residues of the protein, for example; see SI Methods section 3.3-b). A 468!

higher fraction is interpreted as a proxy for greater conservation (Khurana et al., 2013). 469!

Using variable DAF (MAF) cutoffs to define rarity for 1000 Genomes (ExAC) SNVs, 470!

both surface- and interior-critical residues are shown to harbor a higher fraction of rare 471!

alleles than do non-critical residues, further suggesting a greater degree of evolutionary 472!

constraint on critical residues (See Figure 5). 473!

 474!

Comparisons Between Different Models of Protein Motions 475!

The identification of surface- and interior-critical residues entails using sets of 476!

vectors (on each protein residue) to describe conformational change. Notably, our 477!

framework enables one to determine these vectors in multiple ways. Conformational 478!

changes may be modeled using vectors connecting residues in crystal structures from 479!

alternative conformations. We term this approach “ACT”, for “absolute conformational 480!

transitions” (see SI Methods section 3.2-c). The crystal structures of such paired 481!

conformations may be obtained using the framework discussed above. The protein 482!

motions may also be inferred from anisotropic network models (ANMs) (Atilgan et al., 483!

2001). ANMs entail modeling interacting residues as nodes linked by flexible springs, in 484!

a manner similar to elastic network models (Fuglebakk et al., 2015; Tirion, 1996) or 485!

normal modes analysis (Figure 1B). ANMs are not only simple and straightforward to 486!

apply on a database scale, but unlike using alternative crystal structures, the motion 487!

vectors inferred may be generated using a single structure. 488!

Modeling conformational change using vectors from either ACTs or ANMs gives 489!

the same general trends in terms of the disparities in conservation between critical and 490!

DECLAN CLARKE� 12/13/15 2:56 PM
Deleted: in491!

DECLAN CLARKE� 12/13/15 2:56 PM
Deleted: pairs of corresponding 492!
DECLAN CLARKE� 12/13/15 2:56 PM
Deleted:  (we493!
DECLAN CLARKE� 12/13/15 2:56 PM
Deleted: ”; 494!

DECLAN CLARKE� 12/13/15 2:56 PM
Formatted: Font:Italic, Check spelling and
grammar

DECLAN CLARKE� 12/13/15 2:56 PM
Formatted: Font:Italic, Check spelling and
grammar

DECLAN CLARKE� 12/13/15 2:56 PM
Deleted: , and we thus use ANMs as our 495!
primary means of inferring motions496!
DECLAN CLARKE� 12/13/15 2:56 PM
Deleted: Using497!
DECLAN CLARKE� 12/13/15 2:56 PM
Deleted: give498!
DECLAN CLARKE� 12/13/15 2:56 PM
Deleted: results499!



!

! 15!

non-critical residues. Our framework is thus general with respect to how the motion 500!

vectors are obtained (see Figure 6 and SI Methods section 3.2-c for further details). 501!

 502!

Critical Residues in the Context of Human Disease Variants 503!

Directly related to conservation is confidence with which an SNV is believed to 504!

be disease-associated. SIFT (Ng and Henikoff, 2001) and PolyPhen (Adzhubei et al., 505!

2010) are two tools for predicting SNV deleteriousness. ExAC SNVs hitting critical 506!

residues exhibit significantly higher PolyPhen scores relative to non-critical residues, 507!

suggesting the potentially higher disease susceptibility at critical residues (Figure S6). 508!

Significant disparities were not observed in SIFT scores (Figure S7). 509!

Using HGMD (Stenson et al., 2014) and ClinVar (Landrum et al., 2014), we 510!

identify proteins with critical residues that coincide with disease-associated SNVs (Figure 511!

7A and File S2). Several critical residues coincide with known disease loci for which the 512!

mechanism of pathogenicity is otherwise unclear (File S3). The fibroblast growth factor 513!

receptor (FGFR) is a case-in-point (Figure 7). SNVs in FGFR have been linked to 514!

craniofacial defects. Dotted lines in Figure 7B highlight poorly understood disease SNVs 515!

that coincide with critical residues. In addition, we identify Y328 as a surface-critical 516!

residue, which coincides with a disease-associated SNV from HGMD, despite the lack of 517!

confident predictions of deleteriousness by several widely used tools for predicting 518!

disease-associated SNVs, including PolyPhen (Adzhubei et al., 2010), SIFT (Ng and 519!

Henikoff, 2001), and SNPs&GO (Calabrese et al., 2009). Together, these results suggest 520!

that the incorporation of surface- and interior-critical residues introduces a valuable layer 521!

of annotation to the protein sequence, and may help to explain otherwise poorly 522!

understood disease-associated SNVs.  523!
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 537!

DISCUSSION & CONCLUSIONS 538!

The same principles of energy landscape theory that dictate protein folding are 539!

integral to how proteins explore different conformations once they adopt their fully 540!

folded states. These landscapes are shaped not only by the protein sequence itself, but 541!

also by extrinsic conditions. Such external factors often regulate protein activity by 542!

introducing allosteric-induced changes, which ultimately reflect changes in the shapes 543!

and population distributions of the energetic landscape. In this regard, allostery provides 544!

an ideal platform from which to study protein behavior in the context of their energetic 545!

landscapes. To investigate allosteric regulation, and to simultaneously add an extra layer 546!

of annotation to conservation patterns, an integrated framework to identify potential 547!

allosteric residues is essential. We introduce a framework to select such residues, using 548!

knowledge of conformational change. 549!

When applied to many proteins with distinct conformational changes in the PDB, 550!

we investigate the conservation of potential allosteric residues in both inter-species and 551!

intra-human genomes contexts, and find that these residues tend to exhibit greater 552!

conservation in both cases. In addition, we identify several disease-associated variants for 553!

which plausible mechanisms had been unknown, but for which allosteric mechanisms 554!

provide a plausible rationale. 555!

Unlike the characterization of many other structural features, such as secondary 556!

structure assignment, residue burial, protein-protein interaction interfaces, disorder, and 557!

even stability, allostery inherently manifests through dynamic behavior. It is only by 558!

considering protein motions and changes in these motions can a fuller understanding of 559!
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allosteric regulation be realized. As such, MD and NMR are some of the most common 564!

means of studying allostery and dynamic behavior (Kornev and Taylor, 2015). However, 565!

these methods have limitations when studying large and diverse protein datasets. MD is 566!

computationally expensive and impractical when studying large numbers of proteins. 567!

NMR structure determination is extremely labor-intensive and better suited to certain 568!

classes of structures or dynamics. In addition, NMR structures constitute a relatively 569!

small fraction of structures currently available. 570!

Despite these limitations in MD and NMR, allosteric mechanisms and signaling 571!

pathways may be conserved across many different but related proteins within the same 572!

family, suggesting that such computationally- or labor-intensive approaches for all 573!

proteins may not be entirely essential. Flock et al. have carefully demonstrated that the 574!

allosteric mechanisms responsible for regulating G proteins through GPCRs tend to be 575!

conserved (Flock et al., 2015). Investigations into representative families have also been 576!

enlightening in other contexts. In one of the early studies employing network analysis, 577!

del Sol et al. conduct a detailed study of several allosteric protein families (including 578!

GPCRs) to demonstrate that residues important for maintaining the integrity of short 579!

paths within residue contact networks are essential to enabling signal transmission 580!

between distant sites (del Sol et al., 2006). Another notable result in the same work is that 581!

these key residues (which match experimental results) may become redistributed when 582!

the protein undergoes conformational change, thereby changing optimal communication 583!

routes as a means of conferring different regulatory properties. 584!

There are several notable implications of our dynamics-based analysis across a 585!

database of proteins. Relative to sequence data, allostery and dynamic behavior are far 586!
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more difficult to evaluate on a large scale. The framework described here enables one to 604!

evaluate dynamic behavior in a systemized and efficient way across many proteins, while 605!

simultaneously capturing residues on both the surface and within the interior. That this 606!

pipeline can be applied in a high-throughput manner enables the investigation of system-607!

wide phenomena, such as the roles of potential allosteric hotspots in protein-protein 608!

interaction networks.  609!

It is only by analyzing a large dataset of proteins can one investigate general 610!

trends in predicted allosteric residues. In addition, the implementation detailed here 611!

enables one to match structural features with the high-throughput data generated through 612!

deep sequencing initiatives, which are providing an unprecedented window into 613!

conservation patterns, many of which may be human-specific. 614!

We anticipate that, within the next decade, deep sequencing will enable structural 615!

biologists to study evolutionary conservation using sequenced human exomes just as 616!

routinely as cross-species alignments. Furthermore, intra-species metrics for conservation 617!

provide added value in that the confounding factors of cross-species comparisons are 618!

removed: different organisms evolve in different cellular and evolutionary contexts, and 619!

it can be difficult to decouple these different effects from one another. Cross-species 620!

metrics of protein conservation entail comparisons between proteins that may be very 621!

different in structure and function. Sequence-variable regions across species may not be 622!

conserved, but nevertheless impart essential functionality. Intra-species comparisons, 623!

however, can often provide a more direct and sensitive evaluation of constraint.  624!

In particular, selective constraints within human populations are particularly 625!

relevant to understanding human disease. Formalisms for analyzing large structural and 626!
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sequence datasets will become increasingly important in the context of human health. We 659!

anticipate that the framework and formalisms detailed here, along with the accompanying 660!

web tool we have introduced, will help to further motivate future studies along these 661!

directions. 662!

 663!

METHODS 664!

An overview of the framework for finding surface- and interior-critical residues is 665!

given in Figure 1. Figure S3 provides a schematic of our pipeline for identifying 666!

alternative conformations throughout the PDB. Cross-species conservation scores were 667!

analyzed in those PDBs for which full ConSurf files are available through the ConSurf 668!

server. 1000 Genomes SNVs were taken from the Phase 3 release, and ExAC SNVs were 669!

downloaded in May 2015. Further details on all protocols are provided in SI Methods. 670!
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 807!

 808!

CAPTIONS 809!

Figure 1.  Schematic overviews of methods for finding surface- and interior-critical 810!

residues. (A) A simulated ligand probes the protein surface in a series of Monte Carlo 811!

simulations (top-left). The cavities identified may be such that occlusion by the ligand 812!

strongly interferes with conformational change (top-right; such a site is likely to be 813!

identified as surface-critical, in red), or they may have little effect on conformational 814!

change, as in the case of shallow pockets (bottom-left) or pockets in which large-scale 815!

motions do not drastically affect pocket volume (bottom-right). (B) Interior-critical 816!

residues are identified by weighting residue-residue contacts (edges) on the basis of 817!

correlated motions, and then identifying communities within the weighted network. 818!

Residues involved in the highest-betweenness interactions between communities (in red) 819!

are selected as interior-critical residues. 820!

 821!

Figure 2.  Summary statistics for surface-critical sites. The distributions of the 822!

numbers of surface-critical sites per domain and per complex are given in (A) and (B), 823!

respectively. Panel (C) gives the distributions of the number of surface-critical sites per 824!
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complex without thresholding. Complexes are taken from the the PDB biological 825!

assembly files. Without applying thresholds to the list of ranked surface-critical sites, the 826!

protein is often covered with an excess of identified critical sites. 827!

 828!

Figure 3.  STRESS web server front page, running times, and server architecture. 829!

(A) The server enables users to either provide PDB IDs or to upload their own PDB files 830!

for proteins of interest. Users may opt to identify surface-critical residues, interior-critical 831!

residues, or both. (B) Running times are shown for systems of various sizes. Shown in 832!

red are the running times without optimizing for speed, and green shows running times 833!

with algorithmic optimization. (C) The same data is represented as a log-log plot. The 834!

slopes of these two approaches demonstrate that our algorithm reduces the computational 835!

complexity by an order of magnitude. Our speed-optimized algorithm scales at O(n1.3), 836!

where n is the number of residues. (D) A thin front-end server handles incoming user 837!

requests, and more powerful back-end servers perform the heavier algorithmic 838!

calculations. The back-end servers are dynamically scalable, making them capable of 839!

handling wide fluctuations in user demand. Amazon’s Simple Queue Service is used to 840!

coordinate between user requests at the front end and the back-end compute nodes: when 841!

the front-end server receives a request, it adds the job to the queue, and back-end servers 842!

pull that job from the queue when ready. Source code is available through Github 843!

(github.com/gersteinlab/STRESS). 844!

 845!

Figure 4.  Multiple metrics and datasets reveal that critical residues tend to be 846!

conserved. Surface- and interior-critical residues (red) in phosphofructokinase (PDB 847!
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3PFK) are given in (A) and (E), respectively. Distributions of cross-species conservation 858!

scores, 1000 Genomes SNV DAF averages, and ExAC SNV MAF averages for surface- 859!

and non-critical residue sets are given in (B), (C), and (D), respectively. The same 860!

distributions corresponding to interior- and non-critical residue sets are given in (F), (G), 861!

and (H), respectively. In (B), mean inter-species conservation scores for surface-critical 862!

sets are -0.131, whereas non-critical residue sets with the same degree of burial have a 863!

mean score of +0.059 (p < 2.2e-16). In (F), mean inter-species conservation scores for 864!

interior-critical sets are -0.179, whereas non-critical residue sets with the same degree of 865!

burial have a mean score of -0.102 (p=3.67e-11). In (C), means for surface- and non-866!

critical sets are 9.10e-4 and 8.34e-4, respectively (p=0.309); corresponding means in (D) 867!

are 4.09e-04 and 2.26e-04, respectively (p=1.49e-3). In (G), means for interior- and non-868!

critical sets are 2.82e-4 and 3.12e-3, respectively (p=1.80e-05); corresponding means in 869!

(H) are 3.08e-05 and 3.27e-04, respectively (p=7.98e-09). N = 421, 32, 84, 517, 31, and 870!

90 structures for panels B, C, D, F, G, and H, respectively. P-values are based on 871!

Wilcoxon-rank sum tests. See SI Methods for further details. 872!

 873!

Figure 5.  Critical residues are shown to be more conserved, as measured by the 874!

fraction of rare alleles. Protein regions with high fractions of rare variants are believed 875!

to be more sensitive to sequence variants than other regions, thereby explaining why such 876!

variants occur infrequently in the population. Panels (A) and (C) show distributions for 877!

rare (low DAF) non-synonymous SNVs (taken from the 1000 Genomes dataset) in which 878!

the critical residues are defined to be the surface-critical (A) and interior-critical (C) 879!

residues. Panels (B) and (D) show distributions for rare (low MAF) non-synonymous 880!
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SNVs (taken from the ExAC dataset) in which the critical residues are defined to be the 884!

surface-critical (B) and interior-critical (D) residues. For varying thresholds to define 885!

rarity, there are more structures in which the fraction of rare variants is higher in critical 886!

residues than in non-critical residues. Cases in which the fraction is equal in both 887!

categories are not shown. We consider all structures such that at least one critical and at 888!

least one non-critical residue are hit by a non-synonymous SNV. Panels (A), (B), (C), and 889!

(D) represent data from 31, 90, 32, and 84 structures, respectively. 890!

 891!

Figure 6.  Modeling protein conformational change through a direct use of crystal 892!

structures from alternative conformations using absolute conformational transitions 893!

(ACT). (A) Distributions (155 structures) of the mean conservation scores on surface-894!

critical (red) and non-critical residues with the same degree of burial (blue). (B) 895!

Distributions (159 structures) of the mean conservation scores for interior-critical (red) 896!

and non-critical residues with the same degree of burial (blue). Mean values are given in 897!

parentheses. Results for single-chain proteins are shown, and p-values were calculated 898!

using a Wilcoxon rank sum test. 899!

 900!

Figure 7.  Potential allosteric residues add a layer of annotation to structures in the 901!

context of disease-associated SNVs. The structure shown (A) is that of the fibroblast 902!

growth-factor receptor (FGFR) in VMD Surf rendering, with HGMD SNVs shown in 903!

orange, bound to FGF2, in ribbon rendering (PDB 1IIL). (B) A linear representation of 904!

structural annotation for FGFR. Dotted lines highlight loci which correspond to HGMD 905!

sites that coincide with critical residues, but for which other annotations fail to coincide. 906!
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Deeply-buried residues are defined to be those that exhibit a relative solvent-exposed 908!

surface area of 5% or less, and binding site residues are defined as those for which at 909!

least one heavy atom falls within 4.5 Angstroms of any heavy atom in the binding partner 910!

(heparin-binding growth factor 2). The loci of PTM sites were taken from UniProt 911!

(accession P21802). 912!

 913!

Table 1.  Statistics on the surfaces of apo structures within the canonical set of 914!

proteins 915!

For each apo structure within the canonical set of proteins, statistics relating surface-916!

critical sites to known ligand-binding sites are reported. The surface of a given structure 917!

is defined to be the set of all residues that have a relative solvent accessibility of at least 918!

50%, where relative solvent accessibility is evaluated using all heavy atoms in both the 919!

main-chain and side-chain of a given residue. Mean values are given in the bottom row. 920!

NACCESS is used to calculate relative solvent accessibility (Hubbard and Thornton, 921!

1993) . Column 1: PDB IDs for each structure; Column 2: among these surface residues, 922!

the fraction that constitute surface-critical residues; Column 3: among surface residues, 923!

the fraction that constitute known ligand-binding residues (known ligand-binding 924!

residues are taken to be those within 4.5 Angstroms of the ligand in the holo structure; 925!

Table S1); Column 4: the Jaccard similarity between the sets of residues represented in 926!

columns 2 and 3 (i.e., surface-critical and known-ligand binding residues), where values 927!

given in parentheses represent the expected Jaccard similarity, given a null model in 928!

which surface-critical and ligand-binding residues are randomly distributed throughout 929!

the surface (for each structure, 10,000 simulations are performed to produce random 930!
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distributions, and the expected values reported here constitute the mean Jaccard similarity 932!

among the 10,000 simulations for each structure); Column 5: the number of distinct 933!

surface-critical sites identified in each structure; Column 6: the number of known ligand-934!

binding sites in each structure; Column 7: the number of known ligand-binding sites 935!

which are positively identified within the set of surface-critical sites, where a positive 936!

match occurs if a majority of the residues in a surface-critical site coincide with the 937!

known ligand-binding site; Column 8: The fraction of ligand-binding sites captured is 938!

simply the ratio of the values in column 7 to those in column 6. 939!

 940!



Page 1: [1] Deleted DECLAN CLARKE 12/13/15 2:56 PM 
Predicting Allosteric Hotspots Using Dynamics-Based Formalisms with Sequence 
Analyses Across Diverse Evolutionary Timescales 
 
 

Page 18: [2] Deleted DECLAN CLARKE 12/13/15 2:56 PM 
may not be apparent when studying a small number or specific classes of proteins. 

To our knowledge, this is the first study in which the conservation of potential allosteric 

sites has been measured across a large database of proteins. 

The ability to leverage our framework in a high-throughput manner also better 
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